具体实施方式
以下,根据附图详细说明本发明的实施方式。在用于说明实施方式的全部附图中,原则上对相同的部件赋予相同的符号,并省略其重复说明。
首先利用图1简单地说明本发明实施方式1的显示装置驱动电路中进行的图像扩展处理的概要。在本实施方式中,为了降低背光灯功率,进行图1所示的操作。图1(a)是示出本实施方式的显示装置驱动电路的输入灰度与输出灰度的关系的图。图1(b)是示出显示图像的直方图的图。如图1(b)所示,在显示图像中,将在t灰度301以上、最大灰度(255灰度)以下的像素数是全部像素数的p%302的t灰度301称为阈值灰度t301。在图1(b)上,考虑灰度0与灰度t之间的灰度z302。
在本实施方式中,进行控制,使灰度t与灰度z的差1702成为灰度t与最大灰度(255灰度)的差1701的常数倍。灰度t与最大灰度(255灰度)的差1701为a时,灰度t与灰度z的差1702利用常数k可以表示为ka。常数k最好是0以上1以下,但根据系统的不同,也可以为1以上。
这里,如果将图1(a)的连接坐标(0,0)与(t,最大灰度(255灰度))的一次函数1703的倾斜度定义为α,则α用(式1)表示。
[式1]
显示图像的像素的灰度值为灰度z以下时,本实施方式的像素扩展电路利用一次函数1703进行变换。一次函数1703用(式2)表示。
[式2]
显示图像的像素的灰度值为z以上时,利用称为直方图均衡的方法进行变换。
以下详细说明对z灰度以上的输入值的变换方式。图1(c)的1706表示z+1灰度以上、x灰度以下的直方图的累计值(像素数的总和)。设图1(b)所示的各灰度的像素数可以用函数F(x)表示。z+1灰度以上、x灰度以下的直方图的累计值(像素数的总和)可以利用F(x)表示为式(3)。
[式3]
1705是z+1灰度以上、255灰度以下的像素数的总和,可用(式4)表示。
[式4]
灰度z下的一次函数1703的输出值与最大灰度(255)之差1704可以利用一次函数1703的倾斜度α、常数k、灰度t与最大灰度(255)之差a表示为αka。此时,针对z+1灰度以上的输入值x的输出灰度可以表示为(式5)。
[式5]
如果设未进行扩展处理情况下的背光灯亮度1707为B,则即使将背光灯亮度降低到1708(式6),对于灰度z以下的输入值也可以与变换前完全同等地显示,而对于灰度z以上的灰度也可以保持对比度进行显示。
[式6]
通过这样进行变换,与现有的变换方法相比,可以避免白模糊,该现有的变换方法是在显示图像的像素的灰度值在阈值灰度t301以下时,利用连接坐标(0,0)与(t,最大灰度(255))的一次函数1703对该显示图像的像素进行变换,并将阈值灰度t301以上的灰度都变换成最大灰度(255)。另外,在z灰度以上的部分也可以得到适当的显示而不会使对比度劣化。
以下说明本发明实施方式1的显示装置。
图2是本发明实施方式1的显示装置的框图。
在图2中,100是显示装置,该显示装置100包括显示装置驱动电路101、中央处理装置(CPU)102、显示存储器103、内部总线104、背光灯111和液晶画面112。
显示装置驱动电路101包括输入输出接口电路105、直方图计数电路106、系数运算电路107、背光灯控制器108、像素扩展电路109、液晶控制器110、白模糊补偿参数设定寄存器1801、阈值灰度设定参数设定寄存器116、存储器113、定时控制电路114、像素扩展方式切换寄存器1102。像素扩展电路109根据像素扩展方式切换寄存器1102的值来改变动作。
以下说明实施方式1的显示装置的动作。CPU102在应在液晶画面上显示数据时,在白模糊补偿参数设定寄存器1801中设定上述图1(a)所示的、z与t之差1702和最大灰度(255)与t之差1701之比k的值。
另外,在阈值灰度设定参数设定寄存器116中设定图1(b)所示的p%的值p302。向输入输出接口电路105内的未图示的显示开始寄存器写入显示开始模式,从显示存储器103经由输入输出接口电路105向存储器113传送显示数据。该存储器113的大小因系统而不同,但最近一般使用具有1帧大小的帧存储器的系统。存储器大小不对本实施方式产生任何影响,即使象几个字节的FIFO那样的存储器也可以实施本发明,这是很明显的。
变成显示开始模式后,显示装置驱动电路101的定时控制电路114输出表示显示数据的开始位置的帧SYNC信号,与SYNC信号同步地,从存储器113向直方图计数电路106、像素扩展电路109输出显示数据。
直方图计数电路106中,首先从1个像素的R、G、B值中抽出最大的值、即RGB最大值,利用RGB最大值,从1帧大小的显示数据求出各灰度中的每一个的像素数,并形成直方图。作为一个例子,直方图计数电路106生成的直方图为图1(b)。
系数运算电路107求出从最高灰度(255)到各个灰度的像素数的和。利用保存在阈值灰度设定参数设定寄存器116中的图1(b)所示的p%的值p302,决定阈值灰度t301,并输出到像素扩展电路109。利用(式6)从阈值灰度t301向背光灯控制器108输出背光灯亮度值117。
在像素扩展方式切换寄存器被设定为值“0”时,像素扩展电路109进行图1所示的数据变换(扩展)。利用系数运算电路107提供的阈值灰度t301,像素扩展电路109利用白模糊补偿参数设定寄存器1801中设定的k的值和系数运算电路107提供的阈值灰度t301,在从存储器113传送的显示数据的灰度为灰度z以下时,按照(式2)扩展灰度,在从存储器113传送的显示数据的灰度为灰度z+1以上时,按照(式5)扩展灰度,并将扩展后的数据传送到液晶控制器110。
液晶控制器110将像素扩展电路109提供的数字值变换成驱动液晶画面112的模拟值,并在液晶画面上显示图像。
另外,背光灯控制器108将作为数字值的背光灯亮度值117变换成驱动背光灯的电流,调整背光灯111的亮度。
通过这样动作,本实施方式的显示装置实现图1所示的变换,对于特定灰度z以下的显示灰度,没有画质劣化,而对于特定灰度z以上的显示灰度,也没有白模糊,可以保持对比度地进行显示,并且可以将背光灯亮度从1707下降到1708。
另外,在本实施方式中,将k定义为某灰度值z与阈值灰度t之差1702和最大灰度(255)与t之差1701之比,但也可以是灰度z与灰度t之比,也可以是阈值灰度t与最大灰度(255)之差和某灰度值z与最大灰度(255)之差之比。
另外,也可以定义为阈值灰度t和最大灰度(255)之差与1704之比。用于决定某灰度值z的参数可以考虑很多,但只要不脱离发明目的,怎样定义都可以。
然后,在像素扩展方式切换寄存器被设定为值“1”时,像素扩展电路109在从存储器113传送的显示数据的灰度为灰度z以下时,按照(式2)扩展灰度,进行图1所示的数据变换(扩展)。在从存储器113传送的显示数据的灰度为灰度z+1以上时,按照一次函数1709扩展灰度,进行图1所示的数据变换(扩展)。一次函数1709用(式7)表示。
[式7]
通过这样动作,即使在灰度z+1以上的直方图的分布对于每个帧变化很大的情况下,也可以稳定地进行显示。另外,在本实施方式中,利用3个子像素R、G、B内的最大的子像素生成直方图,但这不对专利性产生影响,可以使用R、G、B所有的值来生成直方图。
(实施方式2)
以下利用图3说明本发明实施方式2的显示装置。在实施方式1中,需要针对灰度z以上的各灰度的计数器,故电路规模变大。实施方式2虽然本质上与实施方式1相同,但针对考虑了节省电路规模的方式进行说明。图3(b)是与图1(b)同样的图,是表示显示图像的直方图。
在本实施方式中,将灰度z与最大灰度255之间等间隔地分成4个,即1601、1602、1603、1604。将1601、1602的边界设为z1,将1602、1603的边界设为z2,将1603、1604的边界设为z3。利用对z+1灰度以上z1灰度以下的直方图的累计值N1、z+1灰度以上z2灰度以下的直方图的累计值N2、z+1灰度以上z3灰度以下的直方图的累计值N3、z+1灰度以上255灰度以下的直方图的累计值进行计数的4个计数器进行计数。N1、N2、N3可用(式8)表示。
[式8]
像素扩展电路109利用以这3个点补充后的函数(式9)进行变换。
[式9]
这样,生成灰度z以上的直方图所需的电路可以仅由4个计数器来构成,从而可以大幅度地削减电路。
这里,将灰度z和最大灰度255之间分割成4个来进行计数,但很明显,分割数无论是几个都可以同样地构成,这并不对本专利产生影响。另外,虽然分割成等间隔,但很明显,不是等间隔也可以同样地构成。
(实施方式3)
以下利用图4~图7说明本发明实施方式3的显示装置。图4是本发明实施方式3的显示装置的框图。实施方式3与实施方式1基本相同,但像素扩展电路109进行的灰度的扩展运算不同。
图5(b)是表示显示图像的直方图的图。如图5(b)所示,在显示图像中,将像素的灰度值为t灰度301以上、最大灰度(255灰度)以下的像素数为全部像素数的p%302的t灰度301称为阈值灰度301,在图1(a)中,考虑位于坐标(t,最大灰度(255))与坐标(t,t)之间的点(t,z)305。
在本实施方式中,显示图像的像素的灰度值在阈值灰度301以下时,利用连接坐标(0,0)和(t,z)的第1一次函数308对该显示图像的像素进行变换。第1一次函数用(式10)表示。
[式10]
这里,如果将z与t之差307和最大灰度(255)与t之差306之比设为α,则上述(式10)改写为(式11)。
[式11]
显示图像的像素的灰度值在阈值灰度t301以上时,进行对应于阈值灰度值t301以上的直方图的像素数的非线性运算。以下对该非线性运算进行说明。
如图5所示,计算针对阈值灰度t301以上的灰度的像素数的平均值802,当像素数为平均值的v倍时,进行向该灰度分配v灰度的变换。一般将这样的变换方式称为直方图均衡。
在本实施方式中,输入灰度宽度255-t与255-z的输入灰度宽度和输出灰度宽度不同,因此向直方图的像素数为平均值的v倍的灰度分配(式12)所示的灰度。
[式12]
并且,利用图6更详细地说明。例如,在图6中,设阈值灰度t301为241灰度。另外,α402被设定为0.5。此时,z的值为249。
