CN109507656B - 适用于单光子激光成像雷达的自适应控制的收发光学系统 - Google Patents

适用于单光子激光成像雷达的自适应控制的收发光学系统 Download PDF

Info

Publication number
CN109507656B
CN109507656B CN201811353451.8A CN201811353451A CN109507656B CN 109507656 B CN109507656 B CN 109507656B CN 201811353451 A CN201811353451 A CN 201811353451A CN 109507656 B CN109507656 B CN 109507656B
Authority
CN
China
Prior art keywords
receiving
emission
lens
zoom
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811353451.8A
Other languages
English (en)
Other versions
CN109507656A (zh
Inventor
孙剑峰
王骐
周鑫
刘迪
王海虹
郜键
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201811353451.8A priority Critical patent/CN109507656B/zh
Publication of CN109507656A publication Critical patent/CN109507656A/zh
Application granted granted Critical
Publication of CN109507656B publication Critical patent/CN109507656B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Studio Devices (AREA)

Abstract

适用于单光子激光成像雷达的自适应控制的收发光学系统,属于单光子激光成像雷达技术应用领域。本发明解决了现有Gm‑APD受固有回波动态范围大及自身环境适应性较差限制激光成像性能稳定性的问题。本发明的可变光阑设置在接收光学系统上,发射光学系统固定安装在接收光学系统上,接收光学系统的光轴与发射光学系统的光轴平行,光阑电机与可变光阑建立驱动连接,变焦电机与发射光学系统的变焦镜片建立驱动连接,Gm‑APD探测器与接收光学系统建立固定安装。本发明的变焦发射系统,能够自主调整发射光斑功率密度,缓解大动态范围引发的增益饱和等问题;可变光阑接收系统,能够自主调整接收光学口径,抑制背景光、目标杂光等噪声,实现最优信噪比接收。

