CN101305575A - Method and apparatus for normalizing input metrics to a channel decoder in a wireless communication system - Google Patents
Method and apparatus for normalizing input metrics to a channel decoder in a wireless communication system Download PDFInfo
- Publication number
- CN101305575A CN101305575A CNA2006800421146A CN200680042114A CN101305575A CN 101305575 A CN101305575 A CN 101305575A CN A2006800421146 A CNA2006800421146 A CN A2006800421146A CN 200680042114 A CN200680042114 A CN 200680042114A CN 101305575 A CN101305575 A CN 101305575A
- Authority
- CN
- China
- Prior art keywords
- normalized
- value
- normalization
- input
- llrs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/38—Demodulator circuits; Receiver circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
- H04L1/0003—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0047—Decoding adapted to other signal detection operation
- H04L1/005—Iterative decoding, including iteration between signal detection and decoding operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Quality & Reliability (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Error Detection And Correction (AREA)
Abstract
提供了一种在无线通信系统中归一化输入到信道解码器的软度量的装置和方法。解映射器使用接收到的调制符号(Rk)的同相分量(Xk)和正交分量(Yk)、信道衰落系数(gk)和由接收到的调制符号的调制阶次定义的常数值(c)来产生软度量。归一化器接收该软度量,通过将该软度量乘以该常数值与噪声变量值的比值来计算归一化的对数似然比(LLR),将该归一化的LLR变换到期望的范围和期望比特数,并输出信道解码器的输入LLR。
Provided are an apparatus and method for normalizing soft metrics input to a channel decoder in a wireless communication system. The demapper uses the in-phase (X k ) and quadrature (Y k ) components of the received modulation symbol (R k ) , the channel fading coefficient (g k ) and the constant value (c) to generate soft metrics. The normalizer receives the soft metric, calculates a normalized log-likelihood ratio (LLR) by multiplying the soft metric by the ratio of the constant value to the value of the noise variable, and transforms the normalized LLR to the desired range and desired number of bits, and outputs the input LLR of the channel decoder.
Description
技术领域 technical field
本发明一般涉及无线通信系统。更具体地,本发明涉及用于归一化到信道解码器的输入度量(metric)的方法和装置。The present invention generally relates to wireless communication systems. More specifically, the present invention relates to methods and apparatus for normalizing input metrics to a channel decoder.
背景技术 Background technique
码分多址2000(CDMA 2000)、宽带CDMA(WCDMA)和电气和电子工程师协会(IEEE)802.16系统执行正交相移键控(QPSK)、8PSK、16正交幅度调制(16-QAM)、64正交幅度调制(64-QAM)等调制方式。此外,这些系统结合诸如turbo代码之类的信道代码来执行自适应调制和编码(AMC)。该系统获得适合于信道状况的最佳传输速率。接收级根据各种调制方式利用解映射器(demapper)计算每比特的对数似然比(LLR),并获取到信道解码器的输入度量。该信道解码器接收并解码该度量。Code Division Multiple Access 2000 (CDMA 2000), Wideband CDMA (WCDMA), and Institute of Electrical and Electronics Engineers (IEEE) 802.16 systems perform quadrature phase-shift keying (QPSK), 8PSK, 16-quadrature amplitude modulation (16-QAM), 64 quadrature amplitude modulation (64-QAM) and other modulation methods. Furthermore, these systems perform Adaptive Modulation and Coding (AMC) in conjunction with channel codes such as turbo codes. The system obtains an optimal transmission rate suitable for channel conditions. The receiving stage uses a demapper (demapper) to calculate the logarithmic likelihood ratio (LLR) of each bit according to various modulation methods, and obtains the input metric to the channel decoder. The channel decoder receives and decodes the metrics.
图1示出了在传统无线通信系统中的收发器的结构。FIG. 1 shows the structure of a transceiver in a conventional wireless communication system.
参照图1,在发射器100之内的信道编码器110中编码要发送的二进制数据i(n)。信道编码器110产生一系列二进制代码符号c(n)。映射器120产生所产生的代码符号的几个代码符号的块,执行到信号星座上的一个点的映射,并变换为复数值的调制符号x(n)。调制符号x(n)施加于调制器130上。调制器130根据调制符号x(n)产生在码分多址(CDMA)或正交频分复用(OFDM)方案中的时间连续波,并将所产生的波通过信道140发送到接收器150。Referring to FIG. 1, binary data i(n) to be transmitted is encoded in a
在接收器150中,解调器/信道估算器160对接收到的信号执行基带解调和信道估算处理。可以根据各种技术来实现该解调器。例如,该解调器可以是与CDMA瑞克接收器或快速傅立叶逆变换(IFFT)处理器和信道估算器一起实现的OFDM解调器。在基带解调之后,得到信道估算c(n)和接收到的通过QAM或PSK调制的符号y(n)。In receiver 150, demodulator/
解映射器170使用接收到的符号y(n)和信道估算c(n)来计算构成信道代码的码字的比特的度量。与在解映射器170中计算的度量值对应的序列Λ(n)被输入到信道解码器180中,并被解码成原始发送的二进制数据。当信道解码器180完成解码操作时,接收器150在物理层中完成基本操作。此时,信道解码器180可以使用对于卷积码的维特比解码器、对于turbo码的软输出维特比算法(SOVA)迭代解码器、对数最大后验概率(MAP)迭代解码器以及最大对数MAP迭代解码器等。The
在实现如上所述工作的传统无线通信系统时,当按照传统方式执行浮点运算时,输入到解码器的度量的动态范围不受限制。然而,当实现用于执行定点运算的硬件时,根据动态范围,其受到量化噪声、限幅噪声等等的影响。因此,通信系统的每一步都应当通过执行适合于度量表示法的归一化操作来确保最佳性能同时具有最少硬件。但是,由于传统方法不考虑在解映射器中计算的度量的归一化,因此存在一个问题:高编码速率和高阶调制的性能低于传统编码速率和调制的性能。In implementing a conventional wireless communication system that works as described above, the dynamic range of the metrics input to the decoder is not limited when floating point operations are performed in a conventional manner. However, when implementing hardware for performing fixed-point arithmetic, it is affected by quantization noise, clipping noise, and the like in terms of dynamic range. Therefore, every step of the communication system should ensure optimal performance with minimal hardware by performing normalization operations appropriate to the metric representation. However, since the conventional method does not consider the normalization of the metrics computed in the demapper, there is a problem: the performance of high coding rates and high-order modulations is lower than that of conventional coding rates and modulations.
发明内容 Contents of the invention
因而,本发明的特定示范性实施例解决现有技术中存在的上述和其它问题。本发明的示范性方面提供了一种无线通信系统中在信道解码时利用少量比特的对数似然比(LLR)能够获得最佳性能的方法和装置。Accordingly, certain exemplary embodiments of the present invention address the above and other problems of the prior art. Exemplary aspects of the present invention provide a method and apparatus capable of obtaining optimal performance using a log-likelihood ratio (LLR) of a small number of bits in channel decoding in a wireless communication system.
此外,本发明的示范性实施例提供了一种在无线通信系统中通过归一化用作信道解码器的输入的度量利用少量比特能够改进解码性能的方法和装置。Furthermore, exemplary embodiments of the present invention provide a method and apparatus capable of improving decoding performance with a small number of bits by normalizing a metric used as an input of a channel decoder in a wireless communication system.
此外,本发明的示范性实施例提供了一种在无线通信系统中根据调制阶次和当前状态的噪声电平能够适当归一化用作信道解码器的输入的度量的方法和装置。Also, exemplary embodiments of the present invention provide a method and apparatus capable of properly normalizing a metric used as an input of a channel decoder according to a modulation order and a noise level of a current state in a wireless communication system.
