CN101295579A - 电流传感装置 - Google Patents

电流传感装置 Download PDF

Info

Publication number
CN101295579A
CN101295579A CNA2007101857375A CN200710185737A CN101295579A CN 101295579 A CN101295579 A CN 101295579A CN A2007101857375 A CNA2007101857375 A CN A2007101857375A CN 200710185737 A CN200710185737 A CN 200710185737A CN 101295579 A CN101295579 A CN 101295579A
Authority
CN
China
Prior art keywords
current
current transformer
transformer
sensor device
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101857375A
Other languages
English (en)
Other versions
CN101295579B (zh
Inventor
K·W·琼斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co PLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101295579A publication Critical patent/CN101295579A/zh
Application granted granted Critical
Publication of CN101295579B publication Critical patent/CN101295579B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

公开了一种电流传感装置(100),其包括第一电流互感器(102),当通电时,第一电流互感器(102)具有第一输入电流和第一输出电流,第一输出电流小于第一输入电流,第一电流互感器(102)降低电流。电流传感装置(100)包括第二电流互感器(104),其与第一电流互感器(102)电通信,当通电时,第二电流互感器(104)具有第二输入电流和第二输出电流,其中第二输入电流实质上小于第一输出电流。第二输出电流大于第一输出电流,第二电流互感器(104)升高电流。升高的第二输出电流实质上等于与第二电流互感器(104)电通信的低压设备(101)的标称的额定输入电流。