如图6所示,当从灰度243到灰度254的直方图的像素数为v1、从灰度242到灰度255的直方图的像素数为8倍的v1时,直方图的各灰度的平均值为2倍的v1。由于α为0.5,因此针对输入灰度14个灰度(灰度242~灰度255),输出灰度被分配1-α=0.5倍的7个灰度(灰度249~灰度255)。
另外,灰度242的直方图的像素数为8×v1,平均为2×v1,因此灰度242的直方图的像素数为平均的4倍。因而,向242灰度分配4倍×0.5倍=2个灰度。从243灰度到254灰度的直方图的像素数为平均的1/2倍,因此被分配1/2×0.5=1/4个灰度。
因此,243灰度~246灰度被分配给输出的252灰度,247灰度~250灰度被分配给输出的252灰度,251灰度~254灰度被分配给输出的253灰度。灰度255的直方图的像素数为8×v1,因此为2个灰度大小,成为如图6(c)所示的输入输出变换特性。
在图4中,利用信号线1101从直方图计数电路106向像素扩展电路109输出阈值灰度值以上的直方图,由直方图扩展电路内的未图示的电路计算阈值灰度值以上的变换的对应关系。
通过这样进行变换,在对比度降低的阈值灰度t301以上的灰度中,可以提高对比度,并且能够以良好的画质进行变换。
另外,寄存器1102是切换阈值灰度值以上的数据变换(扩展)方式的寄存器。本寄存器1102为“0”时,像素扩展电路109利用前面所述的直方图均衡方式变换数据。本寄存器1102为“1”时,显示图像的像素的灰度值为阈值灰度t301以下时,利用连接坐标(0,0)和(t,z)的第1一次函数308对该显示图像的像素进行变换。
第1一次函数用(式10)表示。在显示图像的像素的灰度值为阈值灰度t301以上时,利用连接坐标(t,z)和(最大灰度(255),最大灰度(255))的第2一次函数309对该显示图像的像素进行变换。第2一次函数用(式13)表示。
[式13]
通过这样进行变换,与现有的变换方法相比,可以避免白模糊,该现有的变换方法是在显示图像的像素的灰度值在阈值灰度t301以下时,利用连接坐标(0,0)与(t,最大灰度(255))的第3一次函数803对该显示图像的像素进行变换,并将阈值灰度t301以上的灰度都变换成最大灰度(255)。第3一次函数用(式14)表示。
[式14]
这里,如果将z与t之差307和最大灰度(255)与t之差306之比设为α,则上述(式10)、(式13)被改写为(式11)、(式15)。
[式15]
y=(1-α)x+最大灰度(255)α
如果将寄存器1102的值无论是“0”还是“1”都不进行图像扩展处理情况下的背光灯的亮度设为实现最大灰度(255)的亮度的亮度310,则一次函数308可以使其降低到实现到达最大灰度(255)的灰度的亮度的亮度311。
这里,如果设亮度310为B,则311的亮度可以用(式16)表示。
[式16]
另外,通过利用第1一次函数来提高对比度,即使降低背光灯的亮度,在上述阈值灰度以下也可以保存与原始显示图像相比没有变化的画质,在寄存器1102的值为“0”的情况下,即使在上述阈值灰度以上,也可以显示没有白模糊的适当的画质。
另外,在寄存器1102的值为“1”的情况下,通过这样动作,即使在灰度z+1以上的直方图的分布针对每个帧较大变化的情况下,也可以稳定地进行显示。
另外,实施方式1所示的直方图均衡的实现方法与实施方式3所示的直方图均衡的实现方法在结果上是等价的,在任意实施方式中可以使用任意方法。
另外,在本实施方式中,将α定义为某灰度值z与阈值灰度t之差307和最大灰度(255)与t之差306之比,但也可以如图7所示,将其定义为角1201与角1202之比。这种情况下,也可以同样地实施。
(实施方式4)
以下利用图8和图9说明本发明实施方式4的显示装置。图8是本发明实施方式4的显示装置的框图。实施方式4与实施方式3相比,具有设定阈值灰度t301的下限值的阈值灰度下限值设定寄存器401,并且不由CPU102直接设定α,在这一点上与实施方式3不同,但其它与实施方式3相同。
通常,即使在具有仅集中于暗的灰度的直方图的显示图像中,若过度地提高扩展率(使一次函数306的斜度变陡),则灰度的段差也会变得明显,从而导致画质劣化。因此,在本实施方式中,设定阈值灰度t301的下限值q501,使得具有集中于暗的灰度的直方图的显示图像中,扩展率也在一定值以下。
如图9所示,阈值灰度t301的下限值q501高于利用阈值灰度设定参数设定寄存器116中保存的p%的值p302决定的灰度值tr的情况下,利用实际模糊的量q%,由系数运算电路107按照(式17)决定α402。
[式17]
这样,当q为0%时,没有白模糊的像素,因此利用505直线进行变换,从而可以得到最大对比度。另外,当q为p%时,α=0.5,即使在阈值灰度t301中也能得到对比度。如上所述,通过如实施方式2那样构成,可以利用显示图像由系数运算电路107自动地生成最佳的α。
(实施方式5)
以下利用图10、图11说明本发明实施方式5的显示装置。图10是本发明实施方式5的显示装置的框图。实施方式5也是根据α402决定2个一次函数来进行显示图像的变换(扩展),在这一点上与实施方式3、4相同,但α的决定方法不同。
实施方式5中,如图11所示,将显示图像213分割成多个,生成各个区域中的每一个的直方图,针对每个区域计算直方图的从最大灰度(255灰度)开始的累计值为p%的阈值灰度。
在图10中,寄存器601、602是设定显示图像的区域分割数的寄存器。直方图系数电路106按照寄存器601、602中设定的分割数,在纵向和横向上分割显示图像,生成每个区域的直方图和从显示图像整体生成的直方图。
例如,在图11的例子中,在寄存器601、602中分别设定2和3,则按纵向2个、横向3个来分割显示图像,计算各个区域的直方图207~212。系数运算电路107计算每个区域的阈值灰度t1~t6。从多个区域中的每一个的阈值灰度t1~t6中选择最大的阈值灰度,利用该阈值灰度(例如t3)与不分割显示图像213而是从显示图像整体的直方图、即图11(a)求出的阈值灰度t301之比,按照(式18)来计算。
[式18]
这样,当每个区域的阈值灰度值的最大值与从显示图像整体的直方图、即图11(a)求出的阈值灰度t301相比足够大时,高灰度的部分集中于某个区域,根据(式18),α小,因此在集中的高灰度区域中也可以得到对比度,从而没有白模糊。
当每个区域的阈值灰度值的最大值与从显示图像整体的直方图(图11(a))求出的阈值灰度t301相等时,根据(式18),α为0.75,因此可以使阈值灰度t301以下的对比度足够大。
如上所述,通过如本实施方式这样构成,可以利用显示图像由系数运算电路107自动生成最佳的α。
(实施方式6)
以下利用图12、图13说明本发明实施方式6的显示装置。图12是本发明实施方式6的显示装置的框图。实施方式6也是根据α402决定2个一次函数来进行显示图像的变换(扩展),在这一点上与实施方式3~5相同,但α的决定方法不同。
在图13中,横轴是显示图像的某行的横向的像素的位置。纵轴表示各像素的灰度值。
在本实施方式中,与实施方式4相同,具有设定从直方图决定阈值灰度t301的p%的值p302的阈值灰度设定参数设定寄存器116和设定阈值灰度t301的下限值的阈值灰度下限值设定寄存器401。
寄存器701是在对边缘直方图进行计数时规定进行计数的灰度的差的最小值的边缘最小值设定寄存器,寄存器702是在对边缘直方图进行计数时规定进行计数的灰度的差的最大值的边缘最大值设定寄存器。
例如,在边缘最小值设定寄存器701中,为了在全体灰度数为255的情况下识别据说人眼一般能够识别段差的8灰度以上,而设定8。设边缘最小值设定寄存器的设定值为Emin。在边缘最大值设定寄存器702中,设定即使在最大模糊的情况下也不知道边缘模糊的值,例如2×(255-t)等。
设边缘最大值设定寄存器的设定值为Emax。这里,如果设位置j和j+1的灰度为g1和g2,则在g1-g2>Emax时,边缘直方图计数电路不向上计数。并且,在位置j+1和j+2中,当Emax≥g1-g3≥Emin时,使边缘直方图计数电路703内的对应于高的灰度g1的未图示的直方图计数器向上计数1。
当g3-g5>Emax时,边缘直方图计数电路703不向上计数。当g4-g5≤Emin时,边缘直方图计数电路703不向上计数。这样,边缘直方图计数电路703对基于边缘信息的第2直方图进行计数。
寄存器704是设定从边缘直方图计数电路703决定边缘直方图阈值灰度te的pe%的值、即边缘直方图阈值灰度设定参数pe的边缘直方图阈值灰度设定参数设定寄存器,在系数运算电路705中计算边缘直方图计数电路703的从最高灰度到某灰度的直方图的累计值,当该累计值为整体像素数的pe%时,将该灰度值称为边缘阈值灰度,并利用(式19)计算α402。
[式19]
并且,也可以象实施方式5那样对区域进行分割,对各个区域中的每一个的边缘直方图进行计数。这种情况下,通过选择各区域中最大的灰度来作为边缘阈值灰度,可以同样地进行计算。这种情况下具有的特性是,通过将区域细化,边缘检测灵敏度变高,可以得到更适当的画质。
实施方式4~6的实施方式3的α的自动设定方法在实施方式1、2中还可以用于通过设k=1-α等来决定k。
(实施方式7)
以下利用图14和图15说明本发明实施方式7的显示装置。图14是本发明实施方式7的显示装置的框图。实施方式7与实施方式5相同,不仅是画面整体的显示图像的直方图,还分割显示图像,生成分割后的每个区域的直方图,计算每个区域的阈值灰度和从画面整体的显示图像的直方图得到的阈值灰度,在这一点上与实施方式5类似。
但是,在实施方式7中,如图15所示,将每个区域的阈值灰度中的最大的阈值灰度1301与从画面整体的显示图像的直方图得到的阈值灰度301中的、较大的阈值灰度值Tmax用作阈值灰度,利用由连接坐标(0,0)和(Tmax,255)的直线表现的一次函数,在输入灰度Tmax以下进行变换,在输入灰度Tmax以上变换成255灰度,这一点与实施方式5不同。