此外,本发明的示范性实施例提供了一种在无线通信系统中当缺少用作信道解码器的输入的关于噪声变量(noise variance)的信息时可以使用关于调制阶次、信道编码速率和信道编码帧长度的信息来执行适当的归一化的方法和装置。In addition, exemplary embodiments of the present invention provide a method that can use information on modulation order, channel coding rate, and channel when information on noise variance used as an input to a channel decoder is lacking in a wireless communication system. Methods and apparatus for encoding frame length information to perform proper normalization.
根据本发明的一个示范性方面,提供了一种在无线通信系统中归一化输入到信道解码器的软度量的装置。在示范性实施中,该装置包括:解映射器,用于使用接收到的调制符号(Rk)的同相分量(Xk)和正交分量(Yk)、信道衰落系数(gk)和由接收到的调制符号的调制阶次定义的常数值(c)来产生软度量;以及归一化器,用于接收该软度量,通过将该软度量乘以该常数值与噪声变量值的比值来计算归一化的对数似然比(LLR),将该归一化的LLR变换到期望的范围和期望的比特数,并输出信道解码器的输入LLR。According to an exemplary aspect of the present invention, an apparatus for normalizing soft metrics input to a channel decoder in a wireless communication system is provided. In an exemplary implementation, the apparatus includes a demapper for using in-phase (X k ) and quadrature (Y k ) components of received modulation symbols (R k ), channel fading coefficients (g k ) and A soft metric is generated by a constant value (c) defined by the modulation order of the received modulation symbol; and a normalizer is used to receive the soft metric by multiplying the soft metric by the constant value and the value of the noise variable Ratio to calculate the normalized log-likelihood ratio (LLR), transform the normalized LLR to the desired range and the desired number of bits, and output the input LLR of the channel decoder.
根据本发明的另一个示范性方面,提供了一种在无线通信系统中归一化输入到信道解码器的软度量的装置。在示范性实施中,该装置包括:解映射器,用于使用接收到的调制符号(Rk)的同相分量(Xk)和正交分量(Yk)、信道衰落系数(gk)和由接收到的调制符号的调制阶次定义的常数值(c)来产生软度量;以及归一化器,用于接收该软度量,通过将该软度量乘以由自适应调制和编码(AMC)信息计算的归一化系数来计算归一化的对数似然比(LLR),将该归一化的LLR变换到期望的范围和期望的比特数,并输出信道解码器的输入LLR。According to another exemplary aspect of the present invention, an apparatus for normalizing soft metrics input to a channel decoder in a wireless communication system is provided. In an exemplary implementation, the apparatus includes a demapper for using in-phase (X k ) and quadrature (Y k ) components of received modulation symbols (R k ), channel fading coefficients (g k ) and A soft metric is generated by a constant value (c) defined by the modulation order of the received modulation symbol; and a normalizer for receiving the soft metric by multiplying the soft metric by an adaptive modulation and coding (AMC ) information to calculate the normalized log-likelihood ratio (LLR), transform the normalized LLR to the desired range and the desired number of bits, and output the input LLR of the channel decoder.
根据本发明的又一个示范性方面,提供了一种在无线通信系统中归一化输入到信道解码器的软度量的方法。在示范性实施中,该方法包括:使用接收到的调制符号(Rk)的同相分量(Xk)和正交分量(Yk)、信道衰落系数(gk)和由接收到的调制符号的调制阶次定义的常数值(c)来产生软度量;接收该软度量,并通过将该软度量乘以该常数值与噪声变量值的比值来计算归一化的对数似然比(LLR);以及将该归一化的LLR变换到期望的范围和期望的比特数,并输出信道解码器的输入LLR。According to still another exemplary aspect of the present invention, there is provided a method of normalizing soft metrics input to a channel decoder in a wireless communication system. In an exemplary implementation, the method includes: using the in-phase component (X k ) and the quadrature component (Y k ) of the received modulation symbol (R k ), the channel fading coefficient (g k ) and the received modulation symbol The soft metric is generated by a constant value (c) defined by the modulation order of ; the soft metric is received and the normalized log-likelihood ratio ( LLR); and transform the normalized LLR to the desired range and the desired number of bits, and output the input LLR of the channel decoder.
根据本发明的另一个示范性方面,提供了一种在无线通信系统中归一化输入到信道解码器的软度量的方法。在示范性实施中,该方法包括:使用接收到的调制符号(Rk)的同相分量(Xk)和正交分量(Yk)、信道衰落系数(gk)和由接收到的调制符号的调制阶次定义的常数值(c)来产生软度量;接收该软度量,并通过将该软度量乘以由自适应调制和编码(AMC)信息计算的归一化系数来计算归一化的对数似然比(LLR);以及将该归一化的LLR变换到期望的范围和期望的比特数,并输出信道解码器的输入LLR。According to another exemplary aspect of the present invention, there is provided a method of normalizing soft metrics input to a channel decoder in a wireless communication system. In an exemplary implementation, the method includes: using the in-phase component (X k ) and the quadrature component (Y k ) of the received modulation symbol (R k ), the channel fading coefficient (g k ) and the received modulation symbol The soft metric is generated by a constant value (c) defined by the modulation order of ; the soft metric is received and the normalization is computed by multiplying the soft metric by a normalization coefficient computed from Adaptive Modulation and Coding (AMC) information and transforming the normalized LLR to the desired range and the desired number of bits, and outputting the input LLR of the channel decoder.
附图说明 Description of drawings
通过以下结合附图的详细描述,本发明的上述和其它特征和优点将变得更容易理解,在附图中,相同的附图参考数字将被理解为指代相同的元件、特征和结构,其中:The above and other features and advantages of the present invention will become more comprehensible through the following detailed description in conjunction with the accompanying drawings. In the accompanying drawings, the same drawing reference numerals will be understood to refer to the same elements, features and structures, in:
图1示出了在传统无线通信系统中收发器的结构;Fig. 1 shows the structure of the transceiver in the traditional wireless communication system;
图2示出了根据本发明的第一示范性实施例的应用了输入度量归一化器的收发器的结构;FIG. 2 shows the structure of a transceiver to which an input metric normalizer is applied according to a first exemplary embodiment of the present invention;
图3A示出了正交相移键控(QPSK)星座和映射;Figure 3A shows a Quadrature Phase Shift Keying (QPSK) constellation and mapping;
图3B示出了16正交幅度调制(16-QAM)星座和映射;Figure 3B shows a 16-Quadrature Amplitude Modulation (16-QAM) constellation and mapping;
图3C示出了64正交幅度调制(64-QAM)星座和映射;Figure 3C shows a 64 quadrature amplitude modulation (64-QAM) constellation and mapping;
图4示出了计算软度量的示例;Figure 4 shows an example of calculating soft metrics;
图5示出了根据本发明的第一示范性实施例的输入度量归一化器的工作结构;Fig. 5 shows the working structure of the input metric normalizer according to the first exemplary embodiment of the present invention;
图6示出了根据本发明的第一示范性实施例的输入度量归一化器的另一工作结构;FIG. 6 shows another working structure of the input metric normalizer according to the first exemplary embodiment of the present invention;
图7示出了加性白高斯噪声(AWGN)信道的误帧率(FER)性能;Figure 7 shows the frame error rate (FER) performance of an additive white Gaussian noise (AWGN) channel;
图8示出了根据本发明的第二示范性实施例的应用了输入度量归一化器的收发器的结构;FIG. 8 shows the structure of a transceiver to which an input metric normalizer is applied according to a second exemplary embodiment of the present invention;
图9示出了根据本发明的第二示范性实施例的输入度量归一化器的工作结构;FIG. 9 shows the working structure of an input metric normalizer according to a second exemplary embodiment of the present invention;
图10示出了根据本发明的第二示范性实施例的输入度量归一化器的另一工作结构;FIG. 10 shows another working structure of the input metric normalizer according to the second exemplary embodiment of the present invention;
图11示出了根据本发明的第二示范性实施例的输入度量归一化器的又一工作结构;Fig. 11 shows another working structure of the input metric normalizer according to the second exemplary embodiment of the present invention;
图12示出了施加于根据本发明的第一和第二示范性实施例的度量归一化器的6比特输入度量的卷积turbo解码器的性能;以及Fig. 12 shows the performance of the convolutional turbo decoder of the 6-bit input metric applied to the metric normalizer according to the first and second exemplary embodiments of the present invention; and
图13示出了施加于根据本发明的第一和第二示范性实施例的度量归一化器的6比特输入度量的卷积turbo解码器的性能。Fig. 13 shows the performance of a convolutional turbo decoder for a 6-bit input metric applied to the metric normalizer according to the first and second exemplary embodiments of the present invention.