Description

适用于单光子激光成像雷达的自适应控制的收发光学系统
技术领域
本发明涉及一种适用于单光子激光成像雷达的自适应控制的收发光学系统,属于单光 子激光成像雷达技术应用领域。
背景技术
单光子探测激光雷达采用盖革模式雪崩二极管阵列(Gm-APD),在提升探测灵敏度前 提下,大幅度降低了激光器功率、降低了功耗,实现了整套系统小型化,是进入21世纪后国际发展的主流方向。Gm-APD激光雷达探测灵敏度极高,从微弱信号探测方面,具有 极好的优势;但另一方面,也极易受到空天背景光、电子暗计数等影响,使成像性能受损, 限制了Gm-APD激光雷达的环境适应性。现有技术手段是采取多帧统计方法,即对场景成 像要进行多次激光脉冲式照射,通过统计接收图像序列,反演出正确的场景三维距离像, 该方法可以有效抑制空天背景光等噪声,但对激光器重复频率要求高了,不利于系统装置 的小型化和低功耗。因此,提供一种适用于单光子激光成像雷达的自适应控制的收发光学 系统,用来解决Gm-APD受固有回波动态范围大及自身环境适应性较差限制激光成像性 能稳定性的问题是十分必要的。
发明内容
本发明为了解决现有Gm-APD受固有回波动态范围大及自身环境适应性较差限制激 光成像性能稳定性的问题,提出了一种适用于单光子激光成像雷达的自适应控制的收发光 学系统。
本发明的技术方案:
适用于单光子激光成像雷达的自适应控制的收发光学系统,包括接收光学系统、发射 光学系统、Gm-APD探测器、变焦电机、光阑电机和可变光阑,可变光阑设置在接收光学系统上,发射光学系统固定安装在接收光学系统1上,接收光学系统的光轴与发射光学系统的光轴平行,光阑电机与可变光阑建立驱动连接,变焦电机与发射光学系统建立驱动连接,Gm-APD探测器与接收光学系统建立固定安装。
优选的:所述的接收光学系统包括接收光学机械系统和接收光学镜片;
所述的接收光学机械系统包括接收前组镜筒、接收后组镜筒、接收定位套、接收光圈 从动齿轮和接收定位销,接收后组镜筒的前端通过螺钉与接收前组镜筒的后端建立连接安 装,接收后组镜筒的后端通过螺钉与Gm-APD探测器固定安装;所述的接收光圈从动齿轮、接收定位套和接收定位销套装设置在接收前组镜筒的外侧;
所述的接收光学镜片包括第一正透镜、第二正透镜、第一负透镜、窄带滤光片、第三 正透镜、第二负透镜和第四正透镜,所述的第一正透镜、第二正透镜、第一负透镜、窄带滤光片、第三正透镜、第二负透镜和第四正透镜依次由接收前组镜筒的前端安装至接收后组镜筒的后端;
所述的接收前组镜筒包括接收前组压圈一、接收前组隔圈一、接收前组压圈二、接收 前组隔圈二和接收前组压圈三;所述的接收前组压圈一、接收前组隔圈一、接收前组压圈 二、接收前组压圈三和接收前组隔圈二依次设置在接收前组镜筒的内部;所述的第一正透 镜、第二正透镜、第一负透镜、窄带滤光片和第三正透镜分别通过接收前组压圈一、接收前组隔圈一、接收前组压圈二、接收前组压圈三和接收前组隔圈二通过孔轴配合、端面定位和压圈锁紧的方式固定安装在接收前组镜筒的内部;
所述的接收后组镜筒包括接收后组压圈和接收后组隔圈,接收后组压圈和接收后组隔 圈依次设置在接收后组镜筒的内部;所述的第二负透镜和第四正透镜分别通过接收后组压 圈和接收后组隔圈通过孔轴配合、端面定位和压圈锁紧的方式固定在接收后组镜筒的内 部。