与实施方式5同样,不仅是画面整体的显示图像的直方图,系数运算电路107还分割显示图像,生成分割后的每个区域的直方图,将每个区域的阈值灰度中的最大的阈值灰度1301与从画面整体的显示图像的直方图得到的阈值灰度301中的、较大的阈值灰度值Tmax作为阈值灰度输出到像素扩展电路109。
像素扩展电路109对输入灰度进行图15的1302、1303的直线所示的变换。
另外,系数运算电路107向背光灯控制器108输出信号117,使得背光灯的亮度相对于没有扩展时的背光灯亮度1304成为1305。通过这样动作,虽然背光灯功率的削减率降低,但可以得到更明亮的适当显示。
(实施方式8)
以下利用图15和图16说明本发明实施方式8的显示装置。图16是本发明实施方式8的显示装置的框图。实施方式8如图15所示,若将阈值灰度值设为t,则利用由连接坐标(0,0)和(t,255)的直线表现的一次函数,在输入灰度t以下进行变换,在输入灰度t以上变换成255灰度。
但是,在实施方式8中,不是使用进行了区域分割的多个区域的阈值灰度,而是使用实施方式6所示的边缘直方图,这一点与实施方式7不同。
如图16所示,系数运算电路705输出从边缘直方图算出的边缘直方图阈值灰度te,系数运算电路107输出从通常的显示画面的直方图算出的阈值灰度t,比较电路706选择边缘直方图阈值灰度te与阈值灰度t当中的较大者,向像素扩展电路109输出。像素扩展电路109与第6实施方式同样地进行图15(a)所示的变换。
另外,利用比较电路706的输出来控制背光灯控制器。
通过这样动作,在第7实施方式中同样,虽然背光灯功率的削减率降低,但可以得到更明亮的适当显示。
(实施方式9)
以下利用图17说明本发明实施方式9的显示装置驱动电路进行的图像扩展处理的概要。图17是示出用于说明本发明实施方式9的显示装置驱动电路进行的图像扩展处理的像素值变换器的构成的构成图。在实施方式9中,如下变更作为变换电路的实施方式1的像素扩展电路109。
显示图像的像素的灰度值在z以上时,利用直方图均衡来进行变换,但此时在像素数的计数之前,利用图17所示的像素值变换器操作像素值,将比X1大的灰度的值变换为0。
这里,X1作为寄存器900被安装,可以从外部设定比z大的任意值。对于该操作后的像素值,利用直方图均衡来进行变换。
以下利用图18和图19,针对本发明实施方式9的显示装置驱动电路中的对z灰度以上的输入值的变换方式,详细地说明与实施方式1的不同。图18是表示本发明实施方式9的显示装置驱动电路的像素值的输入输出关系的图,图19是示出在本发明实施方式9的显示装置驱动电路中可预料效果的图像的一例的图。
与实施方式1同样,如果用函数F(x)来表示各灰度的像素数,则z+1灰度以上、x灰度以下的直方图的累计值(像素数的总和)可利用F(x)表示为(式20)。
[式20]
由于在s>X1时该灰度的像素被变换成不存在,因此函数F(s)的值为0。因此,在x>X1时,直方图的累计值恒定,为从z+1到X1的累计值。由此,针对z+1灰度以上的输入值x的输出灰度可表示为(式21)。
[式21]
即,在x≤X1的区域中,是与实施方式1相同的式子,但在x>X1的区域中,输出恒定为最大灰度(255)。这种情况下的输入灰度与输出灰度的关系如图18所示。图18具有3个区域,在x≤z时,成为用实施方式1的(式2)的式子表示的关系,在z<x≤X1的区域中,成为用(式21)中的上式、即实施方式1的(式5)表示的关系。并且,在X1<x≤最大灰度(255)中,如(式21)的下式所示,输出始终为最大灰度(255)。
通过这样进行变换,例如在图19所示的在显示图像中包含高亮度的GUI的情况下,可以不受该高亮度的像素的影响,进行利用x>z以上的区域的直方图均衡的变换。
(实施方式10)
以下说明本发明实施方式10的显示装置驱动电路进行的图像扩展处理的概要。在实施方式10中,如下所示变更实施方式2的像素扩展电路。
显示图像的像素的灰度值为z以上时,利用直方图均衡来进行变换,但此时在像素数的计数之前,利用实施方式9的图17所示的电路来操作像素值,将比X1大的灰度的值变换为0。这里,X1与实施方式9同样,作为寄存器900被安装,可以从外部设定比z大的任意值。对于该操作后的像素值,利用直方图均衡来进行变换。
以下利用图20,针对本发明实施方式10的显示装置驱动电路中的对z灰度以上的输入值的变换方式,详细地说明与实施方式2的不同。图20是表示本发明实施方式10的显示装置驱动电路的像素值的输入输出关系的图。
与实施方式2同样,如果用函数F(x)表示各灰度的像素数,则用4个计数器计数的N1、N2、N3用(式22)表示。但在本实施方式中,考虑z2<X1≤z3的情况。
[式22]
由于在s>X1时该灰度的像素被变换成不存在,因此函数F(s)的值为0。因此,在N3时,直方图的累计值恒定,为从z+1到X1的累计值。由此,针对z+1灰度以上的输入值x的输出灰度表示为(式23)。
[式23]
即,在x≤Z3的区域中,是与实施方式1相同的式子,但在x>Z3的区域中,输出恒定为最大灰度(255)。这种情况下的输入灰度与输出灰度的关系成为如图20所示。图20具有3个区域,在x≤z时,成为用实施方式1的(式2)的式子表示的关系,在z<x≤Z3的区域中,成为用(式9)中除了最下面的式子外的上面3个式子表示的关系。并且,在Z3<x≤最大灰度(255)中,如(式23)的下式所示,输出始终为最大灰度(255)。
通过这样进行变换,与实施方式9同样,例如在图19所示的在显示图像中包含高亮度的GUI的情况下,可以不受该高亮度的像素的影响,进行利用x>z以上的区域的直方图均衡的变换。
以下利用图48,针对本发明实施方式17的显示装置驱动电路中的系数决定方式,详细地说明与实施方式2的不同。图48是本发明实施方式17的显示装置驱动电路的系数运算电路周边图。106的直方图计数电路和107的系数运算电路进行与实施方式2同样的动作。在本实施方式中,不直接使用作为107的输出的所运算的系数4801,而是输入到4803的差分计算电路,求出与另外保存的4802的系数当前值寄存器的值的差分4804。利用4805的更新值生成电路将其与4807的系数不敏感区域寄存器值进行比较,如果差分4804与系数不敏感区域寄存器值相比相同或比其大,则许可4802的系数当前值寄存器的更新。这种情况下,对4802的系数当前值寄存器值进行加减运算,使其接近所运算的系数4801,利用该值来更新4802的系数当前值寄存器。此时,进行加减运算的单位对4806的系数变化量寄存器中设定的值进行加减运算。另外,在差分4804比系数当前值寄存器值4802小的情况下,不更新系数当前值寄存器,而是保持当前值。然后,将系数当前值寄存器值4802作为117的系数输出,以后的动作与实施方式2相同。通过这样构成,进行以下的动作。即使在输入图像较大地变化、从而106的直方图计数电路的输出也较大地变化的情况下,也如下进行动作:系数针对1帧仅变化4806的系数变化量寄存器值,而对于多帧则向新的图像系数收敛。由此,对于急剧的图像变化,防止显示像素值急剧变化而形成闪烁。另外,对于不到4807的系数不敏感区域寄存器值的变化,不使系数发生变化,而仅在达到以上的情况下才开始系数变化地动作,因此即使在由于动态图像等的输入而导致106的直方图计数电路的输出微小地不稳定地变化的情况下,也不使系数微小变化而保持稳定,从而防止闪烁。
利用图49说明实施方式17的动作中显示像素值发生了急剧变化的情况下的动作。图(a)示出4802的系数当前值寄存器值与107的系数运算电路的输出值的关系。4901的实线是基于系数当前值寄存器值的输入灰度·输出灰度曲线,4902的虚线是基于107的系数运算电路的输出值的输入灰度·输出灰度曲线。在折线顶点的部分存在差异,由此出现曲线整体的差异。(b)进一步示出了与4805的更新值生成电路的输出值的关系。对于短虚线的4901系数当前值寄存器值,向折线顶点加上4903所示的分量,生成4904的更新值生成电路的输出值。该4903的相加值是设定在4806的系数变化量寄存器中的值。在本图中,虽然4904接近4902的系数运算电路的输出,但处于不收敛的状态。(c)是下一帧中的4805的更新值生成电路的输出值。下一帧中的4802的系数当前值寄存器值为4904的值,对该值进行进一步相加,最终收敛到作为107的系数运算电路的输出值的4905。在本图中,仅记载了向增加方向的动作,向减少方向的动作也是同样的。
利用图50说明实施方式17的动作中的、106的直方图计数电路的输出发生微小的不稳定变化的情况下的动作。图(a)示出由4802的系数当前值寄存器值和4807的系数不敏感区域寄存器值设定的上限值、下限值的关系。5001的实线是基于系数当前值寄存器值的输入灰度·输出灰度曲线,而5002所示的范围是由4807的系数不敏感区域寄存器值设定的不敏感区域的范围。由此,不敏感区域的上限值由5003所示的输入灰度·输出灰度曲线表示,下限值由5004所示的输入灰度·输出灰度曲线表示。(b)示出107的系数运算电路的输出值位于不敏感区域的范围内的情况。5005的短虚线是系数运算电路的输出值,其存在于用长虚线表示的不敏感区域的上限值与下限值之间,因此不进行4802的系数当前值寄存器的更新,117的系数也不变化。(c)示出107的系数运算电路的输出值位于不敏感区域的范围外的情况。5006的短虚线是系数运算电路的输出值,其超出了用长虚线表示的不敏感区域的上限值,因此更新4802的系数当前值寄存器,117的系数慢慢接近5006。本图是系数运算电路的输出值为上限值以上的情况,但为下限值以下的情况下的动作也是同样的。
以上根据实施方式具体地说明了本发明的发明人作出的发明,但本发明不限于上述实施方式,在不脱离其要义的范围内,当然可以进行各种变更。
本发明可以适用于使用控制背光灯和液晶等的透射率的元件的显示装置,例如使用液晶显示装置的电视或个人计算机、便携电话等。
(第11~第13实施方式的前提)
最大灰度(255灰度)的突出峰值主要由于以下所示的2个原因而产生。
(1)光源等映入画面内。