Description

电流传感装置
技术领域
本发明通常涉及电流互感器,尤其是用于给测量仪表和保护设备提供精确电流的电流传感设备。
背景技术
智能电子设备(IEDs)是已知的。IED包括,例如,电子跳闸(trip)单元,保护继电器,能量表和电能质量表。作为实例,保护继电器通常连接到耦接到电力线的一个或多个电流传感器的次级侧。电流传感器提供指示电力线信号的模拟信号给保护继电器。在IEDs的情况中,模拟信号被模数(A/D)转换器转换为数字信号,其被微控制器处理。可选地,在使用较老的装备的地方,模拟信号被连接到模拟保护设备,例如机电式继电器或模拟表。在任一种情况中,具有适当量值并反映电力线上的电流的比例信号的模拟信号需要被输入下游的保护设备。
电流传感器的一种类型,电流互感器(CT),被设计为在它的次级绕组中提供电流,其与它的初级绕组中流过的电流成比例。电流互感器(CTs)在电力工业包括中压工业应用中,通常用于计量和保护继电器,通常在高压情况下它们帮助测量大的电流。电流互感器将测量和控制电路从通常出现在被测量的电路上的高压隔离。
工业规模的电流互感器通常被构造为,将单个的初级匝(绝缘电缆或未绝缘的母线)穿过缠绕有许多匝导线的绝缘良好的环形铁芯。母线用作初级绕组,环形铁芯周围缠绕的导线用作次级绕组。电流互感器被广泛地用于测量电流和监测电力系统的操作。电流互感器通常由它的初级绕组和次级绕组的电流比来表述。通常的次级电流是1安培(A)或5A。
电流互感器的次级电流提供诸如低压继电器、IED或仪表的电力设备的一般功能。虽然电流互感器的设计变化很多,但是每种必须满足这样的要求,即,安装在给定的空间体积内,例如在电路断路器(即,中压(600V)工业开关设备)的壳体内,并且当感应和提高电流时,提供期望的精确水平。
目前,大多数重要的电流传感解决方案都提供有大、重的电流互感器。电子和光纤传感选择已经可以获得,但是由于来自相关附加元件的系统可靠性的损失而没有采用。对于与现有5A或1AIED等的接口,对传输线路损耗失、饱和损耗等的补偿,以及由于次级电流经过长的距离到达IED导致的线路损耗的解决方案还没有获得。IED的输入电流传统上是5A,但是也可能是,例如,1A,如果IED被指定为1A输入。
虽然CT的设计变化很多,但是每种必须满足这样的要求,即,安装在给定的空间体积内,例如在电路断路器壳体内,并且当感应电路电流时,提供期望的精确水平。当用在具有可变额定电流的小型电路断路器中时,电流互感器中需要预定的最大铁芯体积以确保电流互感器在发生过流时不会发生磁饱和。可选地,需要预定的最小铁芯体积以确保在较低的稳态操作电流水平时铁芯将被充分磁化。
考虑到限制CT尺寸,单铁芯电流互感器已经被用来传感电路电流,并同时提供运行功率给更高额定电流的电路断路器中的电子跳闸单元。为了防止铁芯在较高电流水平变得饱和,已经使用了昂贵的磁钢叠片,并且铁芯尺寸增加,以允许过载和短路电流传感。
考虑到电路电流传感,用于提供跳闸单元运行功率的铁芯电流互感器和用于电路电流传感的空心电流互感器已经被使用。然而,由于体积的限制,在电路断路器的每个磁极中的两个电流互感器的使用并非总是可行的。虽然可获得组合的铁芯和空心电流互感器的改进的组装布置,合成的专门的绕组和装配工艺导致更高的成本设计。当涉及高电流时或当体积约束限制可以使用的磁铁芯材料的数量时,这种布置仍然受饱和的约束。
磁铁芯被使用在传统的电路断路器,双断旋转电路断路器,住宅电路断路器,商用电路断路器,工业电路断路器,空气电路断路器,过载继电器,功率表,或任何类似的提供电路保护的设备中。涉及电路保护设备中的磁铁芯的应用包括但不限于,公用、工业和商业产业。已有技术的说明如图1所示,其中CT具有初级绕组和次级绕组,初级绕组包括中压工业母线,次级绕组给距离CT很远的IED(例如保护继电器)提供次级电流,以用作操作电流和启动电流。CT次级绕组和IED之间的距离是更大的线路损耗的因数,线路损耗是I2R的函数。单相电路被示出(为了易于说明),但是典型的电功率分配系统,如中级工业系统,是三相的,并在例如600V的电压运行。图1的电流互感器97很大,在开关设备结构中需要更多空间,并被额定为下降的电流,该电流的幅值足以操作连接下行线的IED(通常额定为5A)。更高的下降电流比具有相对低的下降电流的电流互感器需要更多的绕组,因此电流互感器次级侧比具有更大次级电流的电流互感器具有更多的绕组;因此电流互感器更重并占用更大的体积。例如,已有技术的CT,诸如由Instrument Transformers Inc.制造的Model 785电流互感器,单相CT重58磅,或者三相CT(三相)重174磅,其中InstrumentTransformers Inc.是GE Mutlin的分公司,本发明的受让人的子公司。额定值、尺寸和重量可以由本领域的普通技术人员确定。
因此,至少基于前述概要讨论,存在对这样的电流传感设备的需求,即该电流传感设备减少了对损耗的补偿的需求。这种新颖的电流传感设备包括几种独特的能力,作为非限制性实例,包括:(1)给设备提供电流而不需要担心损耗;(2)安装在更小的空间中;(3)被指定更小的重量从而降低运输费用;(4)精确地传感电流的能力;(5)传感电流并保存能量。在一个实施例中,该电流传感装置安装在开关盒中,并能够精确地提供电流给下游的设备,不需要冗长的、耗时的且频繁不准确的损耗计算。
发明内容
本发明的电流传感装(sensing)置(也被称为电流传感器系统或级联传感器系统(CSS))是传统电流互感器(CT)的重量轻的替代品,其提供信号给低压设备(例如仪表)和广泛的保护应用。如在所有电力系统中一样,存在与电力线中流动的电流有关的线路损耗。电流传感装置从第一电流互感器(安装在,例如,中级600V工业开关设备结构中)发送实质上准确的低水平电流信号,第一电流互感器将电流降低(step down)以在距离为D的长电线中传播;该降低使长线上的线路损耗最小化。长电线然后连接到较小的升高(step-up)单元,或第二电流互感器,其安装在诸如IED、仪表或模拟继电器/保护设备的低压设备附近。升高单元提供,例如5A电信号给测量或保护应用;5A是在美国用于IED等的传统标称的额定值。5A信号引起很小的传输线路损耗,由于它以距离d靠近低压设备,所以当用户指定应用电流传感装置时不需要指定负载和继电器的电压等级。该电流传感装置兼容现有的低压设备,如IED、继电器和仪表。该电流传感装置不需要像已有技术那样为了确定功率容量而进行的大量复杂、耗时的计算,其中所述计算包括电流互感器在指定安装中进行工作的损耗补偿计算(即,励磁电流和线路损耗)。
处于利用水平的初级电流被具有足够绕组的感应电流互感器或第一电流互感器传感,以产生成比例的次级电流信号,该信号远远小于通常为低压产品(如由5A信号供电的产品)指定的传统的5A额定等级。这个更小的信号比传统5A信号更有效地在冗长的电线上传输。而且,电流传感设备中增加的匝数提供足够的电压水平。在正好在诸如仪表或继电器的低压设备点前的点,该小信号被第二电流互感器变换为较大的信号,通常为5A信号,以匹配低压设备的5A输入额定值。一个重要的因素在于,小信号传播相对短的距离,d,具有相对较小的阻抗和相对较小的次级绕组电阻。这减少了线路损耗和电流传感器中的损耗的可能性。因此本发明的装置被用来获得操作低压设备的小信号电流,其中该小信号电流实质上与大的初级电流成比例。
该CSS比传统的CT轻。这将节省运输和安装支架成本。CSS比传统的CT小。这将节省必须给电流传感分配的安装空间。确定CSS产品比传统CT容易,因为所有的CSS系统将满足IEEE C57.13的用于测量的0.3%的精确度,并将运行在额定值的高达20倍,以用于继电器过电流传感的短脉冲。为了确保这个性能,传统产品必须进行计算和仔细规范。在经验性测试中,精确度和电压被测量以检验测量和继电保护性能。经验性测试的初步结果表明成本节约11%至36%,重量减轻63%至84%。
出于准确度和能量保存的目的,电流被级联感应变换器感应。前述使用小信号感应的尝试没有试图将电流升高回用于仪表和继电器接口的传统5安培基础。