优选的:所述的接收前组镜筒内安装有可变光阑,光阑电机通过接收光圈从动齿轮与 可变光阑建立驱动连接,接收光圈从动齿轮套装在接收前组镜筒的外侧,并通过接收定位 套和接收定位销限定接收光圈从动齿轮套装在接收前组镜筒外侧的位置。
优选的:所述的发射光学系统包括发射光学机械系统和变焦发射光学镜片;
所述的发射光学机械系统包括发射主镜筒、发射变焦从动齿轮、发射电机座、发射后 组镜筒和光纤法兰,所述的发射主镜筒的后端与发射后组镜筒的前端建立连接安装,光纤 法兰安装在发射后组镜筒的后端;发射变焦从动齿轮套装在发射主镜筒的外侧,变焦电机 通过发射电机座安装在发射主镜筒上,变焦电机的输出端与发射变焦从动齿轮建立驱动连 接。
优选的:所述的发射主镜筒包括发射变焦定位压圈、发射变焦组压圈、齿轮定位套、 发射变焦镜座和发射变焦隔圈,所述的发射变焦镜座位于发射主镜筒的内部,并通过发射 变焦定位压圈将发射变焦镜座定位在发射主镜筒的内部;发射变焦镜座通过发射主镜筒的 凸轮拟合曲线孔安装在发射变焦从动齿轮上,发射变焦从动齿轮通过齿轮定位套定位套装 在发射主镜筒的外侧。
优选的:所述的变焦发射光学镜片包括第五正透镜和第三负透镜,第五正透镜和第三 负透镜分别通过发射变焦隔圈和发射变焦组压圈通过过孔轴配合、端面定位和压圈锁紧方 式固定安装在发射变焦镜座内。
优选的:所述的Gm-APD探测器的焦面尺寸3.2mm×3.2mm,焦距85mm,光学口径65mm。
优选的:所述的光阑电机的驱动器由图像处理器控制,图像处理器包括FPGA和DSP处理器。
优选的:所述的可变光阑为孔径光阑,孔径光阑通过凸轮曲线孔与接收光圈从动齿轮 连接。
本发明具有以下有益效果:本发明涉及适用于单光子激光成像雷达的自适应控制的收 发光学系统,本系统的发射光学系统采用电机驱动机械变焦,接收光学系统采用电机驱动 机械可变光阑,运用控制算法,能够自动调整发射光斑尺寸和接收光学口径尺寸。变焦发 射,能够自主调整发射光斑功率密度,缓解大动态范围引发的增益饱和等问题;可变光阑 接收,能够自主调整接收光学口径,抑制背景光、目标杂光等噪声,实现最优信噪比接收。 本系统能够同时有效提升成像性能和环境适应性,为进一步提升Gm-APD激光雷达效能提 供一种有效的技术途径。图像处理器由FPGA和DSP组成;将接收回波强度、图像信噪比等指标,作为自适应调节参数,实时控制变焦电机和光阑电机,使激光雷达成像性能一直处于最佳工作状态。
附图说明
图1是适用于单光子激光成像雷达的自适应控制的收发光学系统的结构示意图;
图2是接收光学系统的机械结构示意图;
图3是发射光学系统的结构示意图;
图中1-接收光学系统,2-发射光学系统,3-Gm-APD探测器,4-变焦电机,5-光阑电机,6-可变光阑,7-接收前组压圈一,8-接收前组隔圈一,9-接收前组镜筒,10-接收前组 压圈二,11-接收后组压圈,12-接收后组隔圈,13-接收后组镜筒,14-接收调节垫,15-接 收前组隔圈二,16-接收前组压圈三,17-接收定位套,18-接收光圈从动齿轮,19-接收定 位销,20-发射主镜筒,21-发射变焦定位压圈,22-发射变焦组压圈,23-齿轮定位套,24- 发射变焦从动齿轮,25-发射电机座,26-发射后组镜筒,27-发射变焦镜座,28-发射变焦 隔圈,29-光纤法兰。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地 描述,显然,所描述的实施例仅是本发明的一个实施例,而不是全部的实施例。基于本发 明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他的实 施例,都属于本发明的保护范围。