(2)在对具有广的亮度范围的原图像进行摄影来进行数字化时,最大灰度(255灰度)以上的亮度部分都被一致为255灰度。
(1)的光源等映入的情况是指,如图36所示,荧光灯或太阳等光源进入了画面内的情况,这样的光源在画面构成上大多不重要,因此即使亮度稍微变化也没有问题。
(2)的情况是指,如图37所示,由于具有最大灰度以上的亮度的部分被一致为最大灰度而产生的峰值的情况。在数字化时已经从原图像产生了误差。因此,即使亮度稍微变化也没有问题。
因此,为了解决上述问题,本发明在计算从最大灰度开始的直方图的累计值时,除去一定灰度(例如最大灰度或其附近)的像素数来进行计算。
以下利用图21和图22说明本发明为了提高对比度而进行的图像扩展处理。
图21是像素扩展系数x和阈值判定值y的概念图。
在该图21中,使用像素扩展系数x这一用语。这是指在显示图像中,作为成为累计对象的最大灰度以下的灰度值的像素的累计数为图像1帧中包含的全部像素数的y%的灰度x。
将作为该像素扩展系数的x灰度如图21(b)所示分配给255灰度,将0灰度以上x灰度以下的显示数据如图21(b)所示直线地分配给输出灰度。另一方面,对于x灰度以上,将输出灰度一律分配给最大值(255灰度)。
这样,在本说明书所记载的发明中,通过将0~x的灰度扩展到0~255灰度,可以提高对比度。
如上所述,在本发明中,将作为x灰度以上、最大-γ(255-γ)灰度以下的灰度值的像素数为全部像素数的y%的x灰度称为像素扩展系数,将该灰度分配给最大(255)灰度,由此扩展图像。在本发明中将该y%的值定义为阈值判定值。另外,该阈值判定值是设计事项,由电路设计者适当决定。该阈值判定值最好设定为所形成的图像的像素扩展系数以上的像素相对于整体的图像足够小、不显眼的值。
对此,图22是图像信息集中于低灰度的情况下的例子,利用它来说明像素扩展系数的“下限值”。
在图像信息集中于低灰度的情况下,用上述方法求出的像素扩展系数x为较小的值。由此,如图22(b)所示扩展倍率过大,输出图像的失真也变大。为了应对该情况,将不使像素扩展系数降低到这以上的灰度(图21的21402)作为设计事项来决定。以下将其称为“下限值”。
在本说明书中,将要处理的数据作为255灰度的8位数据来进行说明,但也可以是10位数据(1023灰度)。
在上述前提下,以下参照附图说明本发明的各实施方式。
(第11实施方式)
图23是本发明第11实施方式的显示装置的框图。
该显示装置2100包括显示装置驱动电路2101、中央处理装置(CPU)2102、显示存储器2103、内部总线2104、背光灯2111和液晶画面2112。
显示装置驱动电路2101是指用于驱动背光灯2111和液晶画面2112的电路。显示装置驱动电路2101包括输入输出接口电路2105、直方图累计值运算电路2106、系数运算电路2107、背光灯控制器2108、像素扩展电路2109、液晶控制器2110、驱动电路内存储器2113、定时控制电路2114。
CPU102是向显示装置驱动电路2101发送数据、使液晶画面2112进行显示的处理器。
存储器2103是为了在液晶画面上进行显示而保持有关亮度、色相、彩度的属性的存储器。在本发明中,连接在显示装置驱动电路2101外部的内部总线2104上。但是,也可以与显示装置驱动电路2101直接连接,作为显示装置驱动电路2101专用,或者可以作为显示装置驱动电路2101内置。另外,也可以将其设计成与CPU2102共用。
内部总线2104是指用于在显示装置2100内的各模块间传送数据的总线。
背光灯2111是用于通过照射自身不发光的液晶画面112来提高液晶画面2112的可视性的光源。
液晶画面2112是组装了液晶元件的图像显示装置。
以下说明显示装置驱动电路2101内部的模块。
输入输出接口电路(输入输出IF电路)2105是接收从内部总线2104发送的数据的接口部分。该输入输出接口电路2105包括表示是否是进行液晶显示的状况(显示开始模式)的未图示的“显示开始寄存器”。
直方图累计值运算电路2106是从1帧大小的显示数据求出从最高灰度(255灰度)到下限值的每个灰度的像素数、生成直方图的电路。
系数运算电路2107从直方图累计值运算电路2106的输出求出到各灰度的像素数的和。由此导出作为像素扩展系数的“x灰度”。
另外,直方图累计值运算电路2106以及系数运算电路2107涉及本发明的特征之处,将在后面详述。
背光灯控制器2108具有调整背光灯2111的照度等的功能。通过该照度调整,可以降低背光灯2111的耗电。
像素扩展电路2109是根据像素扩展系数对显示图像的灰度进行扩展处理的电路。
液晶控制器2110是根据像素扩展电路2109的输出数据在液晶画面2112上进行显示的控制器。
驱动电路内存储器2113是临时蓄积经由输入输出接口电路2105送来的显示数据的存储器。另外,驱动电路内存储器2113的容量因系统而不同,但一般是具有1帧大小的帧存储器的系统。但是,在本发明中也可以是象几个字节的FIFO存储器那样的存储器。
定时控制电路2114输出针对经由输入输出接口电路2105送来的显示数据指示显示数据的开始位置的SYNC信号。与该SYNC信号同步地将显示数据从驱动电路内存储器2113输出到直方图累计值运算电路2106以及像素扩展电路2109。
以下说明该显示装置的动作。
在液晶画面2112上显示数据时,CPU 2102向输入输出接口电路2105内的未图示的“显示开始寄存器”中写入表示显示开始的值。此后,从显示存储器2103经由输入输出接口电路2105将显示数据传送到驱动电路内存储器2113。
变成显示开始模式后,显示装置驱动电路2101的定时控制电路2114输出表示显示数据的开始位置的帧SYNC信号。与该帧SYNC信号同步地将显示数据从驱动电路内存储器2113输出到直方图累计值运算电路2106以及像素扩展电路2109。
从驱动电路内存储器2113输出的显示数据由直方图累计值运算电路2106直方图化。该直方图的一个例子为图24。
在该图24中,求出从作为最大灰度值的255灰度到下限值的各灰度中的每一个的像素的累计值(直方图)。另外,在该阶段,是否对作为最大灰度值的255灰度附近的灰度进行计数是设计事项。也可以考虑即使计数也不向系数运算电路2107输出的处理,或者即使向系数运算电路2107输出也在系数运算电路2107中忽视的设计。
由直方图累计值运算电路2106导出的直方图化后的数据被发送到系数运算电路2107。系数运算电路2107从该直方图化后的数据求出像素扩展系数。
这里,根据图24说明基于系数运算电路2107的像素扩展系数的导出方法。在本实施方式的例子中,作为灰度最大值的255灰度以及其后的254灰度不用于像素扩展系数的导出(不包含在累计对象中)。并且,由于仅利用作为累计对象的上限的253灰度无法进行相加,因此将255-2(255灰度以及254灰度)-1、即252设为作为处理的计数器的变量a的初始值。
首先求出253灰度以下、变量a灰度以上的像素数的和。如果该像素数的和小于规定的阈值判定值,则从a的值减去1,再次求出像素数的和。即,在该例中,a=251,求出从251灰度到253灰度的像素数的和。重复进行该操作,直到达到下限值,或者像素素的和变得大于阈值判定值。
另一方面,如果该像素数的和大于规定的阈值判定值,则将在该时刻a的值上加1后的值确定为像素扩展系数。另外,如果不是像素数的和变得大于规定的阈值判定值,而是变量a达到下限值,则将下限值(在图24中为2220)处理为像素扩展系数。
如果像素扩展系数确定,则系数运算电路2107将所确定的像素扩展系数输出到背光灯控制器2108、像素扩展电路2109。
以下利用图25说明背光灯控制器2108的动作和液晶画面2112的灰度亮度特性。
图25是表示背光灯控制器2108的动作和液晶画面2112的灰度亮度特性的对应关系的曲线图。
该图25的横轴表示显示图像的灰度。另一方面,左纵轴表示背光灯的亮度,单位为堪德拉(cd/m2)。右纵轴表示液晶画面2112的灰度亮度特性。
图25的亮度2701是最高灰度为255灰度时的背光灯亮度。同样,亮度2702表示将背光灯亮度控制成使得最高灰度成为像素扩展系数A所示的灰度的亮度时的背光灯亮度,亮度2703表示将背光灯亮度控制成使得最高灰度成为像素扩展系数B所示的灰度的亮度时的背光灯亮度。
另外,最高灰度为255灰度,背光灯亮度为2701时的灰度亮度特性为灰度亮度特性2704,背光灯亮度为2702时的液晶等的灰度亮度特性为灰度亮度特性2705,背光灯亮度为2703时的液晶等的灰度亮度特性为灰度亮度特性2706。
一般情况下,如果背光灯亮度下降,则消耗电流也下降。因此,在本发明中,与在亮度2701下点亮背光灯相比,在亮度2702下点亮时在耗电方面有利,如果在亮度2703下点亮则更有利。本发明的背光灯控制器着眼于这一点来进行以下的处理。
即,将背光灯亮度固定于2703(最高灰度为像素扩展系数B时的亮度)。另一方面,在从0灰度到B之间,利用灰度亮度特性2704作为液晶等的灰度亮度特性。另一方面,对于从B灰度到255灰度的范围,将其固定为最大灰度,使其成为将与灰度亮度特性2704在B灰度时的亮度相同的亮度2710作为最高灰度的亮度的灰度亮度特性2709。通过这样进行控制,可以大幅度地削减耗电。
像素扩展电路2109对显示图像的灰度进行图26的特性2707所示的变换。图26是与像素扩展电路2109中的像素扩展有关的概念图。
图26的特性2708是不进行扩展的情况下的像素扩展电路的输入输出特性。
本发明的像素扩展电路2109如前所述,显示图像的像素扩展系数(B灰度)以上的部分都作为255灰度处理,仅将0以上像素扩展系数(B灰度)以下的部分如特性2707所示直线地进行变换。
通过这样对背光灯亮度和图像的灰度进行变换,液晶画面2112上显示的亮度成为图25的特性2709。阈值判定值被设定成相对于整体的图像足够小而不显眼的值,因此即使象特性2709那样像素扩展系数以上模糊成恒定的亮度,作为图像整体也是不显眼的,从而画质不会明显劣化。另外,如上所述在255灰度中出现峰值的情况是光源进入画面内的情况,或者这以上的灰度在数字化时看作255灰度的情况。因此,即使255灰度的部位模糊到像素扩展系数的亮度,画质也不会明显劣化。