具体实施方式 Detailed ways
下面将参照附图详细描述本发明的示范性实施例的工作原理。在以下的描述中,为了简明清晰,将略去合并于此的本领域技术人员公知的功能和结构的详细描述。应当理解,这里所采用的用语和术语仅为了描述的目的,不应当被认为用于限制本发明。The working principles of the exemplary embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the following description, detailed descriptions of functions and structures incorporated herein that are known to those skilled in the art will be omitted for conciseness and clarity. It should be understood that the phraseology and terminology employed herein are for the purpose of description only and should not be regarded as limiting of the present invention.
本发明的示范性实施例提供了一种在编码信道时利用少量比特的对数似然比(LLR)度量获得最佳解码性能的方法和装置。本发明的特定示范性实施方式通过归一化信道解码器的输入度量利用少量比特使得提高了解码性能。Exemplary embodiments of the present invention provide a method and apparatus for obtaining optimal decoding performance using a log-likelihood ratio (LLR) metric with a small number of bits when encoding a channel. Certain exemplary embodiments of the present invention enable improved decoding performance with a small number of bits by normalizing the input metrics of the channel decoder.
<第一示范性实施例><First Exemplary Embodiment>
本发明的第一示范性实施例提供了一种利用用作信道解码器的输入的关于噪声变量的信息来执行归一化的结构和操作过程。A first exemplary embodiment of the present invention provides a structure and an operation procedure for performing normalization using information on noise variables used as an input of a channel decoder.
图2示出了根据本发明的第一示范性实施例的应用了输入度量归一化器的无线通信收发器的结构。FIG. 2 shows the structure of a wireless communication transceiver to which an input metric normalizer is applied according to a first exemplary embodiment of the present invention.
参照图2,在发射器200之内的信道编码器210中编码要发送的二进制数据i(n)。信道编码器210产生一系列二进制代码符号c(n)。映射器220产生所产生的代码符号的几个代码符号的块,映射到信号星座上的一个点,并变换为复数值的调制符号x(n)。序列x(n)施加于调制器230上。调制器230根据该符号在码分多址(CDMA)或正交频分复用(OFDM)方案中产生时间连续波,并将所产生的波通过信道240发送到接收器250。Referring to FIG. 2, binary data i(n) to be transmitted is encoded in a
在接收器250中,解调器/信道估算器260对经过信道240的信号执行基带解调和信道估算处理。可以根据应用于基带的各种技术来实现该解调器。例如,该解调器可以是与CDMA瑞克接收器或快速傅立叶逆变换(IFFT)处理器和信道估算器一起实现的OFDM解调器。In
在本发明的示范性实施例中,将主要描述电气和电子工程师协会(IEEE)802.16e和正交频分多址(OFDMA)系统。在解调器/信道估算器260完成了基带解调之后,将接收到的符号和信道估算输出到噪声变量估算器265和解映射器270中。噪声变量估算器265使用各种算法根据信道估算来估算噪声变量值σn 2,并将估算的噪声变量值输出到LLR归一化器275。In an exemplary embodiment of the present invention, Institute of Electrical and Electronics Engineers (IEEE) 802.16e and Orthogonal Frequency Division Multiple Access (OFDMA) systems will be mainly described. After demodulator/
解映射器270从解调器/信道估算器260中接收信道估算c(n)和通过正交幅度调制(QAM)或相移键控(PSK)调制的接收到的符号y(n),并通过解映射来输出每比特的度量。解映射器270能够使用各种算法来获得该度量。解映射方法传统上使用接近于最佳算法的简化算法。该多种算法之一是在参考文献1(Y.Xu,H.-J.Su,E.Geraniotis,″Pilot symbol assisted QAM withinterleaved filtering and turbo decoding over Rayleigh flat-fading channel,″inProc.MILCOM ′99,pp.86-91)中提出的双最小度量方法,其公开内容通过引用被合并于此。
IEEE 802.16e系统使用16正交幅度调制(16-QAM)或64正交幅度调制(64-QAM)的高阶调制。由于信道衰落和噪声,调制后发送的信号可能会失真。由于在IEEE 802.16系统的接收器250中充当信道解码器280的卷积turbo解码器接收并解码与每比特的可靠性信息对应的软度量,因此在信道解码器280的前级需要从失真的接收到的信号中计算软度量的过程。该过程由接收器250中的解映射器270来执行。现在,将描述应用于本发明的解映射算法。The IEEE 802.16e system uses higher order modulation of 16 quadrature amplitude modulation (16-QAM) or 64 quadrature amplitude modulation (64-QAM). The modulated transmitted signal may be distorted due to channel fading and noise. Since the convolutional turbo decoder serving as the
IEEE 802.16系统使用正交相移键控(QPSK)、16QAM或64QAM的调制方法。当代表二进制信道编码器的输出序列中的一个调制符号的比特数为m时,星座中的信号点数为M=2m,其中m=2,4,6等等。该m比特被映射为信号点的特定信号点。当用一个等式来表达M-QAM映射时,从如等式(1)所示的m个二进制符号中可以获得调制符号的同相和正交分量。The IEEE 802.16 system uses a modulation method of Quadrature Phase Shift Keying (QPSK), 16QAM, or 64QAM. When the number of bits representing one modulation symbol in the output sequence of the binary channel encoder is m, the number of signal points in the constellation is M=2 m , where m=2, 4, 6 and so on. The m bits are mapped to a specific signal point of signal points. When an equation is used to express the M-QAM mapping, the in-phase and quadrature components of the modulation symbol can be obtained from m binary symbols as shown in Equation (1).
在等式(1)中,sk i(i=0,1,…,m-1)是映射到第k个信号点的二进制信道编码器的输出序列的第i个符号,xk和yk分别是第k个信号点的同相分量和正交分量。在16QAM的情况下,m=4。In equation (1), s k i (i=0, 1, ..., m-1) is the i-th symbol of the output sequence of the binary channel encoder mapped to the k-th signal point, x k and y k are the in-phase component and quadrature component of the kth signal point, respectively. In the case of 16QAM, m=4.
图3A到3C分别示出了QPSK星座、16QAM星座和64QAM星座。3A to 3C show a QPSK constellation, a 16QAM constellation and a 64QAM constellation, respectively.
从图3A到3C中可以看出,要被调制的符号的xk由sk m-1,sk,m-2,…,sk m/2来确定,而yk由sk m/2 1,…,sk 0来确定。能够确定每个星座点的常数c由等式(2)定义。这是用于将符号的平均能量设置为1的值。As can be seen from Figures 3A to 3C, x k of the symbol to be modulated is determined by s k m-1 , s k, m-2 , ..., s k m/2 , and y k is determined by s k m/2 1 ,..., s k 0 to determine. A constant c capable of determining each constellation point is defined by equation (2). This is the value used to set the symbol's average energy to 1.