结合说明书附图1至图3说明本发明的具体实施方式:本发明适用于单光子激光成像 雷达的自适应控制的收发光学系统包括接收光学系统1、发射光学系统2、Gm-APD探测器3、变焦电机4、光阑电机5和可变光阑6,可变光阑6设置在接收光学系统1上,发 射光学系统2固定安装在接收光学系统1上,接收光学系统1的光轴与发射光学系统2 的光轴平行,光阑电机5与可变光阑6建立驱动连接,变焦电机4与发射光学系统2建立 驱动连接,Gm-APD探测器3与接收光学系统1建立固定安装。如此设置,可变光阑6 设置在接收光学系统1上,光阑电机5与可变光阑6建立驱动连接,即接收光学系统1 采用光阑电机5驱动可变光阑,使用控制算法达到能够自主调整接收光学口径,抑制背景 光、目标杂光等噪声,实现最优信噪比接收;变焦电机4与发射光学系统2的变焦镜片建 立驱动连接,即发射光学系统2采用变焦电机4驱动变焦镜片移动,使用控制算法达到能 够自动调整发射光斑功率密度,缓解大动态范围引发的增益饱和等问题。并且在接收光学 系统内,分别加装了窄带滤波片和光阑,光阑开口尺寸变化由特定的传动机构及微特电机 控制;
所述的接收光学系统1包括接收光学机械系统和接收光学镜片;
所述的接收光学机械系统包括接收前组镜筒9、接收后组镜筒13、接收定位套17、接收光圈从动齿轮18和接收定位销19,接收后组镜筒13的前端通过螺钉与接收前组镜 筒9的后端建立连接安装,接收后组镜筒13的后端通过螺钉与Gm-APD探测器3固定安 装;所述的接收光圈从动齿轮18、接收定位套17和接收定位销19套装设置在接收前组 镜筒9的外侧;
所述的接收光学镜片包括第一正透镜、第二正透镜、第一负透镜、窄带滤光片、第三 正透镜、第二负透镜和第四正透镜,所述的第一正透镜、第二正透镜、第一负透镜、窄带滤光片、第三正透镜、第二负透镜和第四正透镜依次由接收前组镜筒9的前端安装至接收后组镜筒13的后端;
所述的接收前组镜筒9包括接收前组压圈一7、接收前组隔圈一8、接收前组压圈二10、接收前组隔圈二15和接收前组压圈三16;所述的接收前组压圈一7、接收前组隔圈 一8、接收前组压圈二10、接收前组压圈三16和接收前组隔圈二15依次设置在接收前组 镜筒9的内部;所述的第一正透镜、第二正透镜、第一负透镜、窄带滤光片和第三正透镜 分别通过接收前组压圈一7、接收前组隔圈一8、接收前组压圈二10、接收前组压圈三16 和接收前组隔圈二15通过孔轴配合、端面定位和压圈锁紧的方式固定安装在接收前组镜 筒9的内部;
所述的接收后组镜筒13包括接收后组压圈11、接收后组隔圈12和接收调节垫14;接收后组压圈11和接收后组隔圈12依次设置在接收后组镜筒13的内部;所述的第二负 透镜和第四正透镜分别通过接收后组压圈11和接收后组隔圈12通过孔轴配合、端面定位 和压圈锁紧的方式固定在接收后组镜筒13的内部;所述的接收调节垫14能够调节像面虚 实,使成像质量处于最佳状态。所述的接收前组镜筒9内安装有可变光阑6,光阑电机5 通过接收光圈从动齿轮18与可变光阑6建立驱动连接,接收光圈从动齿轮18套装在接收 前组镜筒9的外侧,并通过接收定位套17和接收定位销19限定接收光圈从动齿轮18套 装在接收前组镜筒9外侧的位置。如此设置,在接收光学系统1中,设置可变光阑6,起 到滤波器的作用,并且通过光阑电机5驱动可变光阑6的开口尺寸,能够调节背景光和目 标光的混光比例,进而起到调整图像信噪比和对比度的目的;并且收发光学系统通过精密 装调手段实现收发光学系统光轴平行,通过机械结构件将二者固定连接,实现收发光学系 统分口径“合体”组成收发光学系统一体机。
