CN101290263B - 一种大相对口径非球面镜相位恢复的检测装置与方法 - Google Patents

一种大相对口径非球面镜相位恢复的检测装置与方法 Download PDF

Info

Publication number
CN101290263B
CN101290263B CN2008100308106A CN200810030810A CN101290263B CN 101290263 B CN101290263 B CN 101290263B CN 2008100308106 A CN2008100308106 A CN 2008100308106A CN 200810030810 A CN200810030810 A CN 200810030810A CN 101290263 B CN101290263 B CN 101290263B
Authority
CN
China
Prior art keywords
laser source
testing result
digital camera
minute surface
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100308106A
Other languages
English (en)
Other versions
CN101290263A (zh
Inventor
李圣怡
戴一帆
吴宇列
胡晓军
郑子文
王贵林
彭小强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN2008100308106A priority Critical patent/CN101290263B/zh
Publication of CN101290263A publication Critical patent/CN101290263A/zh
Application granted granted Critical
Publication of CN101290263B publication Critical patent/CN101290263B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种大相对口径非球面镜相位恢复的检测装置与方法,其装置包括安装在平台(2)上的激光源(1),分光棱镜(3),数码相机(4),所述分光棱镜(3)安装在激光源(1)的正前方,并与激光源(1)的光的射出方向呈45度夹角;所述数码相机(4)安装在激光源(1)的一侧,且与分光棱镜(3)按照光学成像原理布置;激光源(1)与分光棱镜(3)之间安装可变光阑(9),计算机(6)装载专用软件,通过电缆(5)与激光源(1)、数码相机(4)和平台(2)的支架(8)的运动机构电连接。本发明具有低成本、高精度、高效率的特点,适合于大口径非球面镜的生产企业、科研和检测单位使用。