由于尺寸和重量的优势,以及不必改变传统的5安培基础,该替代物应该对一些消费者具有吸引力。规范的简化和标准化的机会可能将对一些用户具有吸引力。
为了使接下来的详细描述能够被更好地理解,以及为了使其对技术的贡献能够被更好地理解,上面的简单描述很广泛地阐述了本发明的较重要的特征。当然,发明的其他特征也将在下文中描述,并且其将被用于这里所附的权利要求的主题。
在这方面,在详细解释发明的几个优选实施例之前,应当理解发明不限于它的对结构的细节的应用以及对在下面的描述中阐明的或在附图中说明的元件的布置的应用。发明可以有其它实施例,并且能够以各种方式实践和完成。同样,应当理解,这里使用的措词和术语是出于描述的目的,不应该被作为限制。
同样地,本领域的技术人员将理解,该公开所基于的概念能够被容易地用作设计其它用于实现本发明的几个目的的结构、方法和系统的基础。因此,重要的是权利要求被认为包括不脱离本发明的精神和范围内的这种等价结构。
进一步,前述摘要的目的是使美国专利和商标局以及普通公众、尤其是本领域的不熟悉专利或法律术语或措词的科学家、工程师和专业人员,能够通过粗略查看本发明公开的特征和本质快速地决定。因此,摘要既不是旨在定义本发明或申请,其只由权利要求衡量,也不是旨在以任何方式限制本发明的范围。
本发明通过提供更小、更轻和更便宜的电流传感装置CT而克服了已有技术的缺点。本发明通过提供自我保护(由于具有用于开路保护的内部电压限制),进一步克服了已有技术的缺点。本发明通过在传感器和连接的设备之间的很长的距离上运行而不需要冗长的时间消耗以及有时不准确的损耗补偿计算而进一步克服了已有技术的缺点。本发明通过提供能量节约而进一步克服了已有技术的缺点。本发明进一步克服了已有技术的缺点,因为它重量轻、尺寸更小,从而在物理上能够安装在已有技术不能使用的空间中。本发明进一步克服了已有技术的缺点,因为更多的传感器能够存在于同一个空间中,或者分配给发明的空间能够被减小。本发明进一步克服了已有技术的缺点,因为它由于重量和物理尺寸的减小而能够被更便宜地运输。
本发明不需要外部控制功率。本发明由于0.3%的准确度从而更容易指定应用范围。本发明由于至少20x的范围或保护而不需要烦于继电器等级规范的不便。这减少了与传统电源的连接的需要。本发明不需要对已有技术的设备的用户进行特殊的再教育和培训。由于兼容现有的设备(例如继电器和仪表),本发明不需要取下连接的设备。本发明不需要传统的较重的CT使用的支撑机构,这节约成本。
概括而言,公开了一种电流传感装置,其包括第一电流互感器,当通电时第一电流互感器具有第一输入电流和第一输出电流,该第一输出电流小于该第一输入电流,该第一电流互感器降低电流。该电流传感装置包括第二电流互感器,其与第一电流互感器电通信,当通电时第二电流互感器具有第二输入电流和第二输出电流,其中该第二输入电流实质上小于该第一输出电流。该第二输出电流大于该第一输出电流,第二电流互感器升高电流。该升高的第二输出电流实质上等于与第二电流互感器电通信的低压设备的额定输入电流。
说明书之外的本发明的其它优势将显而易见且部分地明显。本发明的各种实施例的优势解释了前述优势。
附图说明
当结合附图考虑时,通过参考下面的详细描述,对本发明的更完整的评价以及其伴随的优势,将容易地获得同时更好地理解。结合并入组成说明书一部分的附图,说明了本发明的当前的优选实施例,连同上面给出的一般说明,以及下面给出的优选实施例的详细说明,用来解释本发明的原理,其中:
图1说明了已有技术的给设备提供电流的电流传感装置的示意性框图;
图2说明了本发明的一个实施例的给设备提供电流的电流传感装置的示意性框图;
图3说明了图2的电流传感装置的一个示例性第一电流互感器的电气示意图;
图4说明了本发明的一个实施例的电气示意图,其连接到电力系统,使用安装在互感器套管处的电流互感器以从该处获得电流,并将该电流提供给继电器,并说明了用于使电路断路器跳闸的连接;
图5说明了本发明的一个实施例的电气示意图,其使用将电流互感器安装在开关设备架中的母线,以从该处将电流提供给继电器,并说明了用于使电路断路器跳闸的连接;
图6说明了一个电压互感器的电气示意图,在该处本发明的一个实施例的电流传感装置的第一电流互感器,如图5的实施例,被安装在互感器套管处;
图7说明了本发明的一个实施例的电流传感装置的电气示意图,其具有到连接到电流传感装置的低压设备,即继电器、仪表的6个低电流输出信号;
图8说明了本发明的另一个实施例的电流传感装置的电气示意图,其具有到连接到电流传感装置的低压设备,即继电器的4个低电流输出信号;
图9说明了已有技术的通过距离Dtotal给设备提供电流的电流传感装置的示意性框图;以及
图10说明了已有技术的通过距离D+d给设备提供电流的电流传感装置的示意性框图。
具体实施方式
描述本发明时,图1-10中使用的标记为相同的数字表示本发明的相同特征。现在参考附图,其中在几个视图中相同的标记数字指示相同的或相应的部分,本发明的电流传感装置的实施例中的一个将被描述。这里描述的本发明的实施例的优势方面的一个是比已有的电流传感装置更小、更轻,并且更便宜的新颖的电流传感装置,但是它也很准确并能保存能量。
图2说明了本发明的一个实施例的给设备101提供电流的电流传感装置100(也被称为电流传感器系统或级联传感器系统(CSS)的示意性框图。术语“级联”通常表示“事物以一系列或一连串“级”布置或发生,从而每级从在前级的产物获得或作用于在前级的产物”,并用来一般性描述本发明中电流互感器的相互连接;然而,该术语不意味着被用来解释互感器的物理连接,其在一些实施例中可能更复杂,尤其在三相实施例中。
该电流传感装置包括第一电流互感器102和第二电流互感器104。第一电流互感器102被构造为降低线路电流Iin(1)(这里也称为第一电流互感器的初级电流Iin(1),因为由于示例的缘故由CT饱和导致的损耗被忽略)。第二电流互感器104被构造为升高电流Iin(2)。长距离D,或导体的长度,呈现在第一和第二电流互感器102,104之间;该长距离导致线路损耗基本上等于I2R(其中I是线路中的电流,R是导体的电阻或阻抗),从而第一电流互感器102的输出电流Iout(1)不等于第二电流互感器104的输入电流Iin(2)。短得多的距离d,或导体的长度,呈现在第二电流互感器104和下游低压设备101(例如电子继电器)之间。设备101的其它实例在前已被提供。距离比D∶d很大,并且本领域普通技术人员将知道其中D>d。因为距离d是短长度,基本上没有线路损耗,当指定和设定或编程诸如设备101的设备时,再次消除了复杂耗时计算的需要。
应当注意,电流互感器的次级电流提供传感保护电路的电路电流的一般功能,并给其中的电子设备例如断路器跳闸单元供电。虽然电流互感器的设计变化很广,每个必须满足安装在给定空间体积内的要求,例如在断路器壳体内(即,中压工业开关设备),并且当传感电路电流时提供期望的精确度水平。
在图2的情况中,再次忽略损耗,例如饱和或励磁损耗,第一电流互感器102的初级或输入电流Iin(1)由母线106上流动的电流提供。虽然例如母线106已被示出,但是本领域普通技术人员可以指定本发明使用的其它的初级导体以及不同构造的电流互感器。返回图2的示例实施例,母线106穿过由第一电流互感器102的芯112形成的开口110,开口110被构造为容纳具有适于特定应用的尺寸的母线106。在这个实例中,应用是中压(也叫做中值电平)工业应用,例如,以600V电平供电的大型生产设备。在第二绕组108中感应出第二电流或输出电流Iout(1)
图3说明了图2的电流传感装置100的示例性第一电流互感器103的电气示意图。电流互感器103被说明为铁芯113电流互感器,并能够被用于第一电流互感器102。然而,本领域普通技术人员可以确定使用其它合适的电流互感器。电流互感器的其它类型包括但不限于,两部分(two-part),A-结构,气隙,单相,三相,抽头的和可调节的。图2的第一电流互感器102的铁芯对应于图3中示意的电流互感器铁芯113。图3中示意的初级和次级侧的线圈数量Lpri,Lsec不表示用在本发明的电流传感装置100的实施例中的任何特定比率Lpri,Lsec,而只出于示例的目的。第一和第二电流互感器102,104中的每个具有初级和次级线圈结构,以便以合适的电压水平提供合适的电流给设备101。线圈结构可以由本领域普通技术人员指定。可以用于本发明实施例的第一电流互感器102的一个特定型号是由Instrument Transformers Inc.制造的Model 778半宽电流互感器,单相CT重11磅,或者三相重33磅,其中Instrument Transformers Inc.是GE Mutlin的分公司,本发明的受让人的子公司。额定值、尺寸、重量可以由本领域普通技术人员确定。
