CN101308051A - 三维微力硅微传感器 - Google Patents

三维微力硅微传感器 Download PDF

Info

Publication number
CN101308051A
CN101308051A CNA2008101502175A CN200810150217A CN101308051A CN 101308051 A CN101308051 A CN 101308051A CN A2008101502175 A CNA2008101502175 A CN A2008101502175A CN 200810150217 A CN200810150217 A CN 200810150217A CN 101308051 A CN101308051 A CN 101308051A
Authority
CN
China
Prior art keywords
micro
silicon
force
semi
girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101502175A
Other languages
English (en)
Other versions
CN101308051B (zh
Inventor
赵玉龙
林启敬
蒋庄德
王鑫垚
杨川
赵立波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN2008101502175A priority Critical patent/CN101308051B/zh
Publication of CN101308051A publication Critical patent/CN101308051A/zh
Application granted granted Critical
Publication of CN101308051B publication Critical patent/CN101308051B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

三维微力硅微传感器,包括一玻璃基底1,玻璃基底1上配置有相互垂直的四个单端固支硅悬臂梁4,悬臂梁4支撑着中间的质量悬块5,质量悬块5上配置有微力学探针3,四个悬臂梁4上还各配置有组压阻条2,四个压阻条2配置成惠斯通电桥。该传感器集应力敏感与力电转换检测于一体,具有灵敏度高、动态响应好、精度高、易于微型化和集成化的特点。