Description

一种大相对口径非球面镜相位恢复的检测装置与方法
技术领域
本发明涉及一种光学测试技术领域,特别是涉及一种针对凹面非球面反射镜进行测量的大相对口径非球面镜相位恢复的检测装置与方法。
背景技术
在大口径非球面镜的抛光加工阶段,通常的定量检测方法由无像差法和补偿器零检验法。无像差点法仅适用于二次曲面的检测,然而对于大口径非球面镜所需的高精度辅助镜通常制造困难且价格昂贵。
补偿器零检验法是广泛使用的一种大口径非球面镜的检测方法,该方法的实质是借助补偿器把平面或球面波前转换为与被测非球面镜理论形状重合的非球面波前,由补偿器出射的波前,其最大优点在于所适用的辅助元件补偿器的直径比被检验镜直径小得多。为了对被测非球面镜作出可靠结论,补偿器必须具有所要求的面形质量,并相对于被检非球面正确地安装;因此补偿器的结构应该足够简单,它们的每个单片均可用通常的方法以必要的精度检验,利用各结构元素的分别检验来保证补偿器整体检验的可靠性。然而,随着被测非球面镜相对口径的增大,补偿器可能将具有的复杂的结构,并且对其制造和装调精度也将提出更苛刻的要求,这使得这一检测技术在检测大相对口径非球面镜时存在很多困难。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种基于衍射图像的非球面镜测量方法。避免采用特殊和专门的光学器件和设备,最大程度上简化测量系统的结构,降低加工制造的难度,实现低成本、高精度、高效率的大相对口径非球面镜相位恢复的检测装置与方法。
本发明的目的通过下述技术方案予以实现:
大相对口径非球面镜相位恢复的检测装置:包括安装在平台上的激光源,分光棱镜,数码相机,所述分光棱镜安装在激光源的正前方,并与激光源的光的射出方向呈45度夹角;所述数码相机安装在激光源的一侧,且与分光棱镜按照光学成像原理布置;激光源与分光棱镜之间安装可变光阑,计算机装载专用软件,通过电缆与激光源、数码相机和平台的支架的运动机构电连接。
所述平台安装在支架上,支架上安装沿X、Y、Z轴平移和绕Y、Z轴转动的受计算机控制的五自由度运动机构,运动机构与计算机用电缆电连接。
所述激光源的波长为400nm-760nm。
所述数码相机的分辨率不低于100万象素。
所述可变光阑设置有可变光阑孔。
大相对口径非球面镜相位恢复的检测方法:包括开始步骤检测准备(101)和结束步骤输出检测结果(116),其特征在于:所述检测准备(101)和输出检测结果(116)步骤之间,首先进行循环参数设置(104),然后获取现场数码照片(102)或者历史数码照片(103),进行设定等效计算波长和设定图像有效计算区域(105),初始化面形误差数据(106),从步骤m值判断(107)开始进行m次循环的GS迭代算法处理,最后输出检测结果(116)。
所述m次GS迭代算法的循环步骤:等效波长衍射到离焦平面(108)后同时进行的步骤是,保留相位(109),在有效区域内用图像数据作为强度数据(110)和在有效区域外用保留强度数据(111),然后进入步骤合成新的离焦光场(112)、等效波长衍射到镜平面(113),保留相位和施加镜面幅值约束(114),m值加一(115)进入m值判断(107),如果判断结果为否,从等效波长衍射到离焦平面(108)起进入下一个循环,如果判断结果为是,进入步骤输出检测结果(116)出具检测报告。
与现有技术相比,本发明具有以下优点:低成本、高精度、高效率。适合于大口径非球面镜的生产企业、科研和检测单位使用。
附图说明
图1为本发明装置一实施例结构示意图,
图2为图1的A-A视图,
图3为本发明方法的流程图。
图中:1-激光源,2-平台,3-分光棱镜,4-数码相机,5-电缆,6-计算机,7-被测镜面,8-支架,9-可变光阑,10-可变光阑孔,101-检测准备,102-现场数码照片,103-历史数码照片,104-参数设置,105-设定等效计算波长和设定图像有效计算区域,106-初始化面形误差数据,107-m值判断,108-等效波长衍射到离焦平面,109-保留相位,110-在有效区域内用图像数据作为强度数据,111-在有效区域外用保留强度数据,112-新的离焦光场,113-等效波长衍射到镜平面,114-保留相位和施加镜面幅值约束,115-m值加一,116-输出检测结果。
具体实施方式
下面结合附图和实施例对本发明作进一步说明:
参照附图1、2,本发明的装置包括安装在平台2上的激光源1,分光棱镜3,数码相机4,所述分光棱镜3安装在激光源1的正前方,并与激光源1的光的射出方向呈45度夹角;所述数码相机4安装在激光源1的一侧,且与分光镜3按照光学成像原理布置;激光源1与分光棱镜3之间安装可变光阑9,计算机6装载专用软件,通过电缆5与激光源1、数码相机4和平台2的支架8的运动机构电连接。