同样,AC电源115被说明为具有AC输入和输出电流Iin,Iout;然而,虽然本发明将最可能用在AC应用中,但本发明并不限于AC应用,因为通常大电源是AC而不是DC。为了简化本发明的实施例示例的描述,这里的所有示例实施例被描述为假定AC电源115,例如600伏特AC,且AC输入电流Iin(1)到第一电流互感器102。在DC电源实例中的损耗将有所不同,但其能够由本领域普通技术人员确定;因此,这里不讨论DC损耗。应当注意,电流传感装置100的第二电流互感器104,能够由铁芯电流互感器例如图3的示例性电流互感器103示意性地表示。然而,与第一电流互感器102相比,第二电流互感器104相对地更小,重量更轻。此外,因为本发明的电流传感装置包括第一电流互感器102和第二电流互感器104,第一电流互感器能够比已有技术的电流互感器(图1中说明的)小和轻得多,例如,如前所述用于单相的可以重11磅,或者用于三相的重33磅,其远远小于如前所述的已有技术的电流互感器的单相重58磅,三相重174磅。
图4说明了本发明100的一个实施例的电气示意图,本发明100连接到电源200,并使用电流互感器(例如安装在电压互感器300套管(未示出)处的套管安装电流互感器)。为了描述本发明的目的,该套管安装电流互感器也被称为第一电流互感器102;第一电流互感器102在它的安装点获得初级电流,并经由距离D提供降低的、基本上成比例的(理论上忽略损耗)次级电流给第二电流互感器104。为了本发明的这个实施例的目的,在正常运行条件下第二电流互感器104是升高互感器,并以设备的额定值来提供升高的电流给设备101;在美国,按惯例继电器或IED通常额定值是5A。因此,例如在过电流故障情况下(即,混线(line-to-line)故障),电流将高于5A,设备将被设定成在高于5A的标称操作水平的预定电流水平下运行。该预定的水平能够由本领域普通技术人员确定。图4以框图/流程图格式进一步说明了设备101连接到跳闸开关设备402(也称为电路断路器)。出于简化的目的,图4说明了单相;然而本领域普通技术人员将理解具有多于一相的实现方式。
继续参考图4的实施例,本发明,除了被连接到电源200(例如电力公用设施(electric utility)或本地发电厂),还连接到设备101,例如继电器或其它合适的设备,例如测量或保护设备。设备101位于本地电力设施(例如开关设备室)或中压工业电厂(未示出)的电力设施500中。在中压工业设施中,用于主要电力馈线的开关设备是相当大的。在本说明中,开关设备402被安装在具有面板(未示出)的壳体400内。壳体400容纳第二电流互感器104。设备101被安装在,例如附近的控制面板(未示出)上。第二电流互感器104位于离设备101距离d的位置。作为备选,开关设备402还可以容纳在壳体、支架或其它合适的结构中,这可以由本领域普通技术人员确定。作为备选,设备101和第二电流互感器104还可以安装在替代的基底上,这可以由本领域普通技术人员确定。在机电继电器的情况下,最适宜将设备定位在不会被移动、被碰撞等的基底上,以避免设备的错误操作。设备101包括操作线圈116,当通电时其提供电流Itrip。当电流Itrip达到预定水平时,常开继电器触头117闭合。该闭合的触头117实现设备101和开关设备402的操作机构(未示出)之间的跳闸电路,并允许开关设备操作机构打开开关设备402。当开关设备402打开或跳闸时,使电源200从负载L断开连接。预定的跳闸电流Itrip水平可以由本领域的普通技术人员确定。
图4中电流传感装置100构造成,使得第一电流互感器102、降低互感器位于开关设备套管处,第二电流互感器104、升高互感器位于开关设备面板上。
图5所示为包括本发明的装置的另一实施例的电气示意图。该示意图说明了连接到母线600的多个(1至N,也被表示为符号1-N)馈电线602,其中母线600连接到电源(未示出)。每个馈电线602能够将其连接的相应(1-N)开关设备402从电源断开,开关设备402在馈电线602电路中具有一连串开关403。此外,每个开关设备402将它的相关负载从馈电线602的电源断开连接。在每个开关设备402中,第一电流互感器102被连接在这样一种结构中,该结构中母线600是本发明本实施例中的电流传感装置100的第一电流互感器102的初级电流源。馈电线602包括与母线600的连接点处的母线型导体;典型地,更远离母线600,更靠近负载侧,馈电线导体过渡为更柔软的导体。
对于图5的每个馈电线,母线600在与馈电线602相关的第一电流互感器102的次级绕组108中感应出电流,如在前的对图2中第一电流互感器102的描述。第一电流互感器102的次级绕组108在第二电流互感器104的初级绕组105(图5中说明的)处连接到对应的第二电流互感器104。第二电流互感器104在它的次级绕组107(图5中说明的)处连接到设备101。在图5的实例中,设备101是母线差动继电器。
第一电流互感器102在电路断路器面板内的它的安装点处获得初级电流,并经由距离D提供降低的、基本上成比例(理论上忽略损耗)的次级电流给第二电流互感器104。第二电流互感器104从第一电流互感器102的次级侧获得初级电流。第二电流互感器104在第二电流互感器的次级侧的输出端将该电流升高到至少5A。第二电流互感器输出的电流通过距离d到达设备101。距离D>d。较大的距离D导致线路损耗,其通常在继电器设备101处被补偿,例如,在设置设备时,提供通过本领域普通技术人员进行的耗时的、复杂的计算和模拟而确定的配置。注意,电流传感装置100在第一电流互感器102和连接的设备101之间距离很长的情况下操作。
在图5的实施例中,每个第一电流互感器102被安装在馈电线602的第一电流互感器102的母线600侧上的相应开关设备壳体中,并通过导体的距离D电连接到相应的第二电流互感器104。相应的第二电流互感器104在它的次级侧通过导体的距离d被连接到母线差动继电器101。安装在开关设备壳体中的电流互感器是,例如,半深度、中压电流互感器,其与已有技术中使用的较大电流互感器相比,占用较少的空间,并且重量更轻。
图5的工业中压电力系统母线600包括一排电节点,其使多个电路(例如馈电线602)互连到工业负载和到(多个)发电电源(未示出)的连接,馈电线602可能是配电线。
因此,图5的母线600连接到多个能量源,它们一起在母线(母线继电器的内部故障)或连接到母线600的一个或多个馈电线602或在母线600的邻近区域内(母线继电器101的外部故障)发生短路时能够产生巨大的故障电流。
关于图5的母线差动继电器101区域中的故障电流,大幅值的故障电流对母线差动继电器101的操作速度有很高的要求。同时,附近的外部故障导致的大电流使一个或多个第一电流互感器102饱和,由于饱和损耗导致母线保护继电器故障。通过检测被保护母线600的内部故障以及对一个或多个适当的开关设备402发出跳闸命令,可以防止母线600的内部故障。开关设备402随后将有缺陷的母线600从所有连接的馈电线602断开,以使对涉及的电力设备(即,电路断路器,导体,继电器,互感器)和电力系统的损害最小。
母线600的保护通常通过使用差动保护原理实现。参考图5,第一电流互感器被用来测量连接到母线600的所有馈电线602电路中的电流I1至IN。每个第一电流互感器102的位置确定一个母线600的保护“区域”。然后母线差动继电器101比较这些电流,由母线差动继电器101产生的不平衡(或差动)电流是所有输入电流的代数和。在第一电流互感器102的理想操作中,在典型的非故障负载条件和外部故障期间,差动信号等于零,而在内部故障期间差动信号等于故障电流;在基本理想的环境中,继电器通过阈值来区分内部和外部故障。该阈值由本领域的普通技术人员确定。