这里,c4为QPSK的参考值,c16为16QAM的参考值,c64为64QAM的参考值。调制后的符号具有xk+jyk的复数值。在调制后的符号经过信道240和基带解调器260之后,如等式(3)所示的信号输入到解映射器270中。Here, c 4 is the reference value of QPSK, c 16 is the reference value of 16QAM, and c 64 is the reference value of 64QAM. The modulated symbols have complex values of x k + jy k . After the modulated symbols pass through the
Rk=gk(xk+jyk)+nxk+jnyk......(3)R k =g k (x k +jy k )+n xk +jn yk ......(3)
=XK+jYK = XK + jYK
这里,gk为信道衰落系数并且表达为gk=gxk+jgyk·nxk和nyk是噪声和干扰分量。与QAM符号的元素对应的比特符号sk,i的对数似然比(LLR)可以近似如等式(4)所示.Here, g k is a channel fading coefficient and expressed as g k =g xk +jg yk ·n xk and nyk are noise and interference components. The log-likelihood ratio (LLR) of the bit symbols sk,i corresponding to the elements of the QAM symbol can be approximated as shown in Equation (4).
这里,zk(sk,i=0)为通过将sk,i=0的符号乘以衰落常数gk计算的改变的星座点,σn 2为噪声和干扰变量。Here, z k (s k,i =0) is a changed constellation point calculated by multiplying the symbol of s k,i =0 by a fading constant g k , and σ n 2 is a noise and interference variable.
在等式(4)中,应用对数最大后验概率(MAP)方案来计算LLR,使用少量计算可以获得高可靠的估算。等式(4)可以近似如等式(5)所示.In Equation (4), the log maximum a posteriori probability (MAP) scheme is applied to compute the LLR, and a highly reliable estimate can be obtained with a small amount of computation. Equation (4) can be approximated as shown in Equation (5).
这里,nk,i为映射到接近于接收到的符号Rk的星座点的第i个信息比特值,nk,i为nk,i的求反(negation)。构成QPSK,16QAM和64QAM符号的比特符号sk,i分别仅与接收到的符号的同相和正交分量之一相关。关于等式(5)的Rk和zk,根据sk,i来估算x和y轴分量之一。Here, nk ,i is the i-th information bit value mapped to the constellation point close to the received symbol R k , and nk,i is the negation of nk ,i . The bit symbols sk, i constituting the QPSK, 16QAM and 64QAM symbols are respectively related to only one of the in-phase and quadrature components of the received symbol. Regarding R k and z k of equation (5), one of the x and y axis components is estimated from s k,i .
图4示出了当gk为实数值时计算LLR的示例。FIG. 4 shows an example of calculating LLRs when g k is a real value.
假定已接收到Rk,可以由如图4所示的等式(6)来定义s3的LLR。Assuming that R k has been received, the LLR of s 3 can be defined by equation (6) as shown in FIG. 4 .
当使用如等式(6)所示的方法计算LLR时,每种情况下都存在系数并且括号中的部分是对于输入信号的线性等式。在示范性实施方式中,能够利用软度量产生器(SMG)的线性函数来实现解映射器。在包括衰落系数gk的常数输入到SMG中时,能够以合适的定标(scale)方法来处理该常数。假定用于通过从LLR中估算系数来产生软度量的函数为SMG(a,b),则用于计算LLR的等式(6)可以被改写为等式(7)。When calculating the LLR using the method shown in equation (6), there are coefficients in each case And the part in parentheses is the linear equation for the input signal. In an exemplary embodiment, the demapper can be implemented using a linear function of a soft metric generator (SMG). When a constant comprising the fading coefficient g k is input into the SMG, the constant can be processed in a suitable scaling method. Assumed to be used to estimate the coefficients from the LLR by The function to generate the soft metric is SMG(a, b), then Equation (6) for calculating LLR can be rewritten as Equation (7).
等式(7)示出了仅与同相分量Xk有关的LLR计算。当然,仅与正交分量Yk有关的LLR计算可以使用|gk|2Yk来代替|gk|2Xk。Equation (7) shows the LLR calculation with respect to the in-phase component X k only. Of course, the LLR calculation related only to the orthogonal component Y k can use |g k | 2 Y k instead of |g k | 2 X k .
SMG的输入是|gk|2Xk、|gk|2Yk和|gk|2c,其中gk是由信道估算得到的。因而,可以容易地由接收到的符号和信道估算来计算SMG的输入。The inputs of the SMG are |g k | 2 X k , |g k | 2 Y k and |g k | 2 c, where g k is obtained by channel estimation. Thus, the input to the SMG can be easily calculated from the received symbols and the channel estimate.
当gk是复数时,映射到同相信号分量和正交信号分量的SMG的输入可以如等式(8)所示定义。When g k is a complex number, the input of the SMG mapped to the in-phase signal component and the quadrature signal component can be defined as shown in equation (8).
也就是说,等式(8)中SMG的输入可以容易地由接收到的信号使用等式(9)计算得到。That is, the input to the SMG in Equation (8) can be easily calculated from the received signal using Equation (9).
(Xkgxk+Ykgyk,|gk|2c)=(Ik,ak)(X k g xk +Y k g yk ,|g k | 2 c)=(I k ,a k )
(Ykgxk-Ykgyk,|gk|2c)=(Qk,ak)......(9)(Y k g xk -Y k g yk ,|g k | 2 c)=(Q k ,a k )......(9)
在共同附在SMG的输出之间的系数中,值4为QPSK,16QAM和64QAM的公共系数,因此反映量化。设置从而使得在产生软输出之后执行归一化,并且量化的LLR具有合适的范围和分辨率。Coefficients between the outputs of the SMG attached to the In , the
然后,将要在解映射器270中计算的度量可以被简化为如等式(10)所示,SMGi()的函数是仅利用移位操作和加法器实施的简单的线性计算。The metric to be computed in the
这里,ak为|gk|2c。等式(10)用于计算与同相分量有关的软度量。SMGi(Qk,ak)用于计算与等式(7)所示的正交分量有关的软度量。Here, a k is |g k | 2 c. Equation (10) is used to calculate the soft metrics associated with the in-phase component. SMG i (Q k , a k ) is used to compute soft metrics related to the quadrature components shown in equation (7).
如下表所示,由函数SMGi()得到的16QAM的度量可以根据由接收到的符号计算的同相信号分量Ik和正交信号分量Qk以及信道衰落系数所属的域来得到。为了计算软度量,仅考虑Ik、Qk和ak。As shown in the table below, the metric of 16QAM obtained by the function SMG i () can be obtained according to the domain to which the in-phase signal component I k and the quadrature signal component Q k calculated from the received symbols and the channel fading coefficient belong. For computing soft metrics, only I k , Q k and a k are considered.
表1Table 1
表2Table 2
表1示出了由Ik产生的16QAM的度量,表2示出了由Qk产生的16QAM的度量。以相同的方式,可以计算出与64QAM有关的Λ(sk,5)、Λ(sk,4)和Λ(sk,3)的软比特度量,如表3所示。此外,可以由Qk计算出Λ(sk,2)、Λ(sk,1)和Λ(sk,0)。下面将描述与Ik有关的软输出。Table 1 shows the metrics of 16QAM generated by I k , and Table 2 shows the metrics of 16QAM generated by Q k . In the same way, the soft bit metrics of Λ(s k, 5 ), Λ(s k, 4 ) and Λ(s k, 3 ) related to 64QAM can be calculated, as shown in Table 3. In addition, Λ(s k,2 ), Λ(s k,1 ) and Λ(s k,0 ) can be calculated from Q k . The soft output related to I k will be described below.