但是,如果使用与使用包含最高灰度的直方图的累计值的方式时同样的阈值判定值的判定方法,则像素扩展系数向高灰度侧偏离。这是因为普通峰值到达255灰度。在使用包含最高灰度的直方图的累计值的方式时,如图24所示像素扩展系数从B偏离到255灰度侧的A。背光灯控制器2108将背光灯亮度下降到2702,使其成为与像素扩展系数为最高灰度时的A灰度相同亮度的灰度亮度特性2705。这样求出像素的和时,与除去最高灰度来求出的情况相比高。从相反的视点来看,像素扩展电路2109通过计算除去最高灰度的直方图,可以大幅度地削减耗电。
以下参照图27、图28说明本第11实施方式的直方图累计值运算电路2106、系数运算电路2107的详细的框图和动作。
图27是直方图累计值运算电路2106、系数运算电路2107的详细框图。图28是直方图边界设定寄存器2502的设定例,作为设定项目,存在计数器、直方图边界寄存器设定值、向上计数范围。
直方图累计值运算电路2106由RGB最大值抽出电路2501、直方图边界设定寄存器2502、选择器2503、直方图计数器2504构成。
另一方面,系数运算电路2107由阈值存储寄存器2521、选择器2522、阈值判定值存储寄存器2523、选择器2524、加法器2525~2539、寄存器2540、2542、2544、2546、加法器2541、2543、2545、除法器2547构成。
RGB最大值抽出电路2501是从输入输出接口2105发送的1个像素的红(R)、绿(G)、蓝(B)的数据中选择最大的灰度值,并向选择器2503输出的电路。
直方图边界设定寄存器2502是经由输入输出接口2105由CPU2102设定的寄存器,其作用是利用RGB最大值抽出电路2501的输出值设定哪个计数器向上计数。
选择器2503是对比RGB最大值抽出电路2501的输出或直方图边界设定寄存器2502的输出、决定向直方图计数器2504的输出的选择器。在本实施方式中,直方图计数器2504是由16个计数器2505~2520构成的计数器。这里将计数器的个数设为16个,但该计数器的个数是兼顾像素扩展系数的下限值和图28的向上计数范围而决定的。即,在本实施方式中,将下限值设定为220,但如果设定成更低的值,则需要相应的计数器的个数。另外,如果加宽作为直方图边界设定寄存器2502的设定项目的向上计数的范围,则计数器的个数相应减少。
阈值存储寄存器2521用于设定如下阈值的值:在计数器2505的值小于该阈值存储寄存器的值时,不在直方图累计值上加上计数器2505的值,而在大于该阈值存储寄存器的值时,在直方图累计值上加上计数器2505的值。
选择器2522在计数器2505的值小于阈值存储寄存器2521的值时,输出“0”,而在计数器2505的值在阈值存储寄存器2521的值以上时,输出计数器2505的值。由此,在最高灰度的累计值为一定值以下时,可以忽视该值。相反,如果一定要输出最高灰度,则将阈值存储寄存器2521的值设为“0”即可。
阈值判定值存储寄存器2523是用于存储阈值判定值的寄存器。
选择器2524将阈值判定值存储寄存器2523的值与作为累计对象的从最高灰度到对应灰度的累计值2526~2539进行比较,并输出小于阈值判定值存储寄存器2523的值的累计值中对应于最大灰度的灰度值。选择器2524的输出成为从1帧大小的显示数据得到的像素扩展系数。
加法器2525进行选择器2522的输出与直方图计数器2504中的寄存器2506的相加,并输出到选择器2524和加法器2526。即,当计数器2505的值在阈值存储寄存器2521的值以上时,取计数器2505和计数器2506的值之和,当计数器2505的值不足阈值存储寄存器2521的值时,取计数器2506的值。
同样,加法器2526~2539的值当计数器2505的值在阈值存储寄存器2521的值以上时,取从255灰度到对应于对应的计数器的灰度的累计值,当计数器2505的值不足阈值存储寄存器2521的值时,取除去了灰度255、254的、从灰度253到对应于对应的计数器的灰度的累计值。
寄存器2540、2542、2544、2546是用于保持最近4帧的像素扩展系数的累计值的寄存器。另外,为了取该最近4帧的像素扩展系数的平均,存在加法器2541、2543、2545以及除法器2547。
加法器2541是将选择器2524的输出与寄存器2540的输出相加、输出到寄存器2542的加法器。加法器2543是将选择器2524的输出与寄存器2542的输出相加、输出到寄存器2544的加法器,加法器2545是将选择器2524的输出与寄存器2544的输出相加、输出到寄存器2546的加法器。
在本实施方式中,除法器2547是用4来除的除法器。这是为了求出最近4帧的平均值而用4来除,其设计为,如果增加最近帧的像素扩展系数的累计对象,则相应地增加除数。
以下,以上述电路构成为基础说明直方图累计值运算电路2106的动作。
如果向直方图累计值运算电路2106输入帧SYNC信号,则直方图计数器2504复位。即,直方图计数器2504内部的16个计数器2505~2520成为0。
然后,将显示数据逐个像素地从输入输出接口电路2105传送到RGB最大值抽出电路2501。RGB最大值抽出电路2501选择1个像素的红(R)、绿(G)、蓝(B)的数据中灰度的最大值,并向选择器2503输出。
选择器2503将该RGB最大值抽出电路2501的输出与直方图边界设定寄存器2502的值进行对比。这里,利用图28说明直方图边界设定寄存器2502的设定例。
选择器2503在得到RGB最大值抽出电路2501的输出后,研究该输出值存在于向上计数值的哪个范围内。然后,决定输出信号,使得与该范围相对应的计数器向上计数。
在图28的设定中,在RGB最大值抽出电路2501的输出为254或255的情况下,选择器2503的输出2548有效。直方图计数器2504内的计数器2505向上计数。另一方面,输出信号线2549到2563无效,直方图计数器2504内的计数器2506到2520不向上计数。
对此,在RGB最大值抽出电路2501的输出为253或252的情况下,选择器2503的输出2549有效,其它输出信号线2548及25502563无效。由此,仅直方图计数器2504内的计数器2506向上计数。
另外,当RGB最大值抽出电路2501的输出不足“200”(计数器2520的最小向上计数范围)时,输出2548到2563都无效,计数器2505到2520不向上计数。
这样,按照直方图边界设定寄存器2502的设定值和RGB最大值抽出电路2501的输出来决定选择器2503的输出。结果,直方图计数器2504内的各计数器适当地向上计数。
这样,当输入1帧大小的显示数据时,直方图边界设定寄存器2502中设定的每个边界的像素数被蓄积在直方图计数器2504内。
以下说明系数运算电路2107的动作。
系数运算电路2107通过运算从直方图累计值运算电路2106求出的各计数器的值导出像素扩展系数。以下说明详细的运算方法。
选择器2522在计数器2505的值小于阈值存储寄存器2521的值时,输出“0”,而在计数器2505的值在阈值存储寄存器2521的值以上时,输出计数器2505的值。所以,当计数器2505的值在阈值存储寄存器2521的值以上时,加法器2525的输出取计数器2505和计数器2506的值之和,当计数器2505的值不足阈值存储寄存器2521的值时,取计数器2506的值。
同样,加法器2526~2539的值当计数器2505的值在阈值存储寄存器2521的值以上时,取从255灰度到对应于对应的计数器的灰度的累计值,当计数器2505的值不足阈值存储寄存器2521的值时,取除去了灰度255、254的、从灰度253到对应于对应的计数器的灰度的累计值。
选择器2524将阈值判定值存储寄存器2523的值与从253灰度到对应于对应的计数器的灰度的累计值2526~2539进行比较,输出小于阈值判定值存储寄存器2523的值的累计值中对应于最大灰度的灰度值。该选择器2524的输出成为从1帧大小的显示数据得到的像素扩展系数。
但是,仅利用1帧来决定像素扩展系数和从像素扩展系数导出的背光灯亮度和灰度亮度特性会伴随亮度的变动,从而成为闪烁的原因。
因此,寄存器2540、2542、2544、2546将最近4帧的像素扩展系数相加,并由除法器2547导出该各像素扩展系数的平均。由此,每一帧的亮度变动变小,可以抑制闪烁的发生,从而可以得到良好的显示状态。
该平均化后的像素扩展系数作为最终的像素扩展系数输出到背光灯控制器2108和像素扩展电路2109。
考虑将该第11实施方式的电路应用于在白底上用黑色书写文字的2值图像的情况。在黑白图像的2值时,直方图如图29所示。这种情况下,255灰度的像素数足够大,因此,在本发明中,选择器2522输出寄存器2505的值,加法器2525的值大于阈值判定值存储寄存器2523的值。因此,选择器2524将灰度最大值255作为像素扩展系数输出。结果,白背景的亮度降低,从而画面不会变暗。
另外,在象云或雪的图像那样虽然为高亮度但有微妙的阴影的图像中,直方图如图30所示。这种情况下,253灰度的像素数足够大,因此,加法器2525的值大于阈值判定值存储寄存器2523的值。因此,选择器2524将灰度最大值255作为像素扩展系数输出。结果,白背景的亮度降低,从而画面不会变暗。
另外,在本实施方式中,通过使阈值存储寄存器2521的设定值为“0”,如果1以上的值进入寄存器2505,则选择器2522的输出必定为寄存器2505的值。因此,还可以使用阈值存储寄存器2521作为用于指定是否计算255灰度和254灰度的像素数的寄存器。
还可以考虑通过CPU 2102来改写本发明的阈值存储寄存器2521。例如,在2值图像多的文档数据等的情况下,将阈值存储寄存器2521的值设定得小,在电视图像的显示等光源的映入等多的图像的情况下,将阈值存储寄存器2521的值设定得大,由此不会降低画质,可以实现低耗电。