图7说明了本发明的一个实施例的电流传感装置100的电气示意图,其具有从第二电流互感器104到连接至电流传感装置100的低压设备101(即继电器或仪表)的6个低电流输出信号Iout(2)。图7说明了本发明的电流传感装置100的三相(φA,φB,φC)示意图。第一电流互感器102被置于初级三相电源的A,B和C相的每一相上。为了易于说明,只用一个绕组代表第一电流互感器102的初级和次级线圈;然而,本领域普通技术人员将理解,图7的单相表示法表示三相结构中的三个单独电流互感器,具有初级线圈和次级线圈。每个第一电流互感器102连接到对应的第二电流互感器104。因此,相A上的第一电流互感器102被连接到相A的第二电流互感器104;相B上的第一电流互感器102被连接到相B的第二电流互感器104;相C上的第一电流互感器102被连接到相C的第二电流互感器104。在这个示例性实施例中,每个第二电流互感器104具有两条连接到设备101的电线;其它结构可以由本领域普通技术人员完成。
图8说明了本发明的一个实施例的电流传感装置100的另一种电气示意图,其具有到连接到电流传感装置100的低压设备(即继电器101)的4个低电流输出信号Iout(2);本发明的电流传感装置100的(φA,φB,φC)示意图。该4导体连接被称为公共接地连接。第一电流互感器102被置于初级三相电源的A,B和C相的每一相上。再次,为了易于说明,只用一个绕组代表第一电流互感器102的初级和次级绕组;然而,本领域普通技术人员将理解,该结构表示具有初级绕组和次级绕组的电流互感器。图8的该4导体公共接地连接节省了两条导线,与图7的6导体连接的输出电流通过距离d看到的阻抗相比,降低了输出电流通过距离d看到的阻抗;在这种4导体的结构中,线路损耗比图7的6导体结构中的小。
在图7和8中,在第二电流互感器104的初级105和次级107线圈中每一个处示出了一个圆点。该圆点表示第二电流互感器104的初级和次级线圈105,107的相对绕组结构。
返回图4,处于利用水平的初级电流IIN(1)被具有足够绕组或线圈的感应电流互感器或第一电流互感器102传感,以产生成比例的次级电流信号Iout(1),该信号远远小于通常指定为低压产品(如由5A信号供电的产品)供电的传统的5A额定水平。这个较小的信号Iout(1)比传统的5A信号更有效地通过长的电导体的距离D传送。例如,来自第一电流互感器102的示例输出电流Iout(1)从400A至4000A的额定初级相电流IIN(1)获得;来自基本上400A至4000A)的额定相电流的初级电流变换为0.25至0.5A的次级电流Iout(1)。然后这个很小的次级电流Iout(1)在输入到设备101(即IED、仪表或继电器)之前,在第二电流互感器中被升高到传统的1A或5A,Iout(2)
进一步,电流传感设备中更多的匝数(线圈数)提供足够的电压水平以使电流传播距离D。在低压设备(如仪表或继电器101)的输入处,小信号Iout(1)被传送到第二电流互感器(更名为Iin(2))。然后Iin(2)被第二电流互感器变换为更大的信号Iout(2),通常是匹配低压设备101的5A输入额定值的5A信号。一个重要的因素是与Iout(1)传播的距离D相比,小信号Iout(2)传播相对短的距离d;电流幅值和传播距离的差异减小了线路损耗量,该线路损耗量使用等式I2R(功率损耗)在距离d上计算。在本发明中,期望线路损耗被最小化或是额定的,并且输入到设备101的电流足够在各种条件,包括稳态和故障条件下,适当地操作设备。
本发明的电流传感装置100比图9的传统电流互感器97更轻。更小的尺寸,例如在开关盒中使用的第一电流互感器102(图9中说明的)的半深度,降低了运输和安装支撑的成本,这是因为更轻的重量,用于3相的为33磅(与已有技术的174磅的重量相比)。174磅是指Model 785电流互感器,33磅是指由Instrument Transformers Inc.制造的Model 778,其中Instrument Transformers Inc.是GE Mutlin的分公司,本发明的受让人的子公司。电流传感装置100包括装有较小的开关设备的第一电流互感器102,例如半深度电流互感器102,例如ITIModel 778(图10中说明的)。这个第一电流互感器102小于前述的电流传感装置99(图1中说明的)的传统的电流互感器97。因此,第一电流互感器102节省了在例如开关设备设计中分配给电流传感的安装空间。指定电流传感装置100比指定传统的电流互感器产品(表示在图1和图9的已有技术)更容易,因为电流传感装置100系统被指定满足在IEEE C57.13中规定的用于仪表测量的0.3%的准确度,并且对于继电器过电流传感的短脉冲(过电流传感是故障电流的传感,例如,由混线短路造成的电流),将以高达20倍的额定值运行。然而因为输入到设备101的电流引起线路损耗I2R(通过基本等于D+d的长距离Dtotal传播,以及因为较大的电流互感器97受到更大的励磁和饱和损耗,传统的已有技术的产品需要耗时、冗长的计算和仔细的说明以确保性能满足IEEE C57.13规范。
象在所有电力系统中一样,存在与导体中流动的电流有关的线路损耗。导体越长,损耗越大。本发明的电流传感装置100,如图10中说明的,通过距离D从降低单元或第一电流互感器102发送基本准确的低水平电流信号给第二电流互感器104或升高单元。第二电流互感器通过距离d直接传递,例如基本5A的输出电流(在正常操作时)信号给继电器或仪表。第二电流互感器104可以是,例如型号3VT 460,其提供三个电流互感器以用于三相连接,并且重约12磅。3VT 460由Instrument Transformers Inc.制造,Instrument Transformers Inc.是GE Mutlin的分公司,本发明的受让人的子公司。额定值、尺寸、重量可以由本领域的普通技术人员确定。5A信号在导体的距离d上经历基本上小的损耗,所以用户不需要指定负载和继电器等级电压,而这对于图9的通过距离Dtotal传播的已有技术的电流是需要的。
通过回顾感应线圈理论可以进一步理解本发明的电流传感装置100所避免的损耗。假定,为了示例的目的,连接到图2的第一电流互感器102的初级绕组的实际电源200是经常变化的,其提供交流电流并且初级绕组与次级绕组具有不同的圈数。次级绕组中的感应电流和电位与初级绕组中的电流不同。因此,对于第一和第二电流互感器102,104,初级绕组具有Np匝,次级绕组具有Ns匝。当电源提供的电压为Vp时,次级侧感应的电压为Vs。次级电压的等式为:
Vs=(Ns/Np)Vp    等式-1
感应电流的等式由等式2给出:
Is=(Np/Ns)Ip    等式-2
等式(1)和(2)是用于理想电流互感器的,没有考虑导体的有限电阻或边缘效应或其它损耗。其它可能影响实验结果的过程是自感应(线圈的一端在另一端之前改变电流,并在那端感应电流),和管芯中的磁性材料,其增大磁场,但也在翻转所有的偶极子和产生涡流时吸收能量,致使次级电流和电压与理想的不同。
在几个实验装置(关于本发明的电流传感装置100,使用由来自Model 785电流互感器规范的各种第一电流互感器模块配置的几种结构)中的一个中收集的实验数据,提供初步的结果为成本节约11%至36%。而且从Model 785电流互感器可以看出63%至84%的重量减少。测量准确度和电压以验证用于测量和继电器应用的装置的性能。对于被测试的等级C的电流互感器设备102,104,性能准确度在IEEE C57.13规范的范围内。例如,IEEE C57.13规范要求互感器在20倍的过电流时维持10%的准确度。电流互感器的励磁曲线可以从制造商获得,此外它们能够由本领域普通技术人员画出。典型的励磁曲线用达到饱和时的电流互感器的励磁电压与励磁电流的关系绘制。