所述的发射光学系统2包括发射光学机械系统和变焦发射光学镜片;
所述的发射光学机械系统包括发射主镜筒20、发射变焦从动齿轮24、发射电机座25、 发射后组镜筒26和光纤法兰29,所述的发射主镜筒20的后端与发射后组镜筒26的前端建立连接安装,光纤法兰29安装在发射后组镜筒26的后端;发射变焦从动齿轮24套装 在发射主镜筒20的外侧,变焦电机4通过发射电机座25安装在发射主镜筒20上,变焦 电机4的输出端与发射变焦从动齿轮24建立驱动连接。所述的发射主镜筒20包括发射变 焦定位压圈21、发射变焦组压圈22、齿轮定位套23、发射变焦镜座27和发射变焦隔圈 28,所述的发射变焦镜座27位于发射主镜筒20的内部,并通过发射变焦定位压圈21将 发射变焦镜座27定位在发射主镜筒20的内部;发射变焦镜座27通过主镜筒20的凸轮拟 合曲线孔安装在发射变焦从动齿轮24上,发射变焦从动齿轮24通过齿轮定位套23定位 套装在发射主镜筒20的外侧。所述的变焦发射光学镜片包括第五正透镜和第三负透镜, 第五正透镜和第三负透镜分别通过发射变焦隔圈28和发射变焦组压圈22通过过孔轴配 合、端面定位和压圈锁紧方式固定安装在发射变焦镜座27内。如此设置,在发射光学系 统2中,将变焦镜片通过发射变焦隔圈28、发射变焦定位压圈21和发射变焦组压圈22 安装在发射变焦镜座27内,发射变焦镜座27通过主镜筒20的凸轮拟合曲线孔安装在发 射变焦从动齿轮24上,发射电机座25通过发射镜筒的凸轮拟合曲线孔安装到变焦电机4 的从动齿轮上,按光学设计要求由变焦电机4带动驱动主动齿轮通过精密齿轮副驱动发射 电机座25按光学设计拟合曲线进行自适应连续移动,实现发射光学系统的自适应变焦调 光,从而实现与接收光学系统口径的匹配在的驱动下按光学设计拟合曲线进行自适应连续 移动,实现发射光学系统的自适应变焦调光,从而实现与接收光学系统口径的匹配。发射 光学系统还可由图像处理器电控,实现光学视场连续变化,实现远距离小视场、近距离大 视场成像,通过改变视场提高光功率密度实现远距离成像目的。
所述的Gm-APD探测器3的焦面尺寸3.2mm×3.2mm,焦距85mm,光学口径65mm。 如此设置,接收光学系统1和Gm-APD探测器3紧密耦合,组成了探测接收系统。
所述的光阑电机5的驱动器由图像处理器控制,图像处理器包括FPGA和DSP处理器。 如此设置,能够高速采集处理激光图像数据,根据激光三维距离像状态,还可使用控制算 法,实时自主控制变焦电机和光阑电机,使整套激光雷达系统能一直处于最优工作状态, 实时输出稳定的高分辨三维距离像。
所述的可变光阑6为孔径光阑,孔径光阑通过凸轮曲线孔与接收光圈从动齿轮18连 接。如此设置,可变光阑6为孔径光阑,孔径光阑通过凸轮曲线孔与光阑调整从动齿轮连接,光阑驱动电机带动驱动主动齿轮通过精密齿轮副驱动该光阑按光学设计拟合曲线进行自适应连续移动,实现接收光学系统的自适应口径,从而实现与发射光学系统的匹配。
本实施方式只是对本专利的示例性说明,并不限定它的保护范围,本领域技术人员 还可以对其局部进行改变,只要没有超出本专利的精神实质,都在本专利的保护范围内。

