CN101302970B - 天然气发动机排放控制方法 - Google Patents

天然气发动机排放控制方法 Download PDF

Info

Publication number
CN101302970B
CN101302970B CN2007100556192A CN200710055619A CN101302970B CN 101302970 B CN101302970 B CN 101302970B CN 2007100556192 A CN2007100556192 A CN 2007100556192A CN 200710055619 A CN200710055619 A CN 200710055619A CN 101302970 B CN101302970 B CN 101302970B
Authority
CN
China
Prior art keywords
zone
load
rotating speed
district
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007100556192A
Other languages
English (en)
Other versions
CN101302970A (zh
Inventor
窦慧莉
闫涛
李骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FAW Group Corp
Original Assignee
FAW Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FAW Group Corp filed Critical FAW Group Corp
Priority to CN2007100556192A priority Critical patent/CN101302970B/zh
Publication of CN101302970A publication Critical patent/CN101302970A/zh
Application granted granted Critical
Publication of CN101302970B publication Critical patent/CN101302970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

本发明涉及一种天然气发动机排放控制方法,其特征在于:将发动机空燃比脉谱图进行分区控制;通过分区控制空燃比实现缸内有效控制NOx排放,同时采用氧化催化器降低HC及CO排放。采用该控制方法进行发动机的性能开发和电控标定,发动机排放达到欧III标准,同时发动机保持原柴油机相当的动力性,发动机燃烧稳定,噪声小。

Description

天然气发动机排放控制方法
技术领域:
本发明涉及一种天然气发动机排放控制方法,尤其是多点电控喷射稀燃天然气发动机欧III排放控制方法。
背景技术:
随着能源短缺和环境污染问题的日益严重,天然气发动机以其良好的能源替代性和排放特性在国内大规模推广应用。但是,国内使用的天然气发动机多为机械混合器式,采取理论空燃比燃烧方式。这种发动机因其热负荷高而难以提高功率,同时,发动机的排放较难达到欧III标准。采用稀薄燃烧方式的天然气发动机可以保持与柴油机接近的热负荷,发动机可以做到大功率要求。通过合理的燃烧和排放开发使稀燃天然气发动机达到欧III排放水平是国内各发动机厂家和研发机构致力实现的目标。
发明内容:
本发明的目的在于提供一种天然气发动机排放控制方法。该方法为通过分区控制空燃比实现缸内有效控制NOx排放,同时采用氧化催化器降低HC及CO排放,使发动机达到欧III标准。
本发明的技术方案是这样实现的:一种天然气发动机排放控制方法,其特征在于:将发动机空燃比脉谱图进行分区控制;通过分区控制空燃比实现缸内有效控制NOx排放,同时采用氧化催化器降低HC及CO排放。其具体步骤为:第一步,将发动机脉谱图划分为A、B、C、D、E、F和G七个区域;A区为转速从怠速到n1、负荷从70%到100%的区域,B区为转速从n1到n2、负荷从70%到100%的区域,C区为转速从n2到nhi(调速特性上功率达到70%最大功率时的转速)、负荷从70%到100%的区域,D区为转速从怠速到n1、负荷低于70%的区域,E区为转速从n1到n2、负荷从20%到70%的区域,F区为转速从n2到n0(最高空转转速)、负荷低于70%的区域,G区为转速从n1到n2、负荷低于20%的区域;其中,n1=nlo+20%(nhi—nlo),n2=nlo+80%(nhi—nlo),nlo是50%最大功率下的转速;第二步,在A区,过量空气系数控制在1.2左右,使燃烧完善,但需要保证排温在允许的范围内;在B、C和E区域,使过量空气系数达到1.4~1.58;对于中小负荷的D、F和G区域,主要追求发动机的燃料经济性和燃烧稳定性,在保证燃烧稳定的情况下,使过量空气系数尽可能大;第三步,根据各工况的功率要求,计算出所需要的天然气消耗量;根据各工况所在区域的过量空气系数要求,确定出对应的空气量;第四步,在进行发动机的性能开发和电控标定时,采用多点电控顺序喷射系统,按照第三步确定的各工况的天然气消耗量和空气量进行精确控制,同时,测量发动机的功率、NOx和过量空气系数;第五步,如果功率和NOx达到开发目标,则各工况天然气消耗量和空气量确定;如果不能达到开发目标,则着重对B、E和C区域内各点的过量空气系数加大,重复第三、四步工作,直到功率达到开发目标,NOx排放达到欧III标准;第六步,匹配氧化催化转化器,使CO和HC排放达到欧III标准。
本发明的积极效果在于:在电控天然气发动机上,采用该发明的方法可以使发动机达到欧III标准的同时,发动机保持原柴油机相当的动力性,发动机燃烧稳定,噪声小。
附图说明:
图1为本发明的示意图。
具体实施方式:
下面结合附图对本发明做进一步的描述:CA6SE1系列天然气发动机即使用该天然气发动机欧III排放控制方法,其具体步骤为:第一步,将发动机脉谱图划分为A、B、C、D、E、F和G七个区域。A区为转速从怠速到n1、负荷从70%到100%的区域,B区为转速从n1到n2、负荷从70%到100%的区域,C区为转速从n2到nhi(调速特性上功率达到70%最大功率时的转速)、负荷从70%到100%的区域,D区为转速从怠速到n1、负荷低于70%的区域,E区为转速从n1到n2、负荷从20%到70%的区域,F区为转速从n2到n0(最高空转转速)、负荷低于70%的区域,G区为转速从n1到n2、负荷低于20%的区域。其中,n1=nlo+20%(nhi—nlo),n2=nlo+80%(nhi—nlo),nlo是50%最大功率下的转速。第二步,在A区,过量空气系数控制在1.2左右,使燃烧完善,但需要保证排温在允许的范围内。在B、C和E区域,使过量空气系数达到1.4~1.58。对于中小负荷的D、F和G区域,主要追求发动机的燃料经济性和燃烧稳定性,在保证燃烧稳定的情况下,使过量空气系数尽可能大。第三步,根据各工况的功率要求,计算出所需要的天然气消耗量。根据各工况所在区域的过量空气系数要求,确定出对应的空气量。第四步,在进行发动机的性能开发和电控标定时,采用多点电控顺序喷射系统,按照第三步确定的各工况的天然气消耗量和空气量进行精确控制,同时,测量发动机的功率、NOx和过量空气系数。第五步,如果功率和NOx达到开发目标,则各工况天然气消耗量和空气量确定。如果不能达到开发目标,则着重对B、E和C区域内各点的过量空气系数加大,重复第三、四步工作,直到功率达到开发目标,NOx排放达到欧III标准。第六步,匹配氧化催化转化器,使CO和HC排放达到欧III标准。
经过发动机台架试验验证,该发动机的排放满足欧III标准要求,发动机保持了原柴油机的动力性,而且,发动机工作平稳。