表3table 3
表3示出了由Ik产生的64QAM的软度量。使用这种方式,可以计算出QPSK、16QAM和64QAM的软输出。但是,软输出值本身是通过从用于表达解码器的原始输入LLR的等式(7)中除去4c/σn 2而计算得到的。Table 3 shows the soft metrics for 64QAM generated by Ik . In this way, the soft output of QPSK, 16QAM and 64QAM can be calculated. However, the soft output value itself is computed by removing 4c/ σn2 from equation (7) expressing the original input LLR to the decoder.
在示范性硬件实施方式中,解码器的输入度量的动态范围可能额外增加,或者其性能可能退化。因此,c/σn 2反映在归一化中。In an exemplary hardware implementation, the dynamic range of the decoder's input metrics may be additionally increased, or its performance may be degraded. Therefore, c/σ n 2 is reflected in the normalization.
图5示出了根据本发明的第一示范性实施例的输入度量归一化器的工作结构的示范性实施方式。Fig. 5 shows an exemplary implementation of the working structure of the input metric normalizer according to the first exemplary embodiment of the present invention.
图5示出了用于反映c/σn 2的值的度量归一化器的示例。由于“c”值是根据QPSK、16QAM和64QAM调制方案而存储的,因此归一化器275可以在接收调制阶次或映射到调制阶次的调制信息mod_order时设置“c”值。为了计算与噪声与干扰的总和变量对应的噪声变量σn 2,需要噪声变量估算器(如由图2的参考数字265所指示的)。噪声变量估算器265能够使用各种算法估算噪声变量值σn 2。Figure 5 shows an example of a metric normalizer for reflecting the value of c/ σn2 . Since the 'c' value is stored according to QPSK, 16QAM, and 64QAM modulation schemes, the
在归一化器275中,乘法器520接收通过使用反映除法的变换表510将变量值变换而计算得到的c/σn 2。当乘法器520将来自解映射器270的度量Λ(n)乘以c/σn 2时,归一化LLR。在归一化LLR之后,舍入/截断部分530将具有期望范围和期望比特数的LLRΛ′(n)输入到解码器中。根据系统支持的调制阶次或编码速率,输入度量的比特数M大约为24~26,归一化的输出比特数为6~8。In
在图5中,可以使用各种方法来估算噪声变量。例如,可以使用参考文献1(T.A.Summers and S.G.Wilson,″SNR mismatch and online estimation inturbo decoding,″IEEE Trans.Commun.vol.46,no.4,Apr.1998)中公开的方法,其公开的内容通过应用而合并于此。此外,可以由CDMA系统的导频信道或OFDM系统的导频音来估算与噪声和干扰有关的变量(即,噪声变量)。In Figure 5, various methods can be used to estimate the noise variable. For example, the method disclosed in reference 1 (T.A.Summers and S.G.Wilson, "SNR mismatch and online estimation inturbo decoding," IEEE Trans.Commun.vol.46, no.4, Apr.1998) can be used, and the disclosed content Incorporated hereby by application. Furthermore, variables related to noise and interference (ie, noise variables) can be estimated from a pilot channel of a CDMA system or a pilot tone of an OFDM system.
图6示出了根据本发明的第一示范性实施例的输入度量归一化器的工作结构的另一示范性实施方式。Fig. 6 shows another exemplary implementation of the working structure of the input metric normalizer according to the first exemplary embodiment of the present invention.
图6示出了实现图5的归一化器的示例。利用两个移位器630和640以及一个加法器650来实现归一化。该归一化结构可以执行适当的归一化同时最小化功率消耗。FIG. 6 shows an example of implementing the normalizer of FIG. 5 . Normalization is implemented using two
在图6中,调制阶次(mod_order)和噪声变量输入到归一化索引计算器610中,使得计算出归一化索引(norm_index)。In FIG. 6, the modulation order (mod_order) and the noise variable are input into a
接着,将详细描述归一化方法的示例。该归一化索引计算器610具有映射到能够从噪声变量估算器265中接收到的估算值的temp_norm_index。由于应当反映除以噪声变量,因此应当选择与噪声变量值成反比的temp_norm_index。例如,应当选择temp_norm_index以使得
norm_index=temp_norm_index, (QPSK)norm_index=temp_norm_index, (QPSK)
norm_index=temp_norm_index-2,(16QAM)norm_index=temp_norm_index-2, (16QAM)
norm_index=temp_norm_index-4,(64QAM)norm_index=temp_norm_index-4, (64QAM)
在归一化表620中,norm_index值被变换成乘以表4所示的归一化系数的归一化增益值。在表4的一个步长(step)中,可能调节大约3dB的LLR归一化。仅在能够更精确的调节并且LLR比特数要被减少的时候,表4的归一化系数可以被分成更精确的步长并且可以使用多个加法器。In the normalization table 620, the norm_index value is transformed into a normalization gain value multiplied by the normalization coefficient shown in Table 4. In one step of Table 4, it is possible to adjust the LLR normalization by about 3dB. The normalization coefficients of Table 4 can be divided into more precise steps and multiple adders can be used only when more precise adjustments are possible and the number of LLR bits is to be reduced.
然后,通过将norm_index值乘以归一化系数而计算得到的值被输入到移位器630和640中,并用于对来自解映射器270的度量Λ(n)进行移位操作。在加法器650中将移位的值相加,从而计算LLR。归一化的LLR被输入到舍入/截断部分660中。从舍入和截断部分660中输出期望范围和期望比特数的LLRΛ′(n)。The values calculated by multiplying the norm_index value by the normalization coefficient are then input into
表4Table 4
上述归一化方法是在使用QPSK、16QAM和64QAM的系统的信道解码器中实施归一化的示例。当然,本发明包括使用噪声估算和调制阶次的SMG的输出LLR的所有可能的方法。The normalization method described above is an example of implementing normalization in a channel decoder of a system using QPSK, 16QAM, and 64QAM. Of course, the invention includes all possible methods of using noise estimation and the output LLR of the SMG of the modulation order.
<第二示范性实施例><Second Exemplary Embodiment>
存在很难计算出通信系统中准确的噪声变量值的情况,这不同于第一示范性实施例。在诸如turbo码和低密度奇偶校验(LDPC)码的信道编码无误地接近信道容量的香农极限的情况下,在预定的信噪比(SNR)时存在噪声阈值,在较高的SNR时能够无误传输。也就是说,如果在使用多种调制方法和编码速率的通信系统中设置调制阶次、编码速率和帧尺寸,则操作区域的SNR被定义为能够达到系统所需的误帧率(FER)的那些SNR。当在系统中预定义此SNR时,其可以用于LLR的归一化。There are cases where it is difficult to calculate an accurate noise variable value in a communication system, which is different from the first exemplary embodiment. In the case of channel codes such as turbo codes and low-density parity-check (LDPC) codes unerringly approaching the Shannon limit of channel capacity, there is a noise threshold at a predetermined signal-to-noise ratio (SNR), capable of Error-free transmission. That is, if the modulation order, coding rate, and frame size are set in a communication system that uses multiple modulation methods and coding rates, the SNR of the operating area is defined as the one that can achieve the frame error rate (FER) required by the system Those SNRs. When this SNR is predefined in the system, it can be used for normalization of LLRs.
在示范性实施方式中,当在系统中能够设置调制方式和编码速率时,通过系统仿真可以得到期望值。In an exemplary embodiment, when the modulation mode and the coding rate can be set in the system, expected values can be obtained through system simulation.