并且,可以通过CPU 2102来改写阈值判定值存储寄存器2523,因此,如图31所示,在灰度-亮度特性是在最高灰度(255灰度)附近向上凸的特性的情况下,通过使阈值判定值存储寄存器2523的值大,可以实现更低的耗电。
而且,在由于老化而使背光灯的亮度降低的情况下,也可以由CPU对从使用开始经过的年月进行计测,在使用年月经过了一定时间以上的时刻,减小阈值判定值存储寄存器2523的值,由此可以防止画面的亮度过低。
另外,在本实施方式中,由RGB最大值抽出电路2501选择R、G、B数据中的最大值并实现直方图化,但这并非是对本发明施加限制,也可以利用从R、G、B数据算出的亮度来算出直方图,还可以利用所有的R、G、B数据来实现直方图化。并且,还可以利用显示系统的颜色特性,仅利用高灰度的颜色特性对视觉产生较大影响的颜色(一般为G(绿))来构成直方图。这样的直方图的构成方法不对本专利产生限制。
而且,也可以是针对R、G、B个别地生成直方图,仅对于高灰度的颜色特性不对视觉产生较大影响的颜色(一般为B(蓝)),不将包含最高灰度的特定灰度的像素数加到直方图的累计值上,并且,不在直方图的累计值上加上包含最高灰度的特定灰度的像素数的颜色可以为多个(例如B(蓝)和R(红))。通过这样构成,可以进一步不对画质产生影响地进行与显示装置的显示特性相符的低耗电化。
(第12实施方式)
以下说明本发明的第12实施方式。本实施方式的显示装置整体的构成与第11实施方式相同。在本实施方式中,显示装置驱动电路2101内的直方图累计值运算电路2106和系数运算电路2107中的构成与第11实施方式不同,但输入输出接口电路2105、像素扩展电路2109、背光灯控制器2108、液晶控制器2110、驱动电路内存储器2113、定时控制电路2114等进行相同的动作。另外,显示装置驱动电路2101以外的部分也进行与第11实施方式相同的动作。
图32中示出第12实施方式的直方图累计值运算电路21060、系数运算电路21070的详细框图。
该直方图累计值运算电路21060由RGB最大值抽出电路2501、直方图计数器25040构成。另一方面,系数运算电路21070由模式设定寄存器12101、选择器21102、加法器21103、选择器21104、计数器21105、阈值判定值存储寄存器21106和平均化电路21107构成。
RGB最大值抽出电路2501选择从输入输出接口电路2105发送的1个像素的红(R)、绿(G)、蓝(B)的数据中最大值,并向选择器2503输出,是与第11实施方式相同的电路构成。
直方图计数器25040从1帧大小的显示数据生成直方图。在直方图的生成结束后,将帧结束信号21108输出到加法器21103和计数器21105,这一点与第11实施方式的直方图计数器2504不同。
模式设定寄存器21101是进行在系数运算中是否包含最大灰度的计数值的模式的选定的寄存器。该寄存器为“1”时,表示直方图中不包含最大灰度的计数值,为“0”时表示包含最大灰度的计数值。假定该模式设定寄存器21101将寄存器写入信号改写为触发。
选择器21102在模式寄存器21101为模式“1”、且计数器21105为256时,输出为“0”,以外的情况下,直接输出直方图数据21109。
加法器21103在选择器21104的输出为“0”时,将未图示的内部时钟作为触发,将选择器21102的输出加到当前保持的值上来保持并输出。
选择器21104在加法器21103的输出不足阈值判定值存储寄存器21106的值时,输出“0”,在加法器21103的输出为阈值判定值存储寄存器21106的值以上时,输出“1”。
计数器21105是如下的减量计数器:利用帧结束信号21108被预设为256,在选择器21104的输出为“0”且帧结束信号21108为“1”时,与内部时钟同步地递减1。计数器21105将内部时钟的上升作为触发来动作。
阈值判定值存储寄存器21106是用于存储将直方图累计值小于阈值判定值存储寄存器2523的值的灰度中的最小灰度作为阈值灰度的判定值的寄存器。具有与第11实施方式的阈值判定值存储寄存器2523相同的功能。同样假定模式设定寄存器21101将寄存器写入信号改写为触发。
平均化电路21107为了防止闪烁而求出最近几帧的像素扩展系数平均值,与第11实施方式的寄存器2540、2542、2544、2546、加法器2541、2543、2545以及除法器2547的构成相同。
图33是表示第12实施方式的系数运算电路21070的动作的时序图。基于以上构成以及图33的时序图来说明第12实施方式的动作。
直方图计数器25040在结束了直方图的生成后,输出帧结束信号21108。从255灰度开始依次与内部时钟同步地向选择器21102逐个灰度地输出直方图数据21109。
计数器21105如上所述,利用帧信号被预设为256,在选择器21104的输出为“0”且帧结束信号21108为“1”时,与内部时钟同步地递减1。
帧结束信号21108变成有效(“1”)时,选择器21104的输出为“0”。因此,如果帧结束信号21108变成有效(“1”),则计数器21105在内部时钟的上升定时从256开始递减1。
在图33的动作条件下,模式设定寄存器21101的值为“1”。即,不在像素扩展系数的累计值中包含最大灰度的计数值。因此,当计数器21105为256时,选择器21102的输出为“0”,不输出255灰度时的直方图值255D。另一方面,计数器21105成为255以下,因此254灰度以下的直方图值具备选择器21102的动作条件。因此,象254灰度的直方图值254D、253灰度的直方图值253D...这样,选择器21102与内部时钟的上升定时同步地输出直方图计数器输出。
当选择器21104的输出为“0”时,加法器21103将选择器21102的输出加到当前保持的值上保持并输出。因此,加法器21103的输出在第1个时钟由于选择器21102的输出为“0”因此为“0”,在第2个时钟由于选择器21102的输出为“254D”因此增加为“254D”,在第3个时钟由于选择器21102的输出为“253D”因此增加为“254D+253D”。
这里,设阈值判定值存储寄存器21106的值大于“254D+253D+252D+251D+250D”,并小于“254D+253D+252D+251D+250D+249D”。选择器21104在加法器的输出为“254D+253D+252D+251D+250D+249D”时具备动作条件,因此输出“1”。
由于该选择器21104的输出值的变化,不满足计数器21105的动作条件,因此计数器21105停止递减。另外,由于也不满足加法器21103的动作条件,因此它们都停止相加,继续保持当前值。此时的计数器21105的值(在图33中为“249”)作为1帧大小的像素扩展系数而被输出。
将该1帧大小的像素扩展系数输出到平均化电路21107。取多帧的像素扩展系数的平均而得到的值作为像素扩展系数被输出到图33的背光灯控制器2108和像素扩展电路2109。
通过这样动作,本第12实施方式在白底上的黑色文字那样的2值图像的情况下,CPU 1202通过对应用进行判断,在模式设定寄存器21101中写入“0”,包含255灰度的直方图值在内来决定像素扩展系数,因此即使是2值图像,亮度也不会降低,从而可以保持良好的画质。
在显示自然画多的数码相机图像的情况下,CPU 1202通过对应用进行判断,在模式设定寄存器21101中写入“1”,除去255灰度的直方图值来决定像素扩展系数,因此在计算中不纳入位于255灰度的峰值,从而可以在画质几乎没有劣化的情况下降低耗电。
(第13实施方式)
以下说明第13实施方式。
图34是第13实施方式的框图。
在该第13实施方式中,相对于第11实施方式的显示装置,具有用于对背光灯2111的照度进行计测的照度传感器21301、和显示驱动装置2101内的用于控制该照度传感器21301的照度传感器控制电路21302,在这一点上与第11实施方式不同。
在该第13实施方式中,CPU 2102在通过输入输出接口电路2105发出背光灯照度取得命令后,取得背光灯的照度,并报告给CPU2102。CPU 2102在系统启动等时,取得背光灯照度,在背光灯照度大时,通过增大阈值判定值存储寄存器2523的值,得到良好的省电特性。另外,在由于老化等背光灯照度减小的情况下,通过减小阈值判定值存储寄存器2523的值,可以防止画面的亮度过低。
以上根据实施方式具体地说明了本发明的发明人作出的发明,但本发明不限于上述实施方式,在不脱离其要义的范围内,当然可以进行各种变更。
本发明可以适用于使用控制背光灯和液晶等的透射率的元件的显示装置,例如使用液晶显示装置的电视或个人计算机、便携电话等。
另外,作为通过向显示画面照射背光灯来显示图像的图像显示装置的一例,以液晶显示装置为例进行了说明,但不限于此。
图38是用于说明本发明实施方式的概念的图,是在便携电话机上实现电视·相机等的自然画显示的情况下的液晶显示装置的概念图。
近年,即使是便携电话机3101,也会在液晶面板3104上同时显示电视视频、相机视频等自然画和操作按钮·电池余量·电波接收灵敏度·时刻等图标区域3106。即使是如上图标区域3106与其以外的自然画显示区域混合存在的显示数据,驱动液晶面板3104的信号线驱动电路3102、扫描线驱动电路3103以及背光灯模块3105也同样地处理。
自然画一般多为暗的视频源,在仅显示自然画的情况下,如果应用日本特开平11-65531号公报提示的背光灯控制方法,则常常可以将背光灯的发光量削减3、4成左右。但是,在同时显示自然画和图标的情况下,由于图标中包含很多高亮度像素,因此利用同样的背光灯控制方法,无法削减背光灯发光量。
另外,在与图标同时地显示自然画的情况下,如果与仅显示自然画的情况同样地将背光灯发光量削减3、4成,则包含高亮度像素的图标的显示亮度下降,但实用上只要附加图标与其它图像的区别即可。即使削减背光灯发光量而在图标显示中发生画质劣化,对整体的显示质量的影响也较低。
在本实施方式中,不限于图标显示区域,区分显示画面当中对显示质量的影响度高或低的区域以及以外的区域,进行加入了对显示质量的影响度的适当的背光灯发光量控制。另外,对显示质量的影响度低的区域例如是指显示着色图形、灰度数(亮度数)少的图像、灰度变化(亮度变化)小的图像的区域。