电流传感装置100包括两个电流互感器,第一电流互感器102(降低)和第二电流互感器104(升高)。所以电流传感装置100是用于给低压设备101提供基本准确的电流的可靠的铜和钢(例如)解决方案,而不需要复杂的计算来补偿损耗(即,饱和损耗,励磁损耗,线路损耗)。在继电器应用中,主要考虑电流互感器在过流状况中性能如何。规范IEEE C57.13要求互感器在20倍的过电流时维持10%的准确度,并且对应于电流互感器(例如,第一和第二电流互感器102,104)能够传递的次级端电压来指定“C”等级,以满足该条件。例如,等级C200的电流互感器(未示出)在其次级端在20倍的额定电流下能够传递200Vac,具有不大于10%的误差。应当注意,指定等级“T”的电流互感器(未示出)来缠绕第一电流互感器,因为它们具有更高的漏磁通。
被用来使用已有技术的计算指定合适的电流互感器的一个公式是公式1。
VCT≥IOC*(R绕组+R导线+R负载)    公式-1
例如在等式(3)中,由电流互感器产生的电压VCT必须大于过电流IOC与次级回路中的所有电阻之和的乘积,所述电阻包括,例如绕组、导线和负载(未示出)的电阻,(R绕组+R导线+R负载)。在20倍的5A额定电流,IOC是100A安培。绕组的R,R绕组,可能高达2.0Ω(欧姆)。R负载可能<0.1Ω。但是R导线+R导线是未知的,所以当为继电器设备(如设备101)指定继电器等级而进行计算时,已有技术倾向于基本上过指定继电器等级电压。这种过指定是昂贵的。
对于电流传感装置100,从第一电流互感器102(降低单元)到第二电流互感器104(升高单元)的IOC是10安培。因为导线上的功率损耗几乎是纯电阻性的,那么线路损耗是由等式I2R计算的功率损耗的函数。这意味着在距离D上有电流传感装置100,线路损耗减小到1/100(one-hundred time less)。这足够小使得使用#14 AWG导体在1英里的距离上的性能是充分可靠的,这已经在经验性测试中看到。
上述计算和实例意味着本发明的电流传感装置100在IOC为过电流的20倍的操作下是充分可靠的。这对已有技术是很大的改进。
对于本发明,关于在确定电流、损耗等时进行的计算,通常使用均方根(rms)电流传感和峰值电流传感。电流传感领域的普通技术人员熟知的均方根电流传感通常是指计算与正弦电流波有关的能量的精确方法。峰值电流传感也是电流传感领域的普通技术人员熟知的,它通常是指用于确定在预定阈值以上的峰值电流的发生的精确方法。因为关于电路断路器402和设备101应用,必须考虑到不同的设计考虑,所以可以根据电流传感应用而使用不同类型的数据和电流互感器。这些判断可以由本领域普通技术人员进行。
替代地,为了负载降低和/或为了负载稳定性,以及为了功率、尺寸和重量减小等,可以把本发明100看作为基础偏移的电流互感器信号。只有当互感器产生足够驱动电流的功率时,电流互感器才产生成比例的电流。由于可以和电流传感装置100一起使用的电子继电器、仪表和IED(即,设备101)的出现,低压设备101比已有技术的设备消耗更少的功率。因此,功率主要消耗在电流互感器(芯和导线)和将互感器连接到设备101的导体中的功率损耗中。如上面解释的,导体中的功率损耗是I2R,其中I=次级导体中的电流,R是导体的电阻。例如,如果导体电阻是1Ω,额定次级电流是5A,那么导体将消耗的功率为I2R=5A*5A*1Ω,其等于25瓦。但是如果额定次级电流是远远小于5A的值,例如在同样导体中的0.5A,那么导体的功率损耗将降至I2R=0.5A*0.5A*1Ω,其等于0.25瓦。
上面的实例中的功率损耗的比较是25瓦与0.25瓦相比。传输线(导体)损耗的这种剧烈减少,意味着呈现给电流互感器的最大负载是电流互感器或第一电流互感器102以及正好与仪表或继电器设备101相邻的升高互感器或第二电流互感器104的内部损耗。升高互感器或第二电流互感器104通常消耗与导体传播一样多的功率,但是导体传播损耗对于短或长传播是相当可以忽略的。这意味着连接的负载是很稳定的,即,其几乎与连接的导体长度无关。这带来了三个好处:1)第一电流互感器102可以位于离继电器或仪表101更远的位置;2)第二电流互感器104可以更小和更轻,以及3)由于确定的负载,电流互感器传感系统的性能是可充分预见的(不管导体长度或导体规格/尺寸的不确定性。
由于材料特定的传输损耗的减少,以及将不确定负载损耗降低到更小幅值,本发明的装置在运行功率减小的配置中操作的能力使其与已有技术相比是不同的,从而设计时不必考虑通常用于确保继电器、仪表或IED设备101具有足够功率来操作的各种保守的过多计算。还应注意,由于电流传感装置100到设备101的惯例输出电流,传统电流互感器应用规则适用,所以实际上在商业市场中电流传感装置不需要再训练。
虽然上面概述的实施例是关于电流传感装置100,其中用于降低电流的第一电流互感器连接到第二电流互感器,第二电流互感器用于升高电流,至少是连接设备101的标称额定值,但本领域普通技术人员将理解在所要求的发明范围内,其它应用包括但不限于,连接到设备101的多于两个的级联的电流互感器,用于提供至少是连接设备101的额定值的电流。此外本领域普通技术人员还将理解在所要求的发明范围内,为了负载降低和/或负载稳定,以及例如减小功率、尺寸和重量,电流互感器信号可以在基础上有所偏移。还应当理解,电流传感装置100可以用在除了这里描述的几个电路之外其他电路中,这可以由本领域普通技术人员决定。
电流传感装置100比传统的CT轻。这节省了运输和安装支架的成本。CSS比传统CT小;这节省了必须分配给电流传感的安装空间。因为所有的电流传感装置100都满足用于测量的IEEE C57.13的0.3%的准确度,并在继电器过电流传感时对于短脉冲在高达额定值的20倍运行,所以指定电流传感装置100比传统CT更容易。而传统产品必须进行计算和仔细的规范来确保这个性能。
关于上面的描述,应当认识到,本发明的部件的最佳的空间关系(包括尺寸、形状函数(form function)和操作方式、组装和使用的变化在内),对本领域普通技术人员而言是显而易见的,因此,仅由所附权利要求的范围包含与附图中说明的以及说明书中描述的等价的所有关系。
此外,虽然本发明在附图中给出了并且前面已经详细描述的本发明的几个最佳实施例的特性和细节,并且确信其是可行的,但是在不背离此处阐述的原理和精神的情况下的许多修改,对于本领域的普通技术人员来说是显而易见的。因此,为了包含所有上述修改或等价物,本发明的合适的范围应该仅从所附权利要求的广义概念上去确定。
这个书面说明书使用实例来公开本发明,包括最佳实施方式,还能使本领域的普通技术人员制造和使用本发明。本发明的可取得专利的范围由权利要求确定,并可能包括本领域技术人员想到的其它实例。这种其它实例旨在在权利要求的范围内,如果它们具有不与权利要求的字面语言不同的结构元件,或者如果它们包括具有与权利要求的字面语言非实质差别的等价结构元件。
部件列表
传统的电流互感器      97
已有的电流传感装置    99
电流传感装置          100
设备/继电器           101
第一电流互感器        102
第二电流互感器        104
初级绕组              105
母线                  106
次级侧                107
次级绕组              108
开口                  110
芯                    112
铁芯                  113
AC电源                115
操作线圈              116
触头                  117
电源                  200
电压互感器            300
壳体                  400
开关设备              402
串联开关              403
电力设施              500
母线                  600
馈电线                602