图7示出了在IEEE 802.16e系统中对于QPSK及1/2编码、QPSK及3/4编码以及16QAM及1/2编码的加性白高斯噪声(AWGN)信道的FER性能。Fig. 7 shows the FER performance of the additive white Gaussian noise (AWGN) channel for QPSK and 1/2 coding, QPSK and 3/4 coding , and 16QAM and 1/2 coding in IEEE 802.16e system.
参照图7,当系统所需的FER大约为1%时,在QPSK及1/2编码的情况下静态操作的载波干扰噪声比(CINR)区域大约为2~3dB。由于即使在LLR的归一化不是最佳时,在超过大约2~3dB的SNR区域中的CINR也足够高,因此FER被充分减小,因此整个系统的性能不受影响。在较低CINR的情况下,FER具有接近于“1”的值,而不管LLR归一化如何。Referring to FIG. 7, when the FER required by the system is about 1%, the statically operated carrier-to-interference-noise ratio (CINR) region is about 2~3dB in the case of QPSK and 1/2 coding. Since the CINR in the SNR region over about 2~3dB is sufficiently high even when the normalization of the LLR is not optimal, the FER is sufficiently reduced, so the performance of the whole system is not affected. In case of lower CINR, FER has a value close to "1" regardless of LLR normalization.
因此,即使在系统使用预定义值而不用实际测量的噪声变量时,LLR归一化的性能也几乎不会退化。当基本知道由自动增益控制得到的信号功率时,定义了SNR,从而也可以检测出噪声变量值。在QPSK及1/2编码的情况下,假定基本操作带具有3dB。此外,假定应用自动增益环路并且信号功率P是常数,映射到信号功率P和3dB的CINR的噪声变量具有下面等式所示的关系。Therefore, the performance of LLR normalization hardly degrades even when the system uses predefined values instead of actual measured noise variables. The SNR is defined when the signal power obtained by the automatic gain control is substantially known, so that noise variable values can also be detected. In the case of QPSK and 1/2 coding, it is assumed that the basic operating band has 3dB. Furthermore, assuming that an automatic gain loop is applied and that the signal power P is constant, the noise variation mapped to the signal power P and CINR of 3dB has the relationship shown in the following equation.
也就是说,噪声变量由下面等式所示的来定义。That is, the noise variable is defined by the following equation.
在QPSK及1/2编码的情况下,如果计算的噪声变量预存储在接收器中,则即使每次不计算实际的噪声变量值而使用预存储的噪声变量值来执行LLR的归一化时也能够得到最佳性能。In the case of QPSK and 1/2 encoding, if the calculated noise variable is pre-stored in the receiver, even when the normalization of LLR is performed using the pre-stored noise variable value every time without calculating the actual noise variable value Also can get the best performance.
在本发明的第二示范性实施例中,基于AWGN,CINR被固定为大约3dB。在示范性情形下,构成一帧的QAM符号由于交错等原因而受到几乎独立的衰落。与AWGN相比,在较高CINR时达到系统所需的1%的FER。因而,在示范性情形时,应当考虑FER来设置预存储在系统中的噪声变量值。已描述了QPSK及1/2编码的示例。当然,即使在选择其它调制阶次和其它编码速率时也可以应用相同的方式。In the second exemplary embodiment of the present invention, CINR is fixed at about 3dB based on AWGN. In an exemplary case, QAM symbols constituting one frame are subject to almost independent fading due to interleaving or the like. Achieving the 1% FER required by the system at higher CINR compared to AWGN. Thus, in the exemplary case, the FER should be considered to set the noise variable value pre-stored in the system. Examples of QPSK and 1/2 encoding have been described. Of course, the same approach can be applied even when selecting other modulation orders and other coding rates.
在示范性实施方式中,系统的自动增益控制器(AGC)在上述配置的情况下正常工作,并且距离理想值的变化不大。In an exemplary embodiment, the automatic gain controller (AGC) of the system works normally with the configuration described above, and the variation from the ideal value is small.
图8示出了根据本发明的第二示范性实施例的应用了度量归一化器的无线通信收发器的结构。FIG. 8 shows the structure of a wireless communication transceiver to which a metric normalizer is applied according to a second exemplary embodiment of the present invention.
参照图8,在发射器800之内的信道编码器810中编码要发送的二进制数据i(n)。信道编码器810产生一系列二进制代码符号c(n)。映射器820产生所产生的代码符号的几个代码符号的块,映射到信号星座上的一个点,并变换为复数值的调制符号x(n)。序列x(n)施加于调制器830上。调制器830根据该符号产生CDMA或OFDM方案中的时间连续波,并将所产生的波通过信道840发送到接收器850。Referring to FIG. 8 , binary data i(n) to be transmitted is encoded in a channel encoder 810 within a transmitter 800 . Channel encoder 810 generates a series of binary code symbols c(n). A mapper 820 generates blocks of several code symbols of the generated code symbols, mapped to a point on the signal constellation, and transformed into complex-valued modulation symbols x(n). The sequence x(n) is applied to modulator 830 . The modulator 830 generates a time continuous wave in a CDMA or OFDM scheme according to the symbol, and transmits the generated wave to the receiver 850 through the channel 840 .
在接收器850中,解调器/信道估算器860对经过信道840的信号执行基带解调和信道估算处理。可以根据应用于基带的各种技术来实现该解调器。例如,该解调器可以是与CDMA瑞克接收器或IFFT处理器和信道估算器一起实现的OFDM解调器。In receiver 850 , a demodulator/channel estimator 860 performs baseband demodulation and channel estimation processing on the signal passing through channel 840 . The demodulator can be implemented according to various technologies applied to baseband. For example, the demodulator may be an OFDM demodulator implemented with a CDMA rake receiver or an IFFT processor and channel estimator.
基带调制之后得到的信道估算和接收到的符号从解调器/信道估算器860输出到解映射器870中。解映射器870接收来自解调器/信道估算器860的信道估算c(n)和接收到的通过QAM或PSK调制的符号y(n),并通过解映射输出每比特的度量。解映射器870能够使用多种算法来得到度量。可以使用参照图2描述的解映射算法。The resulting channel estimate and received symbols after baseband modulation are output from demodulator/channel estimator 860 into demapper 870 . The demapper 870 receives the channel estimate c(n) from the demodulator/channel estimator 860 and the received symbol y(n) modulated by QAM or PSK, and outputs the metric per bit through demapping. Demapper 870 can use a variety of algorithms to derive metrics. The demapping algorithm described with reference to FIG. 2 may be used.
由于在IEEE 802.16系统的接收器850中充当信道解码器880的卷积turbo解码器接收并解码与每比特的可靠性信息对应的软度量,因此在信道解码器880的前级需要从失真的接收到的信号中计算软度量的过程。该过程由接收器850中的解映射器870来执行。Since the convolutional turbo decoder serving as the channel decoder 880 in the receiver 850 of the IEEE 802.16 system receives and decodes the soft metric corresponding to the reliability information of each bit, it is necessary to receive from the distortion in the preceding stage of the channel decoder 880. The process of computing soft metrics in the incoming signal. This process is performed by a demapper 870 in the receiver 850 .
根据从解映射器870输出的度量Λ(n)以及来自控制器865的上述调制方式和编码速率的自适应调制和编码(MAC)信息,LLR归一化器875接收并归一化预定义的噪声变量值。信道解码器880接收归一化值Λ′(n)并然后输出i(n)。According to the metric Λ(n) output from the demapper 870 and the adaptive modulation and coding (MAC) information of the above-mentioned modulation scheme and coding rate from the controller 865, the LLR normalizer 875 receives and normalizes the predefined Noise variable value. The channel decoder 880 receives the normalized value Λ'(n) and then outputs i(n).
图9示出了根据本发明的第二示范性实施例的输入度量归一化器的工作结构的示范性实施方式。Fig. 9 shows an exemplary implementation of the working structure of the input metric normalizer according to the second exemplary embodiment of the present invention.