(实施方式14)
以下利用图39~图40说明本发明实施方式14的液晶显示装置的驱动电路。本实施方式14在显示画面上如图38所示设置图标区域3106,在直方图计数时,分别对自然画显示区域和图标区域3106进行对应于对显示质量的影响度的加权,进行背光灯发光量的控制。
图39是表示包含本实施方式14的液晶驱动电路的液晶显示装置的构成的图。液晶显示装置具有液晶驱动电路3201、液晶面板3202、背光灯模块3203、控制处理器3204。
液晶面板3202利用从后述的液晶驱动电路3201施加的电压的电平来控制其显示亮度,例如是针对每个像素配置TFT、并将信号线和扫描线配置成矩阵状的有源矩阵型的面板。
液晶驱动电路3201按照线的顺序在液晶面板3202内的扫描线上施加使TFT成为导通状态的扫描脉冲,并经由信号线向连接在TFT的源极端子上的像素电极施加用于控制显示亮度的灰度电压。由于施加在像素电极上的灰度电压,涉及液晶面板3202的液晶分子的有效值发生变化,由此控制显示亮度。
背光灯模块3203利用流向构成背光灯的发光元件的电流量来决定其发光量,利用从外部、例如从液晶驱动电路3201输入的脉冲信号,对其发光动作进行ON/OFF控制。控制处理器3204生成图像的显示数据,并传送到液晶驱动电路3201。
液晶驱动电路3201具有系统接口3205、控制寄存器3206、定时发生电路3209、图形RAM3210、背光灯控制部3211、灰度电压生成电路3212、信号线驱动电路3213、扫描线驱动电路3214、PWM电路3215、背光灯电源电路3216。
系统接口3205进行以下动作:接收从控制处理器3204传送的显示数据或指令,并向后述的控制寄存器3206输出。这里,指令是用于决定液晶驱动电路3201的内部动作的信息,包括帧频和驱动线数、颜色数、后述的对直方图进行计数时的加权系数等各种参数。
控制寄存器3206内置锁存电路,将从系统接口3205接收的图标区域的坐标信息和图标区域的加权系数传送到后述的背光灯控制部3211。该控制寄存器3206具有图标区域坐标设定寄存器3207和图标区域加权系数设定寄存器3208。
图标区域坐标设定寄存器3207是指定图标区域在显示画面上的位置的寄存器,指定位于矩形区域的对角上的2点的坐标。也可以是指定矩形区域的1个顶点和矩形的长边·短边的长度的构成。图标区域加权系数设定寄存器3208是指定针对图标区域内的像素的、在直方图计数时的加权系数的寄存器。在针对自然画区域使图标区域内的像素的加权变高时,在图标区域加权系数设定寄存器3208中设定大于1的值,使加权变低时,设定小于1的值。
定时发生电路3209具有点计数器,通过对点时钟进行计数,来生成行时钟。根据该行时钟,来规定从后述的图形RAM3210向背光灯控制部3211的数据传送、扫描线驱动电路3214的输出定时。图形RAM3210蓄积从系统接口3205传送的显示数据,并传送到后述的背光灯控制部3211。
背光灯控制部3211是在本实施方式14的液晶驱动电路3201中成为中心的块,接收从图形RAM3210传送的显示数据,执行显示数据的扩展处理,并传送到后述的信号线驱动电路3213。另外,计算并输出用于进行背光灯发光量的控制的背光灯设定值。灰度电压生成电路3212生成实现多个灰度显示的模拟的灰度电压电平。
信号线驱动电路3213起到DA转换器的作用,该DA转换器利用内置的解码电路、电平移动器、选择电路,将从背光灯控制部3211传送的数字显示数据转换成模拟的灰度电压电平。这里得到的模拟的灰度电压被施加在液晶面板3202上,控制其显示亮度。
扫描线驱动电路3214与从定时发生电路3209传送的行时钟同步地利用内置的移位寄存器生成相对于扫描线为线顺序的扫描脉冲。并且,在内置的电平寄存器将从上述移位寄存器传送的Vcc-GND电平的扫描脉冲变换成VGH-VGL电平后,向液晶面板3202输出。另外,VGH是TFT处于导通状态的电压电平,VGL是TFT处于截止状态的电压电平。
PWM电路3215将从背光灯控制部3211传送的背光灯设定值调制成脉冲宽度。具体地,利用内置的计数器对从定时发生电路3209传送的点时钟进行计数,并利用同样内置的比较器比较计数值和前述的背光灯设置值。由此生成与背光灯设定值相同数量的、成为时钟时间高电压的背光灯控制脉冲。
背光灯电源电路3216利用内置的电平移动器将从PWM电路3215传送的Vcc-GND电平的背光灯控制脉冲变换成背光灯模块3203的动作电压。电压变换后的背光灯控制脉冲被输入到背光灯模块3203,但其光量不是始终恒定的,而是根据显示数据控制的。
以下说明背光灯控制部3211的动作内容。图40是表示本实施方式14的背光灯控制部3211的构成的图。背光灯控制部3211具有直方图计数部3301、显示数据扩展部3302、背光灯调整部3303。
直方图计数部3301具有直方图区间判定部3304、加权系数计算部3305、阈值判定部3306、计数器1~16(3311~3326),并进行以下处理:用显示图像的帧单位对显示数据进行计数,取得直方图,计算作为该直方图的上位的特定位置的显示数据的值的阈值。
直方图区间判定部3304根据输入的显示数据的灰度值来判定直方图的区间。在图40中示出如下情况下的例子:将0~255的灰度分割成16个区间,对16个灰度区间各自的出现频度进行计数。例如,在输入的显示数据的灰度值在0~15的范围内时,直方图区间判定部3304向对灰度值0~15的出现频度进行计数的计数器1(3311)发送使能信号,使计数器1(3311)向上计数。
加权系数计算部3305判定所输入的显示数据是属于显示画面上的图标区域的像素、还是属于其它区域的像素,计算对应于所属区域的加权系数,并向计数器1~16(3311~3326)输出。图标区域由前述的图标区域坐标设定寄存器3207指定,用矩形区域定义显示有图标的区域,保持位于该矩形区域的对角上的2个点的坐标。
加权系数计算部3305将图标区域坐标设定寄存器3207中设定的矩形区域的坐标信息、以及显示数据的水平坐标值·垂直坐标值作为输入,判定显示数据是否位于作为图标区域的矩形区域内。在显示数据位于图标区域内的情况下,输出图标区域加权系数设定寄存器3208的保持值α,在显示数据位于图标区域外的情况下,输出值1。
另外,在图标区域对显示质量的影响度低于其它区域的情况下,在图标区域加权系数设定寄存器3208的保持值α中设定不足1的值,相反,在图标区域对显示质量的影响度比其它区域高的情况下,设定大于1的值。
阈值判定部3306是从保持各灰度区间的直方图的计数器1~16(3311~3326)的值、计算作为用于决定数据扩展率的基准的阈值的电路。阈值是指在显示画面的直方图上从上位起位于几%的位置处的灰度值。
阈值判定部3306首先计算计数器1~16(3311~3326)中保持的值的合计值,如果计数器16(3326)的保持值是大于合计值的几%的值,则输出值255。否则,如果计数器16(3326)和计数器15(3325)的保持值之和是大于合计值的几%的值,则输出值239。从各灰度区域的值大的一方到小的一方重复进行以上运算,计算在显示画面的直方图上位于上位的几%的位置的灰度值,将其作为阈值输出。
计数器1~16(3311~3326)内置寄存器,在EN端子被输入了使能信号后,进行将输入到+端子的数值加到寄存器中的保持值上的动作。计数器1~16(3311~3326)相当于日本特开平11-65531号公报的现有技术中的计数器,该计数器将显示数据的灰度划分成几个区间,并针对每个灰度区间对显示数据中的出现像素数进行计数。在本实施方式14中,不是对出现像素数简单地进行计数,而是将根据显示位置对显示质量的影响度进行加权后的数值加到对应于显示数据所属的各灰度区间的计数器上。
另外,计数器1~16(3311~3326)的寄存器保持值在1帧期间的开始被复位成0,针对每1帧期间重复上述相加处理,对直方图进行计数,但也可以是在多帧期间进行上述相加处理的构成。
显示数据扩展部3302具有数据扩展率计算部3307和积分器3308,根据上述阈值进行扩展各显示数据的处理。
数据扩展率计算部3307根据直方图计数部3301的阈值判定部3306算出的阈值,通过(显示数据的最大值)÷(阈值)的运算,算出作为用于扩展显示数据的系数的数据扩展率。由此,在输入的显示数据的值与阈值相同的情况下,后述的积分器3308的输出与显示数据的最大值相等。另外,这里的显示数据的最大值不是指显示图像的所有像素的值中的最大值,而是指8位灰度情况下的255、6位灰度情况下的63这样的值。
积分器3308计算显示数据与上述数据扩展率之积,并向信号线驱动电路3213输出。该积超过前述的显示数据的最大值的情况下,输出显示数据的最大值。因为即使将超过显示数据的最大值的值输入到信号线驱动电路3213,也不能在液晶面板3202上显示。
背光灯调整部3303进行根据上述阈值输出决定背光灯的发光量的背光灯设定值的处理。计算背光灯设定值,使其达到消除显示数据扩展部3302中的显示数据的扩展部分的发光量。另外,关于背光灯设定值的计算方法,可以考虑预先定义对应于阈值的背光灯设定值的表并根据该表进行计算的方法、或利用以阈值作为输入的某些函数来进行计算的方法等各种方法。
以下按顺序说明背光灯控制部3211整体的动作。首先,在1帧期间的开始,将计数器1~16(3311~3326)的寄存器保持值全部复位为0。
若显示数据与表示其显示位置的水平坐标值和垂直坐标值一起被输入到背光灯控制部3211,则加权系数计算部3305判定水平坐标值·垂直坐标值是否位于作为由图标区域坐标设定寄存器3207指定的图标区域的矩形区域内,在位于图标区域内的情况下,向计数器1~16(3311~3326)输出图标区域加权系数设定寄存器3208中设定的加权值,否则,向其输出值1。