三维坐标系设置:激光源1面向被测镜面7并且布置在被测镜面7的曲率中心上,激光源1的光源的射线为X轴,同时垂直于地面和X轴的为Z轴,Y轴是在X轴的水平面上且垂直于X、Z两轴的直线,三轴的原点设在激光源1的光源出口处。
所述平台2安装在支架8上,支架8上安装沿X、Y、Z轴平移和绕Y、Z轴转动的受计算机6控制的五自由度运动机构,运动机构与计算机6用电缆5电连接。
所述激光源1的波长为400nm-760nm。
所述数码相机4的分辨率不低于100万象素。
所述可变光阑9设置有可变光阑孔10。用于调节激光光束的直径。
参照附图3,本发明的方法流程图,包括开始步骤检测准备101和结束步骤输出检测结果116,其特征在于:所述检测准备101和输出检测结果116步骤之间,首先进行循环参数设置104,然后获取现场数码照片102或者历史数码照片103,进行设定等效计算波长和设定图像有效计算区域105,初始化面形误差数据106,从步骤m值判断107开始进行m次循环的GS迭代算法处理,最后输出检测结果116。
所述m次GS迭代算法的循环步骤:等效波长衍射到离焦平面108后同时进行的步骤是,保留相位109,在有效区域内用图像数据作为强度数据110和在有效区域外用保留强度数据111,然后进入合成步骤新的离焦光场112,等效波长衍射到镜平面113,保留相位和施加镜面幅值约束114,m值加一115进入m值判断107,如果判断结果为否,从等效波长衍射到离焦平面108起进入下一个循环,如果判断结果为是,进入步骤输出检测结果116出具检测报告。
如果设置的GS迭代算法的循环数=a,循环方式为从m=1到m=a,步骤m值判断107就是判断m=a是否成立。
计算机6配置专门的控制软件和计算分析软件。计算机6为普通PC机。
本发明装置的工作原理:激光源1在被测镜面7的曲率中心处发出球面波可见光束,光束经过可变光阑9的可变光阑孔10和透过分光棱镜3后照射在被测镜面7上形成含有像差的球面波反射光波反射回分光棱镜3后折射到数码相机4,调节五自由度运动机构,调整光束传播方向,选取合适的位置拍摄衍射光强数码照片,一般在焦点前后各拍摄2~3张图片即可。保存到计算机6中的数码照片,既可以作现场检测使用,也可以供将来作进一步研究时使用。
本发明的装置还可以用于在位检测。
本发明方法的工作原理:计算机6配备专用的分析软件,以数码照片为处理对象,针对大误差下图像含有高频信号分量的特点,进行m次GS迭代算法处理,最后输出检测结果116。检测结果116出具的报告就是被测镜面7的特征数据。
要进行相位恢复计算首先必须正确地建立从镜面入射光场到CCD像元观测面光场的衍射计算关系,并且能够进行快速的计算机处理。在相位恢复计算中应用光波的标量衍射理计算光波的传播衍射。
设从镜面反射的光波是一个强度均匀的非球面光波面。此波面由三部分叠加组成:一是光源发射的测试球面波,可称为基准面球波WS;二是基准球面波与非球面面形之间的反射光程差波面,可称为非球面度波面WA;三是实际镜面与理想镜面之间的面形误差波面WE,由反射关系可知,WE是镜面面形误差的两倍。由这三部分波面组成的镜面复光场gm(x,y)可表示为:
gm(x,y)=exp[j2π(WS+WA+WE)/λ]    (1)
对于误差波面WE,由于其大小在波长量级,计算处理较简单。对于基准球面波WS的衍射计算可以参考Sziklas和Siegman在“Diffraction CalculationsUsing Fast Fourier Transform Methods”,Proceedings of the IEEE,MARCH1974,p410-412中提出的基于FFT的坐标变换衍射计算方法。此方法能够使用较少的采样点数快速精确地计算球面波的衍射光场。这样,需要采样计算的光场变为
gm(x′,y′)=exp[j2π(WA+WE)/λ]    (2)
其中x′,y′为坐标变换后的空间坐标。
对于非球面度波面WA,特别是当非球面度较高时,其光场exp(j2πWA/λ)的相位变化速度也较快。直接对其进行采样计算同样需要过多的数据。同时WA会改变反射光线的方向,使得不同镜面区域的光照射到同一CCD区域上形成干涉叠加,产生相应的高频强度分布。而对于现有技术而言,由于CCD相机的像素分辨率是有限的,只能对光场强度分布中相对低频的分布进行采样,高频分量会被CCD像素以采样积分的方式过滤。
为减缓波面的变化速度,使用较少的计算采样点数,可以在计算时用较长的光波长λ′等效实际使用的光波长λ形成等效计算光场g1′,即
gm′(x′,y′)=exp[j2π(WA+WE)/λ′]    (3)
gm′的相位变化速度较慢,容易满足采样定理的要求,计算数据可以很大程度上减少。这样其实等效为用λ′波长的光照射被测镜面,形成低频的非球面光场。用λ′替代λ计算出的光强分布与实际的光强分布在光线不叠加区域比较一致。将实际拍摄的照片中,一致的光场数据综合起来,送入相位恢复算法程序,即可得到镜面的面形误差。