在图9中,根据调制方式和编码速率的AMC信息使用预定义的噪声变量表。参照图9,归一化器875的噪声变量表910存储根据QPSK、16QAM和64QAM的调制方案的“c”值。当接收到诸如调制阶次、编码速率、帧尺寸等AMC信息时,归一化器875能够根据由AMC信息预定的噪声值和调制阶次来设置参考“c”值。In FIG. 9, the AMC information according to the modulation scheme and coding rate uses a predefined noise variable table. Referring to FIG. 9 , the noise variable table 910 of the normalizer 875 stores 'c' values according to modulation schemes of QPSK, 16QAM, and 64QAM. When receiving AMC information such as modulation order, encoding rate, frame size, etc., the normalizer 875 can set a reference 'c' value according to the noise value and modulation order predetermined by the AMC information.
在归一化器875中,乘法器930接收通过使用反映除法的变换表920将噪声变量值和参考“c”值变换而计算得到的c/σn 2。当乘法器930将来自解映射器870的度量Λ(n)乘以c/σn 2时,归一化LLR。在归一化LLR之后,舍入/截断部分940将具有期望范围和期望比特数的LLRΛ′(n)输入到解码器中。In normalizer 875,
图10示出了根据本发明的第二示范性实施例的输入度量归一化器的工作结构的另一示范性实施方式。Fig. 10 shows another exemplary implementation of the working structure of the input metric normalizer according to the second exemplary embodiment of the present invention.
在图10中,归一化器预定义一组归一化系数来代替图9的变换表920,仅接收归一化索引,并设置归一化系数。In FIG. 10 , the normalizer predefines a set of normalization coefficients to replace the transformation table 920 in FIG. 9 , only receives the normalization index, and sets the normalization coefficients.
归一化索引接收器1010接收关于调制阶次、编码速率、帧尺寸等的信息,设置其中能够反映“c”值和噪声变量值的归一化索引,输出该设置的归一化索引到归一化表1020中。可以使用预定义的表来设置归一化索引值。The normalized
当接收到所设置的归一化索引时,在归一化表1020中可以预定义一组可能的归一化系数。当接收到归一化索引时,设置归一化系数。当乘法器930将来自解映射器870的度量Λ(n)乘以归一化系数时,LLR被归一化。在归一化LLR之后,舍入/截断部分1040将具有期望范围和期望比特数的LLRΛ′(n)输入到解码器中。When the set normalization index is received, a set of possible normalization coefficients may be predefined in the normalization table 1020 . When a normalization index is received, the normalization coefficient is set. The LLRs are normalized when the
图11示出了根据本发明的第二示范性实施例的输入度量归一化器的工作结构的又一示范性实施方式。Fig. 11 shows yet another exemplary implementation of the working structure of the input metric normalizer according to the second exemplary embodiment of the present invention.
图11示出了通过简化图10的结构得到的结构。利用两个移位器1130和1140以及一个加法器1150来实现归一化。该归一化结构可以执行适当的归一化同时最小化功率消耗。FIG. 11 shows a structure obtained by simplifying the structure of FIG. 10 . Normalization is implemented using two
关于调制方式和编码速率(或前向纠错(FEC)编码类型)的信息被输入到归一化索引计算器1110中,使得计算出归一化索引(norm_index)。在归一化表1120中,计算的norm_index值被变换成乘以表4所示的归一化系数的归一化增益值。在表4的一个步长中,可能调节大约3dB的LLR归一化。仅在能够更精确的调节并且LLR比特数要被减少的时候,表4的归一化系数可以被分成更精确的步骤并且可以使用多个加法器。Information on a modulation system and a coding rate (or a forward error correction (FEC) coding type) is input into a
然后,通过将norm_index值乘以归一化系数而计算得到的值被输入到移位器1130和1140中,并用于对来自解映射器870的度量Λ(n)进行移位操作。在加法器1150中将移位的值相加,从而计算LLR。归一化的LLR被输入到舍入/截断部分1160中。输出具有期望范围和期望比特数的LLRΛ′(n)。Then, the value calculated by multiplying the norm_index value by the normalization coefficient is input into
使用表4的归一化方法的示例如下。An example of the normalization method using Table 4 is as follows.
该示例用于在IEEE 802.16e系统中很难估算准确的噪声变量的情况。使用了这样一个事实:在相同调制方案中相同编码速率时的代码在基本相同的SNR时具有1%的FER。在每个调制方案中,计算FER为1%时的SNR,并且提供其中反映虚拟(virtual)噪声索引的norm_index。IEEE 802.16e系统具有对于应用了卷积turbo编码的数据突发的下述调制代码。在此实施例中,norm_index_basic用于实际的norm_index。表5示出了当实施图8的结构时IEEE 802.16e归一化的示例。This example is for situations where it is difficult to estimate accurate noise variables in IEEE 802.16e systems. The fact that codes at the same coding rate in the same modulation scheme have a 1% FER at substantially the same SNR is used. In each modulation scheme, the SNR at an FER of 1% is calculated, and norm_index is provided in which a virtual noise index is reflected. The IEEE 802.16e system has the following modulation codes for data bursts to which convolutional turbo coding is applied. In this embodiment, norm_index_basic is used for the actual norm_index. Table 5 shows an example of IEEE 802.16e normalization when implementing the structure of FIG. 8 .
表5table 5
在表5中,norm_index_basic用于反映IEEE 802.16e系统中定义的突发增大(boosting)或区域增大。在突发功率控制概念中,IEEE 802.16e系统支持-12dB~9dB的增大。当频率重用因子为1/3时,支持4.77dB的区域增大。在这种情况下,由于LLR值受增大的影响,因此需要对其进行补偿,使得可以减小LLR的有效工作区域。例如,可以利用下面的等式来计算norm_index。In Table 5, norm_index_basic is used to reflect the burst boosting or area boosting defined in the IEEE 802.16e system. In the concept of burst power control, the IEEE 802.16e system supports an increase of -12dB to 9dB. When the frequency reuse factor is 1/3, an area increase of 4.77dB is supported. In this case, since the LLR value is affected by the increase, it needs to be compensated so that the effective operating area of the LLR can be reduced. For example, norm_index can be calculated using the following equation.
......(13)......(13)
在等式(13)中,增大单位是dB,[a]表示舍入为最接近的整数。此外,norm_index具有在给定范围[0 24]范围内的值。使用此方法,更一般的LLR归一化是可能的。In Equation (13), the increase unit is dB, and [a] means rounding to the nearest integer. Also, norm_index has values within the given range [0 24]. Using this method, a more general LLR normalization is possible.
本发明的上述实施方法是使用归一化系数和AMC信息来归一化与输入到解码器的度量对应的LLR的方法的示例。本发明对充当解映射器的软输出产生器的输出应用归一化,并包括使用AMC信息执行归一化的所有实施方式。The above-described implementation method of the present invention is an example of a method of normalizing LLRs corresponding to metrics input to a decoder using normalization coefficients and AMC information. The present invention applies normalization to the output of the soft output generator acting as a demapper, and includes all implementations that use AMC information to perform normalization.
图12和13示出了在使用6或8比特软输入度量的情况下和在执行浮点运算的情况下,IEEE 802.16e系统中定义的卷积turbo码的性能。Turbo解码器使用最大对数MAP方法。可以看出,使用6或8比特(由“衰落,6比特”或“AWGN,6比特”和“衰落,8比特”表示)的归一化LLR和浮点运算(由“衰落,Ft”和“AWGN,Ft”表示)在本发明的示范性实施方式之间基本不存在性能差。Figures 12 and 13 show the performance of the convolutional turbo codes defined in the IEEE 802.16e system when using a 6- or 8-bit soft-input metric and when performing floating-point operations. The Turbo Decoder uses the Maximum Log MAP method. As can be seen, normalized LLR and floating point operations (denoted by "Fade, Ft" and Indicated by "AWGN, Ft") there is substantially no performance difference between the exemplary embodiments of the present invention.