Claims (1)

1.一种天然气发动机排放控制方法,将发动机空燃比脉谱图进行分区控制;通过分区控制空燃比实现缸内有效控制NOx排放,同时采用氧化催化器降低HC及CO排放,其特征在于:具体步骤为第一步,将发动机脉谱图划分为A、B、C、D、E、F和G七个区域;A区为转速从怠速到n1、负荷从70%到100%的区域,B区为转速从n1到n2、负荷从70%到100%的区域,C区为转速从n2到nhi、负荷从70%到100%的区域,其中nhi为调速特性上功率达到70%最大功率时的转速,D区为转速从怠速到n1、负荷低于70%的区域,E区为转速从n1到n2、负荷从20%到70%的区域,F区为转速从n2到n0最高空转转速、负荷低于70%的区域,G区为转速从n1到n2、负荷低于20%的区域;其中,n1=nlo+20%(nhi-nlo),n2=nlo+80%(nhi-nlo),nlo是50%最大功率下的转速;第二步,在A区,过量空气系数控制在1.2,使燃烧完善,但需要保证排温在允许的范围内;在B、C和E区域,使过量空气系数达到1.4~1.58;对于中小负荷的D、F和G区域,追求发动机的燃料经济性和燃烧稳定性,在保证燃烧稳定的情况下,使过量空气系数尽可能大;第三步,根据各工况的功率要求,计算出所需要的天然气消耗量;根据各工况所在区域的过量空气系数要求,确定出对应的空气量;第四步,在进行发动机的性能开发和电控标定时,采用多点电控顺序喷射系统,按照第三步确定的各工况的天然气消耗量和空气量进行精确控制,同时,测量发动机的功率、NOx和过量空气系数;第五步,如果功率和NOx达到开发目标,则各工况天然气消耗量和空气量确定;如果不能达到开发目标,则着重对B、E和C区域内各点的过量空气系数加大,重复第三、四步工作,直到功率达到开发目标,NOx排放达到欧III标准;第六步,匹配氧化催化转化器,使CO和HC排放达到欧III标准。
CN2007100556192A 2007-05-11 2007-05-11 天然气发动机排放控制方法 Active CN101302970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100556192A CN101302970B (zh) 2007-05-11 2007-05-11 天然气发动机排放控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100556192A CN101302970B (zh) 2007-05-11 2007-05-11 天然气发动机排放控制方法

Publications (2)

Publication Number Publication Date
CN101302970A CN101302970A (zh) 2008-11-12
CN101302970B true CN101302970B (zh) 2011-07-20

Family

ID=40113020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100556192A Active CN101302970B (zh) 2007-05-11 2007-05-11 天然气发动机排放控制方法

Country Status (1)

Country Link
CN (1) CN101302970B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106437969A (zh) * 2016-11-14 2017-02-22 中国重汽集团济南动力有限公司 一种新型轻型汽车用尿素箱支架总成