Description

三维微力硅微传感器
技术领域
本发明涉及一种硅微传感器,特别涉及一种基于探针形式的三维半导体压阻式微力硅微传感器。
背景技术
在微操作及微力测量过程中,如夹持、搬迁细胞和纳米电极等,被操作对象或传感器本身的一些特征,如位移、操作力等通常为微/纳米、微牛甚至纳牛量级的物理量,若不能够了解和掌握微操作过程中的这些物理量,很可能会对被操作的对象或传感器本身造成损坏,另外实现操作过程中的在线测量,对微操作的量化指标监测具有重要的作用。随着MEMS技术和微机械技术领域的快速发展,器件朝着微型化和集成化方向发展,而微力传感器的研究也成为一个重要的课题。随着检测技术的发展,单一方向的力测量已经不能满足各方面的需求,力传感器正朝着三维方向发展。三维微力的测量和传感技术在机器人触觉、微纳器件的装配、细胞操作以及微制作技术、生物技术等领域中具有广泛的运用并得到了世界各国的广泛关注,已成为国内外研究的热点。虽然力传感器的发展迅速,但是绝大部分多维力传感器由于运用场合和加工结构的限制,测量力一般在牛顿范围,缺少测量微牛量级作用微力的能力;而大多数MEMS探针微力传感器受到微悬臂梁结构的限制,虽然可以达到测量微牛量级作用力的能力,但往往只具有测量单维,二维微作用力的能力。
发明内容
本发明的目的在于克服上述现有技术的缺点,基于MEMS体硅制造工艺,结合微纳力学操作及三维传感器的测量需要,以微牛级微力检测为目标,研制了一种四悬臂梁结构的半导体压阻式集成化三维微力硅微传感器,能够感知x、y和z三个方向的微力和相应微位移。
本发明的技术方案是这样实现的:三维微力硅微传感器,包括一玻璃基底1,玻璃基底1上配置有相互垂直的四个单端固支硅悬臂梁4,悬臂梁4支撑着中间的质量悬块5,质量悬块5上配置有微力学探针3,四个悬臂梁4上还各配置有一组压阻条2,四组压阻条2配置成惠斯通电桥。
本发明也可以在玻璃基底1上配置一硅侧壁6,硅侧壁6的中间配置有相互垂直的四个单端固支硅悬臂梁4,悬臂梁4支撑着中间的质量悬块5,质量悬块5的厚度小于硅侧壁6的厚度,从而使键合的玻璃基底1和活动的质量悬块5之间留出了一定的活动空间。
X方向力测量电路由Rx1,Rx2,Rx3,Rx4四个电阻组成惠斯通测量电桥,Y方向力测量电路由Ry1,Ry2,Ry3,Ry4四个电阻组成惠斯通测量电桥,Z方向力测量电路由Rz1,Rz2,Rz3,Rz4四个电阻组成惠斯通登测量电桥。
悬臂梁4的硅基采用(100)晶面硅,压阻条2的方向沿[110]或[110]晶向。
探针3采用阶梯结构形式。
本发明以MEMS体硅压阻工艺技术为基础,结合微力学探针与四悬臂硅梁支撑结构的特点,制作一种基于微力学探针形式,具有uN级三维微力测量和传感能力的半导体压阻式三维微力硅微集成传感器。该传感器集应力敏感与力电转换检测于一体,具有灵敏度高、动态响应好、精度高、易于微型化和集成化的特点。
附图说明
图1是本发明的结构原理图。
图2是微力学探针3的测量结构图。
图3是悬臂梁4上压阻条2的布置图。
图4是悬臂梁4的受力变形示意图,其中图4(a)为微力学探针3受到X(或Y)方向作用力和位移时,悬臂梁4受力变形状态,图4(b)为微力学探针3受到Z方向的力和位移作用时,悬臂梁4受力状态。
图5是悬臂梁4的受力变形应力图,其中,图5(a)是对应图4(a)受力作用下悬臂梁4上的应力分布状态,图5(b)是对应图4(b)受力作用下悬臂梁4上的应力分布状态,另外,图中,横坐标代表悬臂梁到左端外壁的距离,纵坐标代表悬臂梁所受的应力值。
图6是压阻条2上x,y,z方向的惠斯通电桥示意图,其中,图6(a)是敏感x方向力的惠斯通电桥,图6(b)是敏感y方向力的惠斯通电桥,图6(c)是敏感z方向力的惠斯通电桥。
具体实施方式
下面结合附图对本发明的结构原理和工作原理作详细说明。
参见图1,本发明主要包括微力学探针和四悬臂梁结构的三维力转化平台两部分。其具体结构是:三维微力硅微传感器,包括一玻璃基底1,玻璃基底1上配置一硅侧壁6,硅侧壁6的中间配置有相互垂直的四个单端固支硅悬臂梁4,悬臂梁4支撑着中间的质量悬块5,质量悬块5上配置有微力学探针3,四个悬臂梁4上还各配置有一组压阻条2,四组压阻条2上配置成惠斯通电桥。质量悬块5的厚度小于硅侧壁6的厚度,从而使键合的玻璃基底1和活动的质量悬块5之间留出了一定的活动空间,保证了本发明的正常工作,同时能提供本发明的高过载限位保护。
参见图2,本发明的工作原理是:微力学探针3与被测对象7的接触,被测微力通过刚性的微力学探针3传递到三维力转化平台的四个悬臂梁4上,悬臂梁4的变形导致悬臂梁4上的压阻条2的电阻值改变,通过由四个压阻条2上构成的惠斯通电桥将电阻值的改变转化为电压的输出,从而完成力-电信号的转变。为了较好的利用压阻效应和提高测量灵敏度,悬臂梁4的硅基采用(100)晶面硅,压阻条2的方向沿[110]或[110]晶向。
微力学探针3是本发明与被测对象7接触并传递力学信号的重要部件。微力学探针3通过胶结的方式与四悬臂梁结构的中心质量块5连接构成三维微力传感器,微力学探针3的探测端与被测对象7接触,感受受力状态。为了保证测量精度,设计的微力学探针3的结构要保证微力学探针3既具有微小尺度结构,同时具备一定的刚度特性。力学探针的优化设计主要包括两个相互限制的目标约束:为保证外界作用力从探针3尽量传递到三维力转化平台的悬臂梁4上,必须尽量减少力学探针3的变形,提高力学探针3的刚度;但为保证三维力学的测量灵敏度和微尺度下的精确操作,尽量增加力学探针3的长度和减小针尖的尺度,这样又减小了力学探针的刚度,因此在力学探针设计中必须综合考虑这两种约束和加工工艺条件,优化力学探针3的相关参数,如图2和图3所示,探针3采用阶梯结构形式,探针底部的较大尺寸增加了探针3的刚度。
参见图3,本发明是在单个MEMS器件上通过四悬臂梁的微结构集成制造相对独立的测量电路,以获得三微力与传感器之间的相对独立的测量技术,提高三维微力传感器之间抗干扰的能力。具体方法就是在四悬臂梁的微结构上通过压敏电阻的优化布置和惠斯通电桥的设计将外部作用力转化并解耦为X,Y,Z方向的电信号,同时获得最大的灵敏度和最小的X,Y,Z各轴的交叉干扰。测量电路的压阻电阻条在悬臂梁上的布置,在横向上布置有Rx1~Rx4四个电阻条,在纵向上布置有Ry1~Ry4和Rz1~Rz4八个电阻条。Rx1,Rx2,Rx3,Rx4四个电阻组成惠斯通电桥测量x方向力,Ry1,Ry2,Ry3,Ry4四个电阻组成惠斯通电桥测量y方向力,Rz1,Rz2,Rz3,Rz4四个电阻组成惠斯通电桥测量z方向力。当探针受到外界力或位移的作用时,会使悬臂梁4发生形变,在悬臂梁4上产生应力,应力变化导致电阻条的阻值发生变化,最后由惠斯通电桥输出相应电压的变化。
参见图4、图5,图4(a)为微力学探针3受到X(或Y)方向作用力和位移时,悬臂梁4受力变形状态。图4(b)为微力学探针3受到Z方向的力和位移作用时,悬臂梁4受力状态。图5(a)、5(b)是对应受力作用下悬臂梁4上的应力分布状态。正是由于悬臂梁4受到X(或Y)方向和Z方向作用力和位移时,在悬臂梁4上产生的应力分布的差异,结合惠斯通测量电桥的测量特点,通过压阻条2的组桥方式,来区分或提高各方向的测量精度。
由图5悬臂梁4的应力分布可以知道,通过合理的布置压阻参数和组桥方式,可以尽量消除作用力或位移之间的相互干扰。
图6是悬臂梁上压阻条2的X、Y和Z方向惠斯通测量电桥的示意图。X方向力测量电路由Rx1,Rx2,Rx3,Rx4四个电阻组成惠斯通测量电桥,Y方向力测量电路由Ry1,Ry2,Ry3,Ry4四个电阻组成惠斯通测量电桥,Z方向力测量电路由Rz1,Rz2,Rz3,Rz4四个电阻组成惠斯通测量电桥。