Claims (8)

1.适用于单光子激光成像雷达的自适应控制的收发光学系统,其特征在于:包括接收光学系统(1)、发射光学系统(2)、Gm-APD探测器(3)、变焦电机(4)、光阑电机(5)和可变光阑(6),可变光阑(6)设置在接收光学系统(1)上,发射光学系统(2)固定安装在接收光学系统(1)上,接收光学系统(1)的光轴与发射光学系统(2)的光轴平行,光阑电机(5)与可变光阑(6)建立驱动连接,变焦电机(4)与发射光学系统(2)建立驱动连接,Gm-APD探测器(3)与接收光学系统(1)建立固定安装;
所述的光阑电机(5)的驱动器由图像处理器控制,图像处理器包括FPGA和DSP处理器。
2.根据权利要求1所述的适用于单光子激光成像雷达的自适应控制的收发光学系统,其特征在于:所述的接收光学系统(1)包括接收光学机械系统和接收光学镜片;
所述的接收光学机械系统包括接收前组镜筒(9)、接收后组镜筒(13)、接收定位套(17)、接收光圈从动齿轮(18)和接收定位销(19),接收后组镜筒(13)的前端通过螺钉与接收前组镜筒(9)的后端建立连接安装,接收后组镜筒(13)的后端通过螺钉与Gm-APD探测器(3)固定安装;所述的接收光圈从动齿轮(18)、接收定位套(17)和接收定位销(19)套装设置在接收前组镜筒(9)的外侧;
所述的接收光学镜片包括第一正透镜、第二正透镜、第一负透镜、窄带滤光片、第三正透镜、第二负透镜和第四正透镜,所述的第一正透镜、第二正透镜、第一负透镜、窄带滤光片、第三正透镜、第二负透镜和第四正透镜依次由接收前组镜筒(9)的前端安装至接收后组镜筒(13)的后端;
所述的接收前组镜筒(9)包括接收前组压圈一(7)、接收前组隔圈一(8)、接收前组压圈二(10)、接收前组隔圈二(15)和接收前组压圈三(16);所述的接收前组压圈一(7)、接收前组隔圈一(8)、接收前组压圈二(10)、接收前组压圈三(16)和接收前组隔圈二(15)依次设置在接收前组镜筒(9)的内部;所述的第一正透镜、第二正透镜、第一负透镜、窄带滤光片和第三正透镜分别通过接收前组压圈一(7)、接收前组隔圈一(8)、接收前组压圈二(10)、接收前组压圈三(16)和接收前组隔圈二(15)通过孔轴配合、端面定位和压圈锁紧的方式固定安装在接收前组镜筒(9)的内部;
所述的接收后组镜筒(13)包括接收后组压圈(11)和接收后组隔圈(12),接收后组压圈(11)和接收后组隔圈(12)依次设置在接收后组镜筒(13)的内部;所述的第二负透镜和第四正透镜分别通过接收后组压圈(11)和接收后组隔圈(12)通过孔轴配合、端面定位和压圈锁紧的方式固定在接收后组镜筒(13)的内部。
3.根据权利要求2所述的适用于单光子激光成像雷达的自适应控制的收发光学系统,其特征在于:所述的接收前组镜筒(9)内安装有可变光阑(6),光阑电机(5)通过接收光圈从动齿轮(18)与可变光阑(6)建立驱动连接,接收光圈从动齿轮(18)套装在接收前组镜筒(9)的外侧,并通过接收定位套(17)和接收定位销(19)限定接收光圈从动齿轮(18)套装在接收前组镜筒(9)的外侧。
4.根据权利要求1所述的适用于单光子激光成像雷达的自适应控制的收发光学系统,其特征在于:所述的发射光学系统(2)包括发射光学机械系统和变焦发射光学镜片;
所述的发射光学机械系统包括发射主镜筒(20)、发射变焦从动齿轮(24)、发射电机座(25)、发射后组镜筒(26)和光纤法兰(29),所述的发射主镜筒(20)的后端与发射后组镜筒(26)的前端建立连接安装,光纤法兰(29)安装在发射后组镜筒(26)的后端;发射变焦从动齿轮(24)套装在发射主镜筒(20)的外侧,变焦电机(4)通过发射电机座(25)安装在发射主镜筒(20)上,变焦电机(4)的输出端与发射变焦从动齿轮(24)建立驱动连接。
5.根据权利要求4所述的适用于单光子激光成像雷达的自适应控制的收发光学系统,其特征在于:所述的发射主镜筒(20)包括发射变焦定位压圈(21)、发射变焦组压圈(22)、齿轮定位套(23)、发射变焦镜座(27)和发射变焦隔圈(28),所述的发射变焦镜座(27)位于发射主镜筒(20)的内部,并通过发射变焦定位压圈(21)将发射变焦镜座(27)定位在发射主镜筒(20)的内部;发射变焦镜座(27)通过发射主镜筒(20)的凸轮拟合曲线孔安装在发射变焦从动齿轮(24)上,发射变焦从动齿轮(24)通过齿轮定位套(23)定位套装在发射主镜筒(20)的外侧。
6.根据权利要求5所述的适用于单光子激光成像雷达的自适应控制的收发光学系统,其特征在于:所述的变焦发射光学镜片包括第五正透镜和第三负透镜,第五正透镜和第三负透镜分别通过发射变焦隔圈(28)和发射变焦组压圈(22)通过过孔轴配合、端面定位和压圈锁紧方式固定安装在发射变焦镜座(27)内。
7.根据权利要求1所述的适用于单光子激光成像雷达的自适应控制的收发光学系统,其特征在于:所述的Gm-APD探测器(3)的焦面尺寸3.2mm×3.2mm,焦距85mm,光学口径65mm。
8.根据权利要求1所述的适用于单光子激光成像雷达的自适应控制的收发光学系统,其特征在于:所述的可变光阑(6)为孔径光阑,孔径光阑通过凸轮曲线孔与接收光圈从动齿轮(18)连接。
CN201811353451.8A 2018-11-14 2018-11-14 适用于单光子激光成像雷达的自适应控制的收发光学系统 Active CN109507656B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811353451.8A CN109507656B (zh) 2018-11-14 2018-11-14 适用于单光子激光成像雷达的自适应控制的收发光学系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811353451.8A CN109507656B (zh) 2018-11-14 2018-11-14 适用于单光子激光成像雷达的自适应控制的收发光学系统