直方图区间判定部3304根据显示数据的灰度值来判定该显示数据所属的灰度区间,并输出使对应于该灰度区间的计数器的相加处理有效的使能信号。计数器1~16(3311~3326)中的、接收到上述使能信号的计数器将从上述的加权系数计算部3305输出的加权系数加到计数器内的寄存器上。通过针对每一个像素、显示画面整体进行上述运算,由计数器1~16(3311~3326)取得考虑了对显示质量的影响度而加权后的直方图。
取得了直方图后,阈值判定部3306计算位于直方图的上位几%的位置的灰度值,将其作为阈值输出。这里补充说明阈值。阈值在显示数据扩展部3302的数据扩展率计算部3307中用于显示数据的扩展率计算,另外,在背光灯调整部3303中用于背光灯发光量的控制。
在输入显示数据的灰度值与阈值相同的情况下,数据扩展率成为来自显示数据扩展部3302的积分器3308的输出成为显示数据的最大值那样的倍率。因此,在输入显示数据的灰度值在阈值以下的情况下,在积分器3308的扩展处理后,亮度分辨率也被保留。
但是,在输入显示数据的灰度值在阈值以上的情况下,无法将大于显示数据的最大值的值输入到信号线驱动电路3213,因此从积分器3308的输出被固定在显示数据的最大值上,没有了亮度分辨率。因此,阈值成为输入显示数据的灰度值中的、在背光灯控制部3211的处理后保留了亮度分辨率的区域与没有了亮度分辨率的区域的分界点。
在现有技术中,通过将位于直方图的上位几%的位置上的灰度值设为阈值,在显示画面上灰度值为阈值以上的像素数(∝面积)相对全部像素数的比例也为相同的百分比。通过调整该百分比,可以在显示画面上调整没有了亮度分辨率的面积。
在本实施方式14中,在对直方图进行计数时进行了考虑到显示位置对显示质量的影响度的加权,因此在从直方图计算阈值时使用的百分比与具有阈值以上的灰度值的像素(=数据扩展处理后没有了亮度分辨率的像素)数相对于全部像素数的百分比不一致。
但是,在显示画面上存在在显示上不重要的高亮度的图标的情况下,与使用现有技术的情况相比,本实施方式14的驱动电路较低地计算阈值,因此数据扩展率提高,可以降低背光灯发光量,削减耗电。相反,在显示上重要的区域中存在很多高亮度的像素的情况下,本实施方式14的驱动电路较高地算出阈值,因此数据扩展率降低,可以防止显示质量的降低。
根据具有以上特征的阈值,在显示数据扩展部3302中,由数据扩展率计算部3307决定显示数据的扩展率,由积分器3308扩展显示数据。另外,在背光灯调整部3303中,计算并输出用于进行背光灯发光量控制的背光灯设定值。
通过以上说明的构成和动作,可以在直方图计数处理中反映显示位置对显示质量的影响度。结果,可以适当地控制对显示画面整体的显示质量的影响,并反映在背光灯发光量的控制中,因此可以在维持显示质量的同时,更进一步地提高基于背光灯控制的耗电削减效果。
另外,在本实施方式14中,作为通过背光灯控制使得画面端部的图标显示区域即使亮度分辨率降低、对显示质量的影响也低的情况,示出了控制成使得画面端部的显示有图标的矩形区域内的显示数据对直方图计数处理的影响度低的例子,但是,矩形区域的设定位置不限于图标表示区域或画面端部,也可以控制成提高矩形区域内的像素的显示数据对直方图计数处理的影响度。
另外,在本实施方式14中,以面向便携电话的液晶面板为例进行了说明,但也可以是除此之外用途的液晶面板。另外,在本实施方式14中,以在背面配置背光灯光源并通过液晶面板观看的直视型液晶显示装置为例进行了说明,但也可以是液晶投影仪等投影型液晶显示装置。
(实施方式15)
以下利用图41~图43说明本发明实施方式15的液晶显示装置的驱动电路。本实施方式15将显示画面分成3个区域,在直方图计数时,对各个区域进行对应于对显示质量的影响度的加权,进行背光灯发光量的控制。
图41是表示本实施方式15的液晶显示装置的画面显示例的图。其中示出如下情况:在液晶面板3104上的显示画面上显示自然画,在显示画面的上端和下端,作为显示图标的区域,具有图标区域A3401、图标区域B3402。
图42是表示包含本实施方式15的液晶驱动电路的液晶显示装置的构成的图。与前述实施方式14的图39的构成的不同点在于,控制寄存器3206具有的寄存器增多,其它块具有与在实施方式14的图39中说明的内容相同的功能,因此省略再次的说明。
控制寄存器3206具有图标区域A坐标设定寄存器3501、图标区域A加权系数设定寄存器3502、图标区域B坐标设定寄存器3503和图标区域B加权系数设定寄存器3504。
图标区域A坐标设定寄存器3501是指定图41中的图标区域A3401的矩形区域在显示画面上的位置的寄存器,图标区域A加权系数设定寄存器3502是指定针对图41中的图标区域A3401内的像素的、在直方图计数时的加权系数的寄存器。同样,图标区域B坐标设定寄存器3503是指定图41中的图标区域B3402的矩形区域在显示画面上的位置的寄存器,图标区域B加权系数设定寄存器3504是指定针对图41中的图标区域B3402内的像素的、在直方图计数时的加权系数的寄存器。各图标区域的坐标和加权系数的设定方法与在实施方式14中说明的内容相同。
图43是表示本实施方式15中的背光灯控制部3211的构成的图。与前述实施方式14的图40的构成的不同点在于,随着控制寄存器3206具有的寄存器增多,输入到加权系数计算部3305的寄存器的设定值增多,其它块具有与在实施方式14的图40中说明的内容相同的功能,因此省略再次的说明。
加权系数计算部3305将显示数据的水平坐标值和垂直坐标值作为输入,判定所输入的显示数据是否属于图标区域A3401或图标区域B3402。在位于由图标区域A坐标设定寄存器3501的值确定的图标区域A3401的区域内的情况下,输出图标区域A加权系数设定寄存器3502中存储的加权系数α,在位于由图标区域B坐标设定寄存器3503的值确定的图标区域B3402的区域内的情况下,输出图标区域B加权系数设定寄存器3504中存储的加权系数β。
通过采用上述构成,在背光灯控制部3211中进行显示图像的直方图计数时,可以使用针对图标区域A3401、图标区域B3402、自然画区域这3个区域不同的加权系数,来进行加权。
另外,在上述实施方式14中示出将显示画面分成2个区域的情况下的例子,而在实施方式15中示出分成3个区域的情况下的例子,但当然也可以将显示画面分成4个以上的区域,区域的数量不限于此。
(实施方式16)
以下利用图44~图46说明本发明实施方式16的液晶显示装置的驱动电路。本实施方式16的特征在于,不是象前述的实施方式14和实施方式15那样针对每个矩形区域设定对直方图进行计数时的加权系数,而是利用以对应于显示数据的水平·垂直坐标值作为输入值的函数电路来计算加权系数。
图44是表示本实施方式16的在对直方图进行计数时的加权系数的分布例的图,是考虑到接近显示画面中心的区域被认为可见性高、对整体的显示质量的影响度高来进行了设定的加权系数的分布例。由此,本实施方式16的驱动电路在直方图计数处理中进行使接近显示画面中心的区域的加权变高、对应于离中心的距离降低加权的控制。下面以水平240像素、垂直320像素的QVGA尺寸的显示画面为例进行说明。
图45是表示包含本实施方式16的液晶驱动电路的液晶显示装置的构成的图。与前述实施方式14的图39的构成的不同点在于,控制寄存器3206具有的寄存器为加权系数计算参数设定寄存器3801,其它块具有与在实施方式14的图39中说明的内容相同的功能,因此省略再次的说明。加权系数计算参数设定寄存器3801利用数值保持加权系数从显示画面的中心向端部降低的倾斜程度。
图46是表示本实施方式16中的背光灯控制部3211的构成的图。与前述实施方式14的图40的构成的不同点在于,随着控制寄存器3206具有的寄存器成为加权系数计算参数设定寄存器3801,输入到加权系数计算部3305的寄存器的设定值改变,其它块具有与在实施方式14的图40中说明的内容相同的功能,因此省略再次的说明。
加权系数计算部3305是以显示数据的水平坐标值x和垂直坐标值y作为输入、根据加权系数计算参数设定寄存器3801的值γ来计算加权系数的函数电路。加权系数计算部3305按照以下的公式计算图44所示的加权系数的分布。
[式24]
式24计算显示位置的坐标(x,y)与显示画面中心的坐标(120,160)的欧几里德距离,用最大距离来除它以进行规一化,从1中减去在该数上乘以加权系数计算参数设定寄存器3801中保持的值γ后得到的公式。离显示画面的中心点越远,利用式1算出的加权系数的值越低,其倾斜可以利用加权系数计算参数设定寄存器3801的值γ从外部进行调整。
另外,可以将式24变形成式25,从而形成图47所示的加权系数分布。
[式25]
如上所述,通过使得离显示画面的中心点越远、加权系数的值越低,在利用该加权系数进行直方图计数处理、控制背光灯发光量的情况下,越是显示画面端部的像素,亮度分辨率消失、画质劣化的可能性越高。但是,在电视图像等中,由于在画面中央部分的前景对焦,而不是象原来一样在画面端部的背景对焦,因此即使画面端部的画质劣化,在显示质量上也没有大问题。
如前所述,本实施方式16的特征在于,利用以显示数据的位置坐标作为输入值的函数计算对直方图进行计数时的加权系数。因此,表示该函数的公式不限于式24或式25,只要输入显示数据的坐标值来计算加权系数,就可以是式24或式25以外的函数。
通过采用以上构成,在背光灯控制部3211中进行显示图像的直方图计数时,可以以更细的单位来控制显示位置对显示画面整体的显示质量的影响,并反映到背光灯发光量的控制中,因此可以在维持显示质量的同时,更进一步地提高基于背光灯控制的耗电削减效果。
另外,也可以利用图39的控制处理器3204等外部处理器的运算来进行前述实施方式14~16的驱动电路中的背光灯控制部3211进行的直方图的计数、阈值的计算、显示数据的扩展、背光灯发光量的控制等一系列的处理。
以上根据实施方式14~16具体说明了本发明的发明人作出的发明,但本发明不限定于上述实施方式,在不脱离其要义的范围内可以进行种种变更。
本发明可用于在液晶显示器或投影仪等图像显示装置中在维持显示质量的同时进行基于背光灯控制的省电化的技术。另外,利用范围也不仅限于便携电话的液晶显示器,还可以用于使用液晶显示器的其它信息设备、电视等。