Claims (5)

1、三维微力硅微传感器,包括一玻璃基底(1),其特征是,玻璃基底(1)上配置有相互垂直的四个单端固支硅悬臂梁(4),悬臂梁(4)支撑着中间的质量悬块(5),质量悬块(5)上配置有微力学探针(3),四个悬臂梁(4)上还各配置有一组压阻条(2),四组压阻条(2)配置成惠斯通电桥。
2、根据权利要求1所述的三维微力硅微传感器,其特征是,所说的玻璃基底(1)上配置一硅侧壁(6),硅侧壁(6)的中间配置有相互垂直的四个单端固支硅悬臂梁(4),悬臂梁(4)支撑着中间的质量悬块(5),质量悬块(5)的厚度小于硅侧壁(6)的厚度。
3、根据权利要求1或2所述的三维微力硅微传感器,其特征是,X方向力测量电路由Rx1,Rx2,Rx3,Rx4四个电阻组成惠斯通测量电桥,Y方向力测量电路由Ry1,Ry2,Ry3,Ry4四个电阻组成惠斯通测量电桥,Z方向力测量电路由Rz1,Rz2,Rz3,Rz4四个电阻组成惠斯通登测量电桥。
4、根据权利要求1或2所述的三维微力硅微传感器,其特征是,悬臂梁(4)的硅基采用(100)晶面硅,压阻条2的方向沿[110]或[110]晶向。
5、根据权利要求1或2所述的三维微力硅微传感器,其特征是,探针(3)采用阶梯结构形式。
CN2008101502175A 2008-07-01 2008-07-01 三维微力硅微传感器 Expired - Fee Related CN101308051B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101502175A CN101308051B (zh) 2008-07-01 2008-07-01 三维微力硅微传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101502175A CN101308051B (zh) 2008-07-01 2008-07-01 三维微力硅微传感器

Publications (2)

Publication Number Publication Date
CN101308051A true CN101308051A (zh) 2008-11-19
CN101308051B CN101308051B (zh) 2011-01-12

Family

ID=40124616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101502175A Expired - Fee Related CN101308051B (zh) 2008-07-01 2008-07-01 三维微力硅微传感器

Country Status (1)