Claims (10)

1.一种电流传感装置(100),包括:
第一电流互感器(102),当通电时,第一电流互感器(102)具有第一输入电流和第一输出电流,第一输出电流小于第一输入电流;
第二电流互感器(104),其与第一电流互感器(102)电通信,当通电时,第二电流互感器(104)具有第二输入电流和第二输出电流,其中第二输入电流实质上小于第一输出电流,第二输出电流大于第一输出电流;以及
其中第二输出电流实质上等于与第二电流互感器(104)电通信的低压设备(101)的标称的额定输入电流。
2.权利要求1的电流传感装置(100),其中第一电流互感器(102)通过第一导体电连接到第二电流互感器(104)。
3.权利要求2的电流传感装置(100),其中第二电流互感器(104)通过第二导体电连接到低压设备(101)。
4.权利要求3的电流传感装置(100),其中第一导体中的功率损耗实质上大于第二导体中的功率损耗。
5.一种电流传感装置(100),包括:
多个馈电线(602),电连接到电源(200);
多个第一电流互感器(102),当通电时,每个第一电流互感器(102)具有第一输入电流和第一输出电流,其中第一输入电流由所述多个馈电线(602)中的馈电线(602)提供,第一输出电流小于第一输入电流;
多个第二电流互感器(104),每个第二电流互感器(104)与第一电流互感器(102)电通信,当通电时,每个第二电流互感器(104)具有第二输入电流和第二输出电流,其中第二输入电流实质上小于第一输出电流,第二输出电流大于第一输出电流;以及
其中第二输出电流实质上等于与第二电流互感器(104)电通信的低压设备(101)的标称的额定输入电流。
6.权利要求5的电流传感装置(100),其中每个第一电流互感器(102)通过第一导体电连接到每个第二电流互感器(104)。
7.权利要求6的电流传感装置(100),其中每个第二电流互感器(104)通过第二导体电连接到低压设备(101)。
8.权利要求7的电流传感装置(100),其中第一导体中的功率损耗显著大于第二导体中的功率损耗。
9.权利要求5的电流传感装置(100),进一步包括多个电路断路器,每个电路断路器与低压设备(101)电通信,如果第二输出电流达到预定水平,电路断路器打开,从而将馈电线(602)从电源(200)断开。
10.一种电流传感装置(100),包括:
多个第一电流互感器(102),当通电时,每个第一电流互感器(102)具有第一输入电流和第一输出电流,其中第一输入电流由多个馈电线(602)中的馈电线(602)提供,第一输出电流小于第一输入电流;
多个第二电流互感器(104),每个第二电流互感器(104)与第一电流互感器(102)电通信,当通电时,每个第二电流互感器(104)具有第二输入电流和第二输出电流,其中第二输入电流实质上小于第一输出电流,第二输出电流大于第一输出电流;
具有多个相的电源(200),其中第一输入电流通过电源(200)的相被提供给每个第一电流互感器(102);以及
其中第二输出电流实质上等于与第二电流互感器(104)电通信的低压设备(101)的标称的额定输入电流。
CN2007101857375A 2006-12-29 2007-12-28 电流传感装置 Active CN101295579B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/647,959 US7427856B2 (en) 2006-12-29 2006-12-29 Current sensing apparatus
US11/647959 2006-12-29