从上面的描述中可知,本发明的特定实施例的示范性实施方式具有下述效果。As can be seen from the above description, exemplary implementations of specific embodiments of the present invention have the following effects.
根据本发明的示范性实施例,在无线通信系统中,通过归一化来自解映射器的软输出,信道在每个符号中都有不同值。同样在需要较高的度量分辨率的OFDM系统的情况下,利用输入到turbo解码器的少量比特可以获得期望的性能。According to an exemplary embodiment of the present invention, in a wireless communication system, a channel has a different value in each symbol by normalizing a soft output from a demapper. Also in the case of OFDM systems requiring higher metric resolution, the desired performance can be achieved with a small number of bits input to the turbo decoder.
尽管为了说明的目的已对本发明的示范性实施例进行了公开,但本领域技术人员应当理解,在不脱离本发明的范围的情况下,可以进行各种修改、增加和替换。因此,本发明不限于上述实施例,而是由所附权利要求书以及等效物的全部范围来限定。Although exemplary embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will understand that various modifications, additions and substitutions can be made without departing from the scope of the present invention. Accordingly, the invention is not to be limited to the embodiments described above, but to be defined by the appended claims along with their full scope of equivalents.
Claims (28)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2005-0108264 | 2005-11-11 | ||
KR20050108264 | 2005-11-11 | ||
KR10-2006-0022387 | 2006-03-09 | ||
KR20060022387A KR100856212B1 (en) | 2005-11-11 | 2006-03-09 | Method and apparatus for normalizing the input metric to channel decoders in a wireless communication system |
PCT/KR2006/004708 WO2007055533A1 (en) | 2005-11-11 | 2006-11-10 | Method and apparatus for normalizing input metric to a channel decoder in a wireless communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101305575A true CN101305575A (en) | 2008-11-12 |
CN101305575B CN101305575B (en) | 2012-11-14 |
Family
ID=38274197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006800421146A Expired - Fee Related CN101305575B (en) | 2005-11-11 | 2006-11-10 | Method and apparatus for normalizing input metric to a channel decoder in a wireless communication system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4763057B2 (en) |
KR (1) | KR100856212B1 (en) |
CN (1) | CN101305575B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102208964A (en) * | 2011-05-25 | 2011-10-05 | 中兴通讯股份有限公司 | System and method for realizing log likelihood ratio in digital system |
CN103187979A (en) * | 2011-12-30 | 2013-07-03 | Lsi公司 | Mixed domain fft-based non-binary ldpc decoder |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011013926A2 (en) * | 2009-07-31 | 2011-02-03 | Seo Hong Seok | Method for processing a received signal to which channel state information is applied in an orthogonal frequency-division multiplexing system |
JP5326976B2 (en) | 2009-09-30 | 2013-10-30 | 富士通株式会社 | Wireless communication apparatus, error correction method, and error correction program |
JP5845127B2 (en) * | 2012-03-29 | 2016-01-20 | 日本放送協会 | Receiving apparatus and program |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3674111B2 (en) * | 1995-10-25 | 2005-07-20 | 三菱電機株式会社 | Data transmission device |
JP3159672B2 (en) * | 1997-12-26 | 2001-04-23 | 株式会社次世代デジタルテレビジョン放送システム研究所 | PSK soft decision method and receiver |
KR100557177B1 (en) * | 1998-04-04 | 2006-07-21 | 삼성전자주식회사 | Adaptive Channel Code / Decoding Method and Its Code / Decoding Device |
US6594318B1 (en) * | 1999-12-02 | 2003-07-15 | Qualcomm Incorporated | Method and apparatus for computing soft decision input metrics to a turbo decoder |
SG97926A1 (en) * | 2000-08-29 | 2003-08-20 | Oki Techno Ct Singapore Pte | Soft-in soft-out decoder used for an iterative error correction decoder |
-
2006
- 2006-03-09 KR KR20060022387A patent/KR100856212B1/en not_active Expired - Fee Related
- 2006-11-10 JP JP2008537609A patent/JP4763057B2/en not_active Expired - Fee Related
- 2006-11-10 CN CN2006800421146A patent/CN101305575B/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102208964A (en) * | 2011-05-25 | 2011-10-05 | 中兴通讯股份有限公司 | System and method for realizing log likelihood ratio in digital system |
CN103187979A (en) * | 2011-12-30 | 2013-07-03 | Lsi公司 | Mixed domain fft-based non-binary ldpc decoder |
CN103187979B (en) * | 2011-12-30 | 2017-08-11 | 安华高科技通用Ip(新加坡)公司 | Nonbinary LDPC decoder based on hybrid domain FFT |
Also Published As
Publication number | Publication date |
---|---|
KR100856212B1 (en) | 2008-09-03 |
KR20070050750A (en) | 2007-05-16 |
CN101305575B (en) | 2012-11-14 |
JP2009513087A (en) | 2009-03-26 |
JP4763057B2 (en) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7860194B2 (en) | Method and apparatus for normalizing input metric to a channel decoder in a wireless communication system | |
KR100770189B1 (en) | Method and apparatus for calculating soft decision input metric for turbo decoder | |
RU2322762C1 (en) | Method for iterative estimation and decoding of channels and interferences | |
CN107222293B (en) | Information transmission method and device, electronic equipment and storage medium | |
US8223868B2 (en) | Method of determining a variable quantization step size for improving channel decoding, method and apparatus of performing channel decoding operation based on a variable quantization step size | |
US8767889B2 (en) | Normalization of soft bit information for FEC decoding | |
CN107750435B (en) | Apparatus and method for non-orthogonal transmission | |
CN101305575A (en) | Method and apparatus for normalizing input metrics to a channel decoder in a wireless communication system | |
CN104956636B (en) | The method and apparatus that frequency orthogonal amplitude modulation is supported in wireless communication system | |
Zhang et al. | Novel blind encoder identification of Reed-Solomon codes with low computational complexity | |
JP2007166592A (en) | Soft decision demapping method suitable for high-order modulation scheme for iterative decoder and error correction apparatus using the same | |
US8576958B2 (en) | Method for soft modulation in a wireless telecommunication network | |
CN101237434A (en) | A Soft Decision Method for Gray Mapped M-PSK Modulation | |
Choi et al. | Efficient hardware implementation of soft demapper for WiFi7 4096-QAM | |
EP2685656B1 (en) | Method and apparatus for dynamic soft decoding | |
KR101463762B1 (en) | Device and method for generating input metric to soft-input decoder | |
CN105871396B (en) | Signal receiving end capable of adaptively adjusting soft information and signal processing method thereof | |
JP5581967B2 (en) | Variance estimation method, variance estimation device, modulation signal generation method, modulation signal generation device, and computer program | |
CN101682608B (en) | Method of demapping data symbols for decoding in a wired communication system | |
KR20090003636A (en) | Apparatus and method for symbol demapping in wireless communication system and receiver for same | |
CN101453241B (en) | Method and apparatus for channel estimation | |
WO2012176695A1 (en) | Variance estimating device | |
KR100974745B1 (en) | Computation apparatus using approximation method of Bessel function | |
JP2010278623A (en) | Receiving apparatus and communication system | |
EP3732808A1 (en) | Method for block capacity equalization and optimization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121114 Termination date: 20191110 |
|
CF01 | Termination of patent right due to non-payment of annual fee |