Country Link
CN (1) CN101308051B (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322984A (zh) * 2011-05-30 2012-01-18 吉林大学 多种类型微载荷检测装置
CN102419227A (zh) * 2011-09-13 2012-04-18 河南省电力公司信阳供电公司 新型微压力传感器芯片
CN101857186B (zh) * 2010-05-12 2012-05-23 西安交通大学 用于三维微力测量的石英光纤微探针
CN102680147A (zh) * 2012-03-07 2012-09-19 中北大学 基于约瑟夫逊效应的压阻式力敏器件
CN102998038A (zh) * 2012-11-06 2013-03-27 江西理工大学 一种空间三维高精度机械式微力传感器
CN103040456A (zh) * 2012-12-21 2013-04-17 西安交通大学 一种半桥芯片植入式颅压传感器
CN103110414A (zh) * 2012-12-21 2013-05-22 西安交通大学 一种全桥芯片植入式颅压传感器
CN103261863A (zh) * 2010-11-24 2013-08-21 艾伯塔大学校董事会 一种使用硅掺杂操作的新型嵌入式3d应力和温度传感器
EP2896594A1 (en) * 2014-01-17 2015-07-22 Femtotools AG System for the combined, probe-based mechanical and electrical testing of MEMS
CN104990665A (zh) * 2015-07-08 2015-10-21 哈尔滨工业大学 具有微力传感和液滴自校准功能的微/纳颗粒转移方法及实现该方法的装置
CN105841856A (zh) * 2016-05-10 2016-08-10 东南大学 一种感知接触点三维力位移与三维力的触须传感器
CN105953714A (zh) * 2016-06-30 2016-09-21 安徽理工大学 一种变刚度并联柔性约束微纳测头
CN108349724A (zh) * 2015-09-22 2018-07-31 At&S奥地利科技与系统技术股份公司 电子部件接线板
CN108593160A (zh) * 2018-05-23 2018-09-28 太原理工大学 一种薄膜式悬臂梁表面应力生物传感器的制造方法
CN109827680A (zh) * 2019-03-19 2019-05-31 合肥工业大学 一种基于cmos传感器的三维高灵敏度测微力计
CN110110399A (zh) * 2019-04-19 2019-08-09 西南交通大学 面向微加工的竖直稳定加载对称型微悬臂设计及应用方法
CN110207864A (zh) * 2019-06-18 2019-09-06 上海应用技术大学 敏感膜和传力导杆一体化的微力传感器及其加工方法
CN111473895A (zh) * 2020-03-16 2020-07-31 吉林大学 一种触觉传感器
CN115414572A (zh) * 2022-10-09 2022-12-02 深圳市爱博医疗机器人有限公司 导丝和介入手术机器人力反馈装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2049351U (zh) * 1989-05-30 1989-12-13 复旦大学 十字梁岛结构的硅力传感器