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114962040B (zh) * 2022-05-28 2023-07-04 北京氢燃科技有限公司 直喷氢内燃机的标定方法及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2305984A1 (en) * 2000-04-18 2001-10-18 Rem Technology Inc. Air-fuel control system
US6405720B1 (en) * 2000-04-03 2002-06-18 R. Kirk Collier, Jr. Natural gas powered engine
JP2004278383A (ja) * 2003-03-14 2004-10-07 Yanmar Co Ltd ガスエンジンの制御装置
CN1730926A (zh) * 2005-08-18 2006-02-08 河北工业大学 气体燃料多点顺序喷射控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405720B1 (en) * 2000-04-03 2002-06-18 R. Kirk Collier, Jr. Natural gas powered engine
CA2305984A1 (en) * 2000-04-18 2001-10-18 Rem Technology Inc. Air-fuel control system
JP2004278383A (ja) * 2003-03-14 2004-10-07 Yanmar Co Ltd ガスエンジンの制御装置
CN1730926A (zh) * 2005-08-18 2006-02-08 河北工业大学 气体燃料多点顺序喷射控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
窦慧莉.电控喷射稀燃天然气发动机的关键技术研究.中国博士学位论文全文数据库.2006,(第10期),提要,第83-107页. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106437969A (zh) * 2016-11-14 2017-02-22 中国重汽集团济南动力有限公司 一种新型轻型汽车用尿素箱支架总成

Also Published As

Publication number Publication date
CN101302970A (zh) 2008-11-12

Similar Documents

Publication Publication Date Title
Al-Dawody et al. Experimental and simulation study for the effect of waste cooking oil methyl ester blended with diesel fuel on the performance and emissions of diesel engine
Chaichan Performance and emission characteristics of CIE using hydrogen, biodiesel, and massive EGR
Yoon et al. Experimental investigation on the combustion and exhaust emission characteristics of biogas–biodiesel dual-fuel combustion in a CI engine
Labeckas et al. Combustion phenomenon, performance and emissions of a diesel engine with aviation turbine JP-8 fuel and rapeseed biodiesel blends
Arslan Emission characteristics of a diesel engine using waste cooking oil as biodiesel fuel
CN100507230C (zh) 天然气掺氢发动机标定方法
Teoh et al. Effects of Jatropha biodiesel on the performance, emissions, and combustion of a converted common-rail diesel engine
Huang et al. Experimental study of the performance and emission characteristics of diesel engine using direct and indirect injection systems and different fuels
Teoh et al. Impact of waste cooking oil biodiesel on performance, exhaust emission and combustion characteristics in a light-duty diesel engine
Talamala et al. Experimental investigation on combustion, emissions, performance and cylinder vibration analysis of an IDI engine with RBME along with isopropanol as an additive
Suresh Kumar et al. Reduction of emissions in a biodiesel‐fueled compression ignition engine using exhaust gas recirculation and selective catalytic reduction techniques
CN101302970B (zh) 天然气发动机排放控制方法
Seraç et al. Comprehensive evaluation of performance, combustion, and emissions of soybean biodiesel blends and diesel fuel in a power generator diesel engine
JP2013036462A5 (zh)
Li et al. Emission characteristics of a natural gas engine operating in lean-burn and stoichiometric modes
Kumar et al. Combined effect of oxygenates and injection timing for low emissions and high performance in a diesel engine using multi-response optimisation
CN103756752B (zh) 改善M85甲醇汽油NOx排放的添加剂组合物
Bhaskar et al. The performance and emission characteristics of fish oil methyl esters (fome) and diesel blends in a partially premixed charge compression ignition engine
Zare et al. Impact of Triacetin as an oxygenated fuel additive to waste cooking biodiesel: transient engine performance and exhaust emissions
Muralidharan et al. Influence of injection timing on the performance and emission characteristics of DI diesel engine using pongamia pinnata methyl ester
Banapurmath et al. Performance studies of a low heat rejection engine operated on non-volatile vegetable oils with exhaust gas recirculation
Xu et al. Effect of injection strategy and load on the performance of a common-rail diesel engine fueled with Jatropha curcas biodiesel–diesel blend
CN114720139A (zh) 基于动力总成台架的排放标定方法、装置、设备及介质
Saluja et al. Assessment of effect of load and injection timing on the performance of diesel engine running on diesel-biodiesel blends
CN102681523A (zh) 一种最优点火提前角的确定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Dou Huili

Inventor after: Yan Tao

Inventor after: Li Jun

Inventor before: Dou Huili

Inventor before: Yan Tao

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: DOU HUILI YAN TAO TO: DOU HUILI YAN TAO LI JUN

C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: CHINA FAW CO., LTD.

Free format text: FORMER OWNER: CHINESE AUTO GROUP CO NO.1

Effective date: 20111121

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20111121

Address after: 130011 Changchun Province, West New Economic and Technological Development Zone, Dongfeng Street, No. 2259, No.

Patentee after: China FAW Group Corporation

Address before: 130011 Dongfeng Street, Jilin, Changchun, No. 2259

Patentee before: China FAW Group Corporation