Claims (2)

1.一种大相对口径非球面镜相位恢复的镜面面形误差检测方法,包括开始步骤检测准备(101)和结束步骤输出检测结果(116),其特征在于:所述检测准备(101)和输出检测结果(116)步骤之间,首先进行循环参数设置(104),然后获取现场数码照片(102)或者历史数码照片(103),进行设定等效计算波长和设定图像有效计算区域(105),初始化面形误差数据(106),从步骤m值判断(107)开始进行m次循环的GS迭代算法处理,最后输出检测结果(116)。
2.根据权利要求1所述的大相对口径非球面镜相位恢复的镜面面形误差检测方法,其特征在于:所述m次GS迭代算法的循环步骤:等效波长衍射到离焦平面(108)后同时进行的步骤是,保留相位(109),在有效计算区域内用图像数据作为强度数据(110)和在有效计算区域外用保留强度数据(111),然后进入步骤合成新的离焦光场(112),等效波长衍射到镜平面(113),保留相位和施加镜面幅值约束(114),m值加一(115)进入m值判断(107),如果判断结果为否,从等效波长衍射到离焦平面(108)起进入下一个循环,如果判断结果为是,进入步骤输出检测结果(116)出具检测报告。
CN2008100308106A 2008-03-14 2008-03-14 一种大相对口径非球面镜相位恢复的检测装置与方法 Expired - Fee Related CN101290263B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100308106A CN101290263B (zh) 2008-03-14 2008-03-14 一种大相对口径非球面镜相位恢复的检测装置与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100308106A CN101290263B (zh) 2008-03-14 2008-03-14 一种大相对口径非球面镜相位恢复的检测装置与方法

Publications (2)

Publication Number Publication Date
CN101290263A CN101290263A (zh) 2008-10-22
CN101290263B true CN101290263B (zh) 2010-04-14

Family

ID=40034619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100308106A Expired - Fee Related CN101290263B (zh) 2008-03-14 2008-03-14 一种大相对口径非球面镜相位恢复的检测装置与方法

Country Status (1)

Country Link
CN (1) CN101290263B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050937B (zh) * 2018-01-08 2019-07-16 浙江大学 大口径光学元件中频误差的检测方法及装置
CN109507656B (zh) * 2018-11-14 2020-08-25 哈尔滨工业大学 适用于单光子激光成像雷达的自适应控制的收发光学系统

Also Published As

Publication number Publication date
CN101290263A (zh) 2008-10-22

Similar Documents

Publication Publication Date Title
CN107796329B (zh) 一种凸非球面反射镜面形检测装置及检测方法
CN100507488C (zh) 非球面镜衍射图像检测方法与装置
CN100541114C (zh) 双曲面反射镜的多维全场光学校验装置
RU2467286C1 (ru) Устройство юстировки двухзеркальной центрированной оптической системы
US8913234B2 (en) Measurement of the positions of centres of curvature of optical surfaces of a multi-lens optical system
CN108761602B (zh) 一种全息光栅光刻系统中干涉光路自准直的调节方法
CN103398655B (zh) 一种波长调谐相移点衍射干涉测量方法
CN102385170B (zh) 一种高精度测量调整光学镜片中心偏差的光学系统
JP2004530898A (ja) 非球面表面および波面に対する干渉計スキャニング
CN102564301A (zh) 一种用于点衍射干涉仪针孔对准的装置和方法
CN113091896A (zh) 基于偏振光栅的动态测量任意光场完整信息的方法及光路
CN105890543B (zh) 一种凹柱面及柱面发散镜的检测方法及装置
CN211668748U (zh) 基于偏振分光的反射望远镜光轴监测的光校装置
CN101290263B (zh) 一种大相对口径非球面镜相位恢复的检测装置与方法
CN209147932U (zh) 一种激光成像测距系统
CN110794576A (zh) 一种基于相位调制的光学合成孔径成像望远镜阵列偏心误差探测方法
WO2019222909A1 (zh) 一种全息光栅光刻系统及其干涉光路自准直的调节方法
WO2001022031A1 (en) Linear and angular retroreflecting interferometric alignment target
CN103064140B (zh) 全息变间距光栅曝光光路的装调方法
CN110631510B (zh) 一种基于迈克尔逊结构的高精度测角装置及测角方法
CN115460399B (zh) 摄像头模组的测试设备及测试方法
US4693604A (en) Interference method and interferometer for testing the surface precision of a parabolic mirror
CN113702002B (zh) 基于cgh补偿器的离轴三反相机的装调测试方法及系统
CN112254938B (zh) 一种离轴抛物镜光轴检测装置及检测方法
US6721056B1 (en) Surface shape measuring apparatus and method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100414

Termination date: 20170314

CF01 Termination of patent right due to non-payment of annual fee