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857186B (zh) * 2010-05-12 2012-05-23 西安交通大学 用于三维微力测量的石英光纤微探针
CN103261863A (zh) * 2010-11-24 2013-08-21 艾伯塔大学校董事会 一种使用硅掺杂操作的新型嵌入式3d应力和温度传感器
CN102322984A (zh) * 2011-05-30 2012-01-18 吉林大学 多种类型微载荷检测装置
CN102419227A (zh) * 2011-09-13 2012-04-18 河南省电力公司信阳供电公司 新型微压力传感器芯片
CN102680147B (zh) * 2012-03-07 2013-10-30 中北大学 基于约瑟夫逊效应的压阻式力敏器件
CN102680147A (zh) * 2012-03-07 2012-09-19 中北大学 基于约瑟夫逊效应的压阻式力敏器件
CN102998038A (zh) * 2012-11-06 2013-03-27 江西理工大学 一种空间三维高精度机械式微力传感器
CN102998038B (zh) * 2012-11-06 2016-12-21 江西理工大学 一种空间三维高精度机械式微力传感器
CN103110414A (zh) * 2012-12-21 2013-05-22 西安交通大学 一种全桥芯片植入式颅压传感器
CN103040456B (zh) * 2012-12-21 2015-07-08 西安交通大学 一种半桥芯片植入式颅压传感器
CN103040456A (zh) * 2012-12-21 2013-04-17 西安交通大学 一种半桥芯片植入式颅压传感器
EP2896594A1 (en) * 2014-01-17 2015-07-22 Femtotools AG System for the combined, probe-based mechanical and electrical testing of MEMS
CN104990665A (zh) * 2015-07-08 2015-10-21 哈尔滨工业大学 具有微力传感和液滴自校准功能的微/纳颗粒转移方法及实现该方法的装置
CN108349724A (zh) * 2015-09-22 2018-07-31 At&S奥地利科技与系统技术股份公司 电子部件接线板
CN105841856A (zh) * 2016-05-10 2016-08-10 东南大学 一种感知接触点三维力位移与三维力的触须传感器
CN105841856B (zh) * 2016-05-10 2019-01-29 东南大学 一种感知接触点三维力位移与三维力的触须传感器
CN105953714B (zh) * 2016-06-30 2018-07-17 安徽理工大学 一种变刚度并联柔性约束微纳测头
CN105953714A (zh) * 2016-06-30 2016-09-21 安徽理工大学 一种变刚度并联柔性约束微纳测头
CN108593160A (zh) * 2018-05-23 2018-09-28 太原理工大学 一种薄膜式悬臂梁表面应力生物传感器的制造方法
CN109827680A (zh) * 2019-03-19 2019-05-31 合肥工业大学 一种基于cmos传感器的三维高灵敏度测微力计
CN110110399A (zh) * 2019-04-19 2019-08-09 西南交通大学 面向微加工的竖直稳定加载对称型微悬臂设计及应用方法
CN110110399B (zh) * 2019-04-19 2020-12-25 西南交通大学 面向微加工的竖直稳定加载对称型微悬臂设计及应用方法
CN110207864A (zh) * 2019-06-18 2019-09-06 上海应用技术大学 敏感膜和传力导杆一体化的微力传感器及其加工方法
CN110207864B (zh) * 2019-06-18 2021-09-24 上海应用技术大学 敏感膜和传力导杆一体化的微力传感器及其加工方法
CN111473895A (zh) * 2020-03-16 2020-07-31 吉林大学 一种触觉传感器
CN111473895B (zh) * 2020-03-16 2021-06-29 吉林大学 一种触觉传感器
CN115414572A (zh) * 2022-10-09 2022-12-02 深圳市爱博医疗机器人有限公司 导丝和介入手术机器人力反馈装置

Also Published As

Publication number Publication date
CN101308051B (zh) 2011-01-12

Similar Documents

Publication Publication Date Title
CN101308051B (zh) 三维微力硅微传感器
CN201083760Y (zh) 三轴集成压阻式加速度传感器
CN101118250B (zh) 一种硅mems压阻式加速度传感器
CN102128953B (zh) 对称倾斜折叠梁结构电容式微加速度传感器
CN103551921B (zh) 一种压阻式集成化三维车削力传感器
Liang et al. Development of a touch probe based on five-dimensional force/torque transducer for coordinate measuring machine (CMM)
CN105698661A (zh) 微纳米三坐标测量机接触式扫描探头
CN102175361B (zh) 一种能够测量亚微牛顿力的三维微力传感器及其封装方法
JP6260063B2 (ja) 平行板コンデンサ及びこれを含む加速度センサ
CN105021846A (zh) 一种六轴一体式微加速度传感器及其制作方法
CN203636509U (zh) 三向切削力测量装置
CN106197816A (zh) 一种测量悬臂支撑件受力的座式传感器
US7453256B2 (en) Micro-electromechanical system (MEMS) based current and magnetic field sensor
CN205403689U (zh) 微纳米三坐标测量机接触式扫描探头
CN205120283U (zh) 张力仪传感器
CN103075951B (zh) 一种基于电容传感器阵列的三维微接触式测头
CN210346954U (zh) 一种一体式三维力传感器
CN103551924A (zh) 三向切削力测量装置
CN106092391B (zh) 一种分体式二维力传感器
CN202974174U (zh) 一种基于电容传感器阵列的三维微接触式测头
CN102305687B (zh) 差动式垂直微力加载装置及加载方法
Ferreira et al. Reducing the probe ball diameters of 3D silicon-based microprobes for dimensional metrology
CN103017946B (zh) 一种mems压阻式多轴力传感器及其制备方法
CN207866237U (zh) 梁式倾角传感器
CN202153170U (zh) 差动式垂直微力加载装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110112

Termination date: 20130701