Publications (2)

Publication Number Publication Date
CN101295579A true CN101295579A (zh) 2008-10-29
CN101295579B CN101295579B (zh) 2011-11-09

Family

ID=39267764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101857375A Active CN101295579B (zh) 2006-12-29 2007-12-28 电流传感装置

Country Status (4)

Country Link
US (1) US7427856B2 (zh)
EP (1) EP1939634B1 (zh)
CN (1) CN101295579B (zh)
CA (1) CA2615622A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347638A (zh) * 2010-07-30 2012-02-08 通用电气公司 用于监测电气开关设备的操作的方法和装置
CN107768124A (zh) * 2017-11-08 2018-03-06 国网辽宁省电力有限公司电力科学研究院 一种带差动放大电路的双绕线罗氏线圈电子式电流互感器
CN108695826A (zh) * 2018-06-26 2018-10-23 河南森源电气股份有限公司 一种低压电动机的保护装置及启动系统
CN110221113A (zh) * 2018-03-02 2019-09-10 西门子公司 用于故障电流的设备和方法
CN111869025A (zh) * 2018-03-16 2020-10-30 西门子股份公司 具有测量互感器和过电压放电器的设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000062A1 (en) * 2005-06-29 2007-01-04 Abb Research Ltd. Apparatus for the detection of a current and method for operating such an apparatus
CN101650383A (zh) * 2008-08-12 2010-02-17 西门子公司 大电流传感器
US8749327B2 (en) * 2008-09-18 2014-06-10 General Electric Company Circuit interrupter trip apparatus and method
US8111504B2 (en) * 2008-12-16 2012-02-07 Schneider Electric USA, Inc. Current sensor assembly
US8410890B2 (en) * 2009-11-25 2013-04-02 Schneider Electric USA, Inc. Combination wire connector and current transformer
US20120002377A1 (en) * 2010-06-30 2012-01-05 William French Galvanic isolation transformer
CN103376344B (zh) * 2012-04-20 2016-03-30 台达电子工业股份有限公司 电流检测装置及电能质量补偿系统
US20140021936A1 (en) * 2012-07-20 2014-01-23 Dan Tho Lu High efficiency energy harvester and methods thereof
US8870608B2 (en) 2012-09-14 2014-10-28 Schneider Electric USA, Inc. Open spring mechanical clamping lug
US10132875B1 (en) * 2013-04-25 2018-11-20 Power Control Systems, Inc. Device and method for open phase detection
US10371739B2 (en) * 2015-10-30 2019-08-06 Landis+Gyr Llc Arrangement for detecting a meter maintenance condition using winding resistance
CN107785874B (zh) * 2016-08-30 2022-05-10 中兴通讯股份有限公司 电源保护方法、装置及电路
CN108897563B (zh) * 2018-08-24 2021-10-15 南京国电南自电网自动化有限公司 一种继电保护装置中点表转换方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE902877C (de) * 1940-04-02 1954-01-28 Aeg Laengsdifferentialschutzeinrichtung fuer Mehrphasen- Wechselstromleitunganlagen
US3114140A (en) * 1960-09-06 1963-12-10 Westinghouse Electric Corp Pilot-wire systems
US4761727A (en) * 1987-04-14 1988-08-02 Reliance Comm/Tec Corporation Current sensing circuit for use with decoupled half bridge converter
US5684426A (en) * 1995-12-21 1997-11-04 General Electric Company GTO gate driver circuits for snubbered and zero voltage soft switching converters
US6392401B1 (en) * 1998-06-05 2002-05-21 Chathan M. Cooke Closely-coupled multiple-winding magnetic induction-type sensor
US6434715B1 (en) 1999-06-14 2002-08-13 General Electric Company Method of detecting systemic fault conditions in an intelligent electronic device
US6442010B1 (en) 2000-04-03 2002-08-27 General Electric Company Differential protective relay for electrical buses with improved immunity to saturation of current transformers
US6844799B2 (en) 2001-04-10 2005-01-18 General Electric Company Compact low cost current sensor and current transformer core having improved dynamic range
US6469882B1 (en) 2001-10-31 2002-10-22 General Electric Company Current transformer initial condition correction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347638A (zh) * 2010-07-30 2012-02-08 通用电气公司 用于监测电气开关设备的操作的方法和装置
CN107768124A (zh) * 2017-11-08 2018-03-06 国网辽宁省电力有限公司电力科学研究院 一种带差动放大电路的双绕线罗氏线圈电子式电流互感器
CN110221113A (zh) * 2018-03-02 2019-09-10 西门子公司 用于故障电流的设备和方法
CN111869025A (zh) * 2018-03-16 2020-10-30 西门子股份公司 具有测量互感器和过电压放电器的设备
CN111869025B (zh) * 2018-03-16 2022-10-28 西门子能源全球有限公司 具有测量互感器和过电压放电器的设备
CN108695826A (zh) * 2018-06-26 2018-10-23 河南森源电气股份有限公司 一种低压电动机的保护装置及启动系统

Also Published As

Publication number Publication date
US20080157751A1 (en) 2008-07-03
CN101295579B (zh) 2011-11-09
EP1939634A2 (en) 2008-07-02
US7427856B2 (en) 2008-09-23
CA2615622A1 (en) 2008-06-29
EP1939634B1 (en) 2015-03-18
EP1939634A3 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
CN101295579B (zh) 电流传感装置
US7944654B2 (en) Multiple-pole circuit breaker with shared current sensor for arcing fault detection
TWI221906B (en) Measuring devices
US9783071B2 (en) Device and method for providing a quantity of energy in said supply device for consumer
US20070136010A1 (en) Power line sensor
CN103250316A (zh) 包括中性电流传感器的多极闪络故障断路器
CN101350513A (zh) 用于故障电流中断的装置和方法
AU2013254917B2 (en) Method and system for determining the primary voltage of a transformer, and transformer substation including such a determinaton system
Kojovic Comparative performance characteristics of current transformers and Rogowski coils used for protective relaying purposes
CN201213095Y (zh) 有两组信号输出的低压电流互感器
US8138745B2 (en) Power transformer distribution network and method of operating same
CN204719222U (zh) 一种便携电子式电流互感器校验装置
Ganesan Selection of current transformers and wire sizing in substations
Sekaran Magnetic circuits and power transformers
JP6771179B2 (ja) 電力計測システム
Kasztenny et al. Modeling and protection of hexagonal phase-shifting transformers—Part II: Protection
Kojovic Integration of protection, control, and metering functions
US10804020B2 (en) Demagnetization device and method for demagnetizing a transformer core
Wang et al. Effects of sensor technology on differential protection
KR200476192Y1 (ko) 계기용 변류기
JP2019002812A (ja) 絶縁抵抗計測システム、分電盤、絶縁抵抗計測方法、及びプログラム
CN204577373U (zh) 一种漏电断路器
Zakonjšek CT/VT Sampled Value Acquisition Applied to IEC 61850
Agarwal et al. CTs and PTs: Basic concepts and New developments
WO2022214202A1 (en) Dead-tank circuit breaker with rogowski current sensor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240103

Address after: Swiss Baden

Patentee after: GENERAL ELECTRIC CO. LTD.

Address before: New York, United States

Patentee before: General Electric Co.

TR01 Transfer of patent right