Publications (2)

Publication Number Publication Date
CN109507656A CN109507656A (zh) 2019-03-22
CN109507656B true CN109507656B (zh) 2020-08-25

Family

ID=65748456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811353451.8A Active CN109507656B (zh) 2018-11-14 2018-11-14 适用于单光子激光成像雷达的自适应控制的收发光学系统

Country Status (1)

Country Link
CN (1) CN109507656B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133614B (zh) * 2019-05-14 2022-03-22 哈尔滨工业大学 基于改进核心的BRDF模型的Gm-APD激光雷达回波能量计算方法
CN110187356B (zh) * 2019-06-14 2021-07-09 中国科学技术大学 远距离超分辨单光子成像重构方法
CN110275154B (zh) * 2019-07-05 2021-11-02 哈尔滨工业大学 一种激光雷达偏振探测光学调节机构
CN110501687B (zh) * 2019-08-26 2021-08-10 哈尔滨工业大学 一种Gm-APD激光雷达目标有效探测的自适应光学口径调控方法
CN111983590B (zh) * 2020-08-21 2022-08-05 哈尔滨工业大学 一种双波长凝视型成像光学接收系统
CN117169915B (zh) * 2023-09-05 2024-02-23 山西大学 一种远距离实时跟踪单光子特征识别和成像系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1274449A1 (ru) * 1985-05-08 1987-06-07 Иркутский политехнический институт Способ визуального обнаружени водонерастворимых углеводородных масел на поверхности газовых пузырьков в жидкост х
CN101290263A (zh) * 2008-03-14 2008-10-22 中国人民解放军国防科学技术大学 一种大相对口径非球面镜相位恢复的检测装置与方法
CN205300516U (zh) * 2015-09-21 2016-06-08 中国科学院西安光学精密机械研究所 调整可变光阑的转动装置及可变光阑的测量机构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294403C (zh) * 2003-09-22 2007-01-10 富士能株式会社 干涉计装置
CN101806946B (zh) * 2010-03-05 2011-04-06 中国科学院上海光学精密机械研究所 光学扩束准直系统
CN102680959B (zh) * 2012-05-15 2014-04-02 中国科学院上海光学精密机械研究所 关联成像激光雷达的发射模块
CN103217678B (zh) * 2013-04-01 2015-01-07 中国科学院合肥物质科学研究院 一种激光雷达接收系统
RU138600U1 (ru) * 2013-09-02 2014-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ) Устройство для измерения электромагнитного отклика от плоскопараллельных пластин в свч диапазоне
CN203950067U (zh) * 2014-07-03 2014-11-19 福建福光数码科技有限公司 宽光谱强光力摄像镜头
CN105137450A (zh) * 2015-08-10 2015-12-09 哈尔滨工业大学 低虚警双Gm-APD探测器光子计数激光雷达
CN106950557A (zh) * 2017-04-26 2017-07-14 哈尔滨工业大学 一种基于光子轨道角动量调制的单光子测距背景噪声滤除方法及单光子测距装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1274449A1 (ru) * 1985-05-08 1987-06-07 Иркутский политехнический институт Способ визуального обнаружени водонерастворимых углеводородных масел на поверхности газовых пузырьков в жидкост х
CN101290263A (zh) * 2008-03-14 2008-10-22 中国人民解放军国防科学技术大学 一种大相对口径非球面镜相位恢复的检测装置与方法
CN205300516U (zh) * 2015-09-21 2016-06-08 中国科学院西安光学精密机械研究所 调整可变光阑的转动装置及可变光阑的测量机构

Also Published As

Publication number Publication date
CN109507656A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
CN109507656B (zh) 适用于单光子激光成像雷达的自适应控制的收发光学系统
CN203745642U (zh) 一种基于y型光纤束的共轴微脉冲激光雷达装置
US11573298B2 (en) OPA-based laser radar transceiver antenna and distance measurement method
CN110187358B (zh) 收发同轴式激光雷达的偏振隔离去噪系统
CN210780813U (zh) 一种高隔离度收发同偏振态的同频空间激光通信光路
CN110018494A (zh) 一种提升浑浊水下激光成像分辨率的系统及方法
CN207516546U (zh) 一种微型化激光脉冲测距扫描装置
CN106067841A (zh) 基于复眼结构的自适应可见光接收系统
CN106772426B (zh) 实现远距离激光高灵敏单光子成像的系统
CN108051796A (zh) 一种基于tof的小型化同轴式激光雷达系统
US20230359054A1 (en) Transmitting-receiving coaxial laser ranging device and optical module
CN202393913U (zh) 光信号接收装置和测距仪
CN111077538A (zh) 一种海洋复杂环境动态高精度光学联合成像方法及系统
CN107561716A (zh) 一种环形复合透镜小型化激光收发共孔径装置
WO2020259690A1 (en) Mobile terminal
CN110764233A (zh) 一种新型激光雷达接收镜头
CN113296079B (zh) 一种远距离光电探测系统
WO2004099827A3 (en) Gimbal assembly for optical imaging system
CN110687661A (zh) 基于四象限探测器的长焦距大口径激光导引镜头
CN112398533B (zh) 一种快速调焦收发一体天线及快速调焦方法
CN204302537U (zh) 一种相近波长光收发组件
CN219799792U (zh) 一种水下非同轴单光子激光雷达偏振成像系统
CN109358321B (zh) 一种激光收发同轴的调整方法
CN110855368A (zh) 一种高隔离度收发同偏振态的同频空间激光通信光路
CN110764073A (zh) 一种激光雷达光学接收系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant