CN101286808A - 基于td-scdma和cdma20001x网络数据融合定位的双模终端及其定位方法 - Google Patents

基于td-scdma和cdma20001x网络数据融合定位的双模终端及其定位方法 Download PDF

Info

Publication number
CN101286808A
CN101286808A CNA2008100698041A CN200810069804A CN101286808A CN 101286808 A CN101286808 A CN 101286808A CN A2008100698041 A CNA2008100698041 A CN A2008100698041A CN 200810069804 A CN200810069804 A CN 200810069804A CN 101286808 A CN101286808 A CN 101286808A
Authority
CN
China
Prior art keywords
dual
mode terminal
equation
network
scdma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100698041A
Other languages
English (en)
Other versions
CN101286808B (zh
Inventor
田增山
罗磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Tinno Wireless Technology Co Ltd
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN2008100698041A priority Critical patent/CN101286808B/zh
Publication of CN101286808A publication Critical patent/CN101286808A/zh
Application granted granted Critical
Publication of CN101286808B publication Critical patent/CN101286808B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明请求保护一种基于TD-SCDMA和CDMA20001X的双模终端数据融合的定位方法及终端,涉及无线通信技术领域。该方法提出一种通用的双模终端定位方法,该方法通过获取两种网络服务基站的经纬度坐标以及当前网络所用的载波频率;获得双模终端在两种网络下的接收信号强度;选择双模终端所处的地形环境类型,并建立状态方程;根据信道损耗衰落模型建立距离测量方程;根据测量方程和状态方程利用卡尔曼滤波算法求解双模终端的位置坐标,完成双模终端的自定位。采用本方法可以实现位置保密性好,定位概率高,定位精度高、不占用专用信道资源,实现简单,无须改动硬件等优点,可广泛应用于基于终端的定位系统中。

Description

基于TD-SCDMA和CDMA20001X网络数据融合定位的双模终端及其定位方法
技术领域
本发明涉及无线通信技术领域,尤其涉及无线定位领域,具体是在双模终端终端上实现自定位功能。
背景技术
随着移动通信的发展,基于位置的服务(LBS)已经越来越受到人们的重视。该业务涉及交通、物流、治安、紧急状况和日常生活等诸多领域,能提供导航、物流管理、交通信息、日程安排等众多业务,应用非常广泛。同时定位的功能和性能也是影响移动通信的性能,如:无线资源管理、越区切换等技术的关键因素。
蜂窝网终端定位的手段主要有两种:一种是基于终端的定位;另一种是基于网络的定位。前者定位信息的解算主要在终端完成,因而不需要网络和终端大量的交互信息,不仅节省了信道资源,而且由于网络不知道终端的位置信息,具有一定的保密性;后者定位信息的解算在网络侧完成,再由网络将定位结果发送给终端,因而需要在网络侧增加额外的测量和计算中心,同时由于网络和终端大量的交互信息,占用了一定的网络资源,还存在终端位置易泄密的隐患。现在3G网络已经在部分城市试商用,基于3G的双模终端也已在市场大量涌现,在此背景下研究基于TD-SCDMA/CDMA20001X双模终端的自定位具有非常重要的现实意义。
3G由于其高速的数据传输速率,为定位业务的发展提供了契机,针对不同蜂窝网络的特点,当前单模终端常用的定位方式主要包括:基于电波传播时间的定位方法,见:张令文,谈振辉.基于泰勒级数展开的蜂窝TDOA定位新算法[J].通信学报,2007,28(6),7-10,这种定位方法需要基站高度时间同步,终端需要捕获三个及其以上基站信息才能实现定位,定位概率较低;基于SSOA的定位方法,该方法是根据基站发射信号的场强值和测出的接收信号的场强值,利用已知的信道衰落模型(如:HaTa模型)来估算出收发信机之间的距离。但由于移动台所处的环境对信号传播的影响较大,因而该方法需要知道终端所处的网络环境,否则存在较大的误差。见:计征宇,皮亦鸣,舒金表.蜂窝网移动定位场强法的研究与应用[J].全球定位系统,2005,30(4),18-22;还有一种是基于GPS的定位方法,该方法需要在终端增加GPS接收机,增加了成本,减少了终端的待机时间,同时由于GPS在室内和地下停车场由于收不到信号而无法定位。见:滕云龙,陈小平,唐应辉.提高GPS定位精度的改进卡尔曼滤波算法研究[J].通信与信息技术,2008,3。
目前在市场上已经出现了CDMA/GSM和GSM/PHS等双模手机,但还没有一种基于TD-CDMA/CDMA20001X的全3G手机,更没有一种基于TD-CDMA/CDMA20001X的双模终端定位方法。当前的双模手机在定位方法上大多沿用单模手机常用的方法,如GPS,这等于是一种资源的浪费。上海贝豪通讯电子有限公司在2005年提出了一种在TD-SCDMA和WIFI系统下的联合定位方法(专利申请号为200510030242.6)的专利申请。这种方法是在TD-SCDMA网络侧测量AOA和TOA,在WIFI系统下建立离线的RSSI数据库,通过最大似然估计来实现定位,虽然在一定程度上提高了定位精度,但占用了额外的网络资源,且需要建立离线的数据库,无疑增加了定位的困难度,同时也需要测量三个基站的信息才能实现定位,定位概率仍然较低。
本发明在现有双模终端的硬件平台下,通过信道自适应和数据融合算法,提出了一种基于信号强度的双模终端定位方法。该方法可以充分利用两种网络的资源,不需要增加额外的硬件设备,保密性高,且在选择合适的网络环境下,具有较好的定位精度,属于一种信息的细融合。
本发明所要解决的技术问题是,针对现有技术的终端定位方法,只能依赖单一网络实施定位,需要三个及其以上基站,定位概率低,定位误差大,需额外占用网络资源等缺陷,本发明提出一种基于TD-SCDMA和CDMA20001X网络数据融合的双模终端及其自定位方法。
本发明解决上述技术问题的技术方案是,在TD-SCDMA和CDMA20001X网络环境中,由双模终端在终端侧完成自定位功能,终端信息采集模块从信道或终端存储器中获取双模终端的服务基站坐标以及导频信号强度信息,定位数据处理模块接收信号参数并进行相关计算,完成本发明的终端自定位功能。具体包括,双模终端根据导频信道中PN偏置、同步信道中获得的长码状态构造寻呼信道的长码,信息采集模块以此捕获寻呼信道,通过对寻呼信道的解调获取服务基站的经纬度坐标信息以及当前服务网络的载波频率,并由此确定双模终端接收到的CDMA20001X网络信号强度,根据下行同步码(SYNC-DL)计算TD-SCDMA网络接收信号强度;定位数据处理模块调用服务基站的经纬度坐标信息、终端当前接收到的CDMA20001X网络和TD-SCDMA网络的接收信号强度、载波频率以及终端运动类型、地形环境类型等信息,建立双模终端运动状态方程和距离测量方程;算法模块调用运动状态方程和测量方程通过卡尔曼滤波算法计算双模终端的位置坐标。
对于TD-SCDMA网络,通过系统信息块提供服务基站的坐标信息,双模终端在TDD频带中搜索发射功率最强的频点作为当前网络的载波频率;对于CDMA20001X网络,双模终端根据导频信道中PN偏置、同步信道中获得的长码状态等构造寻呼信道的长码,进行寻呼信道的捕获,通过对寻呼信道的解调获取服务基站的坐标信息以及当前服务网络的载波频率。
由步行携带的慢速运动双模终端类型,采用匀速运动模型描述运动状态方程,运动状态方程采用离散状态方程:Xk=Fk,k-1Xk-1+Wk-1表示双模终端运动向量;由汽车、轮船等交通工具携带的高速运动双模终端类型,采用Singer模型、当前统计模型建立运动状态方程。双模终端所处的地形类型指如城市、郊区、农村等不同的类型,根据地形类型在终端数据库中选择信道损耗衰落模型的参数信息确定相应传输损耗。
本发明设计的基于TD-SCDMA和CDMA20001X数据融合定位的双模终端及其定位方法,根据两种网络服务基站的相关信息进行数据融合实施基于终端的定位手段,不仅在网络侧和终端侧无需增加额外的用于定位运算的硬件设备,节省了信道和网络资源;而且不需要在信道上传递定位信息,消除了终端位置泄密的渠道;根据运动状态建立状态方程,根据信道损耗衰落模型建立距离测量方程,有效降低了信道损耗衰落模型对定位误差的影响;采用卡尔曼滤波算法和信道的自适应传播模型,大大提高了定位精度。
附图说明
图1双模终端定位示意图
图2基于双模终端的数据融合定位方法流程框图
图3双模终端定位流程图
图4CDMA20001X网络服务基站经纬度坐标获取流程图
具体实施方式
本发明提出的定位方法在具有双模功能的终端侧完成,双模终端信息采集模块从信道中获取定位相关的服务基站坐标以及导频信号强度等信息,定位数据处理模块接收信号参数并进行相关计算,完成基于TD-SCDMA和CDMA20001X的双模终端自定位。
下面针对附图对本发明的实现作具体描述。图1所示为双模终端定位示意图,双模终端捕获TD-SCDMA网络和CDMA20001X网络的下行导频信道和寻呼信道,得到两种网络下各自服务基站的经纬度坐标信息以及当前网络的载波频率;分别计算双模终端接收到的CDMA20001X网络接收信号强度和TD-SCDMA网络接收信号强度;定位数据处理模块调用服务基站的经纬度坐标信息、终端当前接收到的CDMA20001X网络和TD-SCDMA网络信号强度、载波频率、终端运动类型(步行或乘车)以及双模终端所处地形环境类型等信息,分别建立双模终端运动状态方程和距离测量方程;算法模块调用运动状态方程和测量方程通过卡尔曼滤波算法计算双模终端的位置坐标。
如图2所示为本发明所述的基于TD-SCDMA和CDMA20001X的数据融合定位方法流程框图,具体包括如下步骤:
①双模终端接入网络后,对终端进行初始化,接收到定位指令后,启动定位功能,双模终端的数据采集模块分别捕获TD-SCDMA网络和CDMA20001X网络的下行导频信道和寻呼信道,分别得到两种网络下各自服务基站的经纬度坐标信息以及当前所用的载波频率等信息,并将其存储在终端的存储器列表中。
②双模终端算法模块根据服务小区半径的变化、以及3GPP2协议计算对应不同基站的导频信道发射功率,并将其存储在双模终端的存储器列表中。
③根据导频信道功率确定双模终端接收到的CDMA20001X网络的信号强度,算法模块根据下行同步码(SYNC-DL)计算TD-SCDMA网络的信号强度,将上述信号强度值分别保存在终端的存储器列表中。
④根据双模终端所在的位置,确定双模终端所处的地形类型(如城市、郊区、农村等),根据地形类型在终端数据库中选择信道损耗衰落模型的参数信息,并将其保存在双模终端的存储器列表中。
⑤用户根据自身的运动状态(如步行、乘车等)选择双模终端的运动模型,调用终端数据库中与运动模型相匹配的运动参数,将其保存在双模终端的存储器列表中。
建立如表1所示的存储器列表,存储上述信息、状态。
表1双模终端定位数据处理模块存储器列表信息
Figure A20081006980400091
⑥双模终端的定位数据处理模块调用存储器列表中的两种网络下服务基站的基站经纬度坐标信息、载波频率以及基站的发射信号功率、终端当前的接收信号强度值,根据信道损耗衰落模型,分别求得双模终端到当前TD-SCDMA网络服务基站的距离dT和CDMA20001X服务基站的距离dc,并利用测量的距离信息建立测量方程。
⑦利用用户选择的双模终端运动类型建立状态方程。
⑧在定位数据处理模块中利用卡尔曼滤波算法,求解状态方程和测量方程,确定双模终端的位置坐标,完成基于终端的自定位。
如图3所示为双模终端定位流程图,上述流程的实现方式具体描述如下。
假设双模终端在网络中注册成功,处于双模待机状态。当双模终端接收到定位指令后,便启动定位模块。具体方法如下:
①双模终端通过导频和广播信道分别获取两种网络服务基站的经纬度坐标信息以及当前的载波频率。
在TD-SCDMA网络中,当双模终端UE在当前小区注册后,在系统的数据库中就会将该UE与当前的小区识别号(Cell-ID)对应起来。系统提供该小区基站的地理位置坐标和小区的覆盖半径,并通过广播消息的形式发送给小区覆盖范围内的所有UE。系统信息定时(如每5ms)广播一次,UE处于连接状态时,可以通过系统信息块SIB 15.5中的CHOICE Cell Position来获取服务基站的经纬度坐标信息。基本的TDD频带为2010-2025MHz,按1.6MHz的带宽计算,带内共可容纳9个频点。按TD-SCDMA系统的现场试验规定,第一个载波的中心频点位于2010.8MHz,其他频点之间的间隔一般为1.6MHz,只是在第3和第6两个频点处加0.2MHz,变为1.8MHz,最后一个频点位于2024.0MHz处。当UE开机后,就开始搜索网络,根据带宽功率由强到弱排序,在TDD频带中选择搜索到的发射功率最强的频点作为当前使用的网络的载波频率f,发射该频率的基站作为当前服务基站,由此确定一个合适的小区。
由于不同基站的PN偏置系数不同,在CDMA20001X网络中,双模终端开机捕获到网络导频信号后,解调该导频信号,获取基站的PN偏置系数,双模终端根据PN偏置系数识别不同的基站。一旦双模终端捕获了一个特定基站的导频信号时,即可获知同步信道的基本定时结构,当基站的导频信号被捕获时,PN码的开始也就是同步信道帧的开始,双模终端通过同步信道获得长码状态、服务基站当前使用的协议版本号等信息;双模终端根据导频信道中PN偏置、同步信道中获得的长码状态等构造寻呼信道的长码,进行寻呼信道的捕获,通过对寻呼信道的解调可以获取系统参数信息、接入参数信息、邻区列表消息、信道列表消息、基站的地理位置(BASE-LAT-基站纬度、BASE-LONG-基站经度)等消息,处理过程如图4所示。在我国,CDMA20001X网络主要使用上行825MHz-835MHz、下行870MHz-880MHz的800M A段频带,每载波宽度为1.25MHz。在A段频带中,中心频点频率的计算公式为:上行链路:825.00MHz+0.03MHz*(N-1023);下行链路:870.00MHz+0.03MHz*(N-1023)。当双模终端获取了CDMA20001X接入参数信息后就知道了当前网络使用的频点号N,这样就可以得知当前网络下行使用的载波频率fc
②根据小区半径的变化查询对应不同服务基站的导频发射功率。
根据3GPP和3GPP2配置基站的导频功率,一般根据小区半径的变化将其导频功率分为4-5个等级,不同的厂商可能会有不同的分配等级,但是均根据使用的协议为基准进行分配。所以根据小区半径的变化及其导频功率的对应关系,双模终端根据小区半径的变化查询对应不同基站的导频发射功率。
③获取两种网络下双模终端所接收的信号强度。
双模终端根据导频信号确定双模终端接收到的CDMA20001X网络信号强度,根据下行同步信道中的下行同步码SYNC-DL确定TD-SCDMA网络信号强度。接收信号强度指示RSSI,它是在UE端测量的参数,是由接收机脉冲成型滤波器定义的带宽中的接收宽带功率,包括热噪声和接收机内产生的噪声。在TD-SCDMA网络中,每个帧子中的下行同步码SYNC-DL是为下行导频和同步而设计的,由基站以最大功率在全方向或某一扇区上发射。这个时隙通常是由长为64码片的下行同步码和32码片的保护间隔组成的。下行同步码是一组PN码,共32个用于区分相邻的小区。因而对于确定的小区,其PN码的下行同步码是固定的,当UE检测到本小区的SYNC-DL时,就可以求出在当前时刻导频码上的接收功率,由此确定所接收的信号强度。
在CDMA20001X网络中,导频信号与沃尔什序列H0相乘进行变换后,再分别与两个不同的短PN码相乘,这两个短PN码相当于I路和Q路信号的正交载波分量,获得两路正交数字基带信号,FIR滤波器对两路正交数字基带信号进行滤波成形,用以控制发射频谱的形状。成型后的I和Q路信号用同相载波和正交载波调制,相加之后基站通过导频信道发送出去。经过信道衰落后,双模终端接收到的导频信道发射的信号功率表示为:
p = Σ i = 1 n a i [ cos ( ω c ( t + τ i ) + θ i ) + sin ( ω c ( t + τ i ) + θ i ) ]
其中,αi表示双模终端接收到的服务基站导频信号的多径幅度值;ωc为载波频率;τi为导频信号的传输时延;θi表示导频的相位偏置。假设本地导频序列为s=b[cos(ωct+ψ)+sin(ωct+ψ)],则将本地导频序列和接收到的导频信号进行自相关,然后对自相关函数进行傅立叶变换求出功率普密度,对功率普密度在导频信号的一个周期内进行积分,就可求得在一个周期内导频信号的接收信号强度。
④用户通过终端自主选择自身所处的环境类型。
发射机和接收机之间的传播路径非常复杂,从简单的视距传播到各种复杂的由各种各样障碍物,如建筑物、山脉、街道等而引起的反射、折射和散射传播。这些影响因素的总和称为这一地区的传播环境。因而不同的传播环境与信号的传输损耗密切相关,用户根据双模终端自身所处的环境条件,选择信号传播的环境类型(如市区、农村等),自适应地选择信道传输损耗方程的参数。可以大大减小因信道传播损耗模型而带来的定位误差。
⑤将两种网络环境下获得的信号参数送往双模终端的定位数据处理模块。
将获得的上述两种网络环境下的信号参数送往双模终端的定位数据处理模块,将保存在双模终端存储器列表中的两种网络的经纬度坐标信息、载波频率、服务基站导频发射功率值和接收信号强度值等通过串口输送到双模终端的定位数据处理模块中,定位数据处理模块调用上述参数建立双模终端运动状态方程;根据双模终端所处地形环境类型确定传输损耗,根据传输损耗建立测量方程。
以下具体描述建立运动状态方程和测量方程的过程。
⑥根据双模终端的运动状态选择合适的运动模型建立运动状态方程。
对于运动目标来说,其运动往往满足一定的统计规律,运动前后的位置关系具有一定的相关性。这种相关性往往会对目标位置的估计提供额外的信息,因此使用基于运动特性的定位技术能得到更优的估计结果。例如:对于慢速运动的目标,如步行的人所携带的双模终端,在观测周期较长时,通常可以用匀速运动模型(C/V)来描述;对于位于机动目标(车辆)上的双模终端,其运动状态模型通常用著名的Singer模型、当前统计模型等来表示。下面以步行为例来阐述状态方程的建立过程。
设双模终端的运动状态向量为: X k = [ x ( k ) , x · ( k ) , y ( k ) , y · ( k ) ] T , 其中x(k)、
Figure A20081006980400132
表示双模终端k时刻在x方向的位置坐标和速度;y(k)、
Figure A20081006980400133
表示双模终端k时刻在y方向的位置坐标和速度。则当采样间隔为T时,双模终端所对应的离散状态方程可表示为:
Xk=Fk,k-1Xk-1+Wk-1    (1)
其中,Fk,k-1为双模终端所处的运动状态从k-1时刻到k时刻的转移矩阵:
F k , k - 1 = 1 T 00 0100 001 T 0001
Wk-1为k-1时刻双模终端的状态噪声:
W k = ∫ kT ( k + 1 ) T F ( ( k + 1 ) T , τ ) W ~ ( τ ) dτ
状态噪声协方差矩阵为:
Q k = E [ W k W k T ] = T 3 / 3 T 2 / 2 0 0 T 2 / 2 T 0 0 0 0 T 3 / 3 T 2 / 2 0 0 T 2 / 2 T
⑦选择信道损耗衰落模型确定传输损耗,根据信道传输损耗建立距离测量方程。
根据双模终端所处的网络环境,自适应地选择信道传输损耗方程的参数。我国公布的TD-SCDMA频段为:1880M到1920M、2010M到2025M、2300M到2400M,所以采用COST-231-Hata模型是最适合TD-SCDMA系统的信道损耗衰落模型。COST-231-Hata模型是欧洲科技合作组织(COST)的COST 231研究组对Hata模型加以扩展,使载频范围提高至2GHz频段,其公式为:
LT(dB)=46.3+33.9lgf-13.82lghre-a(hre)+(44.9-6.55lghte)lgdT+CM(2)
其中:
LT为TD-SCDMA服务基站到双模终端的传输损耗(dB):
Figure A20081006980400141
f为载波频率(MHz):当双模终端与TD-SCDMA网络同步后,就可以获得当前信道所用的载波频率;
hre为基站天线高度(m):TD-SCDMA服务基站天线的高度,定义为基站天线实际海拔高度与基站沿传播方向实际距离内的平均地面海拔高度之差,通常为15m;为了更加精确,可以预先建立基站的天线高度数据库;
hte为终端天线高度(m):一般为1.5m;
α(hre)为修正因子,对于中、小城市和郊区,表示为:
a(hre)(dB)=(1.11lgfc-0.7)hre-(1.56lgfc-0.8)
对大城市,表示为:
a(hre)(dB)=8.29(lg1.54hre)2-1.1     fc≤300MHz
a(hre)(dB)=3.2(lg11.75hre)2-4.97    fc≥300MHz
CM定义为:
Figure A20081006980400151
dT为TD-SCDMA服务基站到双模终端的水平距离(Km),为待求量。
当用户选择了合适的环境类型以及获得TD-SCDMA服务基站的发射功率和双模终端相对应的接收信号强度,通过(2)式就可以求出TD-SCDMA服务基站到双模终端的距离dT
根据CDMA20001X网络的频率范围,在常用的几种路径损耗模型中,选取了与CDMA20001X网络的频率范围较适合的Okumura-Hata模型。Okumura-Hata模型路径的传输损耗计算的经验公式为:
Lc(dB)=69.55+26.16lgfc-13.82lghte-α(hre)+(44.9-6.55lghte)lgdc+Ccel+Cterrain(3)
其中:
Lc为CDMA20001X服务基站到双模终端的传输损耗(dB):
Figure A20081006980400152
基站的发射功率Tx的值是在10w-20w之间几个级别,根据所在基站的具体情况选择相应的级别,可设定Tx值为20W。接收信号强度的获得上面已有说明,在此不再赘述。
fc:载波频率(MHz);
hte:CDMA20001X服务基站天线的高度,定义为基站天线实际海拔高度与基站沿传播方向实际距离内的平均地面海拔高度之差,通常为15m;为了更加精确,可以预先建立基站的天线高度数据库;
hre:移动台有效天线高度(m),定义为移动台天线高出地表的高度,通常为1.5m
α(hre):有效天线修正因子,是覆盖区大小的函数:
Figure A20081006980400161
Ccell:小区类型校正因子,在不同情况下取不同的值。
Figure A20081006980400162
Cterrain:地形校正因子。它反映的是地形环境因素对信号传播路径损耗的影响。
表2表示的是各种地形下的Cterrain的参考值(单位为dB)。
表2:各种地形环境下的地形校正因子参考值
  地形环境   地形校正因子参考值(db)
  农村   -2.90
  城镇   -2.50
  郊区   0
  高密度建筑群   5.00
dc:CDMA20001X服务基站和双模终端之间的水平距离(Km),为待求量。
当用户选择了合适的环境类型以及获得CDMA20001X服务基站的发射功率和双模终端相对应的接收信号强度,通过(3)式就可以求出CDMA20001X服务基站到双模终端的距离dc
根据上面计算获得的两种服务基站到双模终端的距离dT和dc建立如下的方程组:
d T = ( x - x T ) 2 - ( y - y T ) 2 + V T d C = ( x - x C ) 2 - ( y - y C ) 2 + V C - - - ( 4 )
其中,(xT,yT)为TD-SCDMA服务基站的坐标;(xC,yC)为CDMA20001X服务基站的坐标;VT为TD-SCDMA网络的测量误差,VC为CDMA20001X网络的测量误差,且VT,VC为高斯随机变量;(x,y)为双模终端的位置坐标,为待求量。
(xT,yT)可由下式求得:
x T = ( N + d H T ) cos B T cos L T y T = ( N + d H T ) cos B T sin L T z T = ( N ( 1 - e 2 ) + d H T ) sin B T N = a / 1 - e 2 · sin 2 B T
其中,N为TD-SCDMA服务基站所在点的卯酉圈曲率半径,dHT为该点当地高度,BT为纬度坐标,LT为经度位置,e为地球第一偏心率(0.0818191908426214957),a为地球长半径(6378137米)。(注:此为WGS-84坐标到地心直角坐标系的转换公式)
同理,可以求得(xC,yC)。
将(4)式用泰勒级数展开,得:
d T = A T x + B T y + V T ′ d C = A C x + B C y + V C ′ - - - ( 5 )
其中:
A T = x 0 - x T ( x 0 - x T ) 2 + ( y 0 - y T ) 2
B T = y 0 - y T ( x 0 - x T ) 2 + ( y 0 - y T ) 2
V T ′ = ( x 0 - x T ) 2 + ( y 0 - y T ) 2 - ( x 0 - x T ) x 0 ( x 0 - x T ) 2 + ( y 0 - y T ) 2 - ( y 0 - y T ) y 0 ( x 0 - x T ) 2 + ( y 0 - y T ) 2 + V T
A C = x 0 - x C ( x 0 - x C ) 2 + ( y 0 - y C ) 2
B C = y 0 - y C ( x 0 - x C ) 2 + ( y 0 - y C ) 2
V C ′ = ( x 0 - x C ) 2 + ( y 0 - y C ) 2 - ( x 0 - x C ) x 0 ( x 0 - x C ) 2 + ( y 0 - y C ) 2 - ( y 0 - y C ) y 0 ( x 0 - x C ) 2 + ( y 0 - y C ) 2 + V C
(x0,y0)为泰勒级数展开时的初始值,通常设为两个服务基站的中点,即:
x 0 = x T + x C 2 ; y 0 = y T + y C 2
由(5)式可得:
d T d C = A T B T A C B C x y + V T ′ V C ′
即:
d T d C = A T 0 B T 0 A C 0 B C 0 x x · y y · + V T ′ V C ′ - - - ( 6 )
H = A T 0 B T 0 A C 0 B C 0 ;
V = V T ′ V C ′
当采样间隔为T时,对式(6)进行离散化:
Zk=HkXk+Vk    (7)
其中:
Zk表示k时刻的距离测量值:
Z k = d T d C ;
Hk表示k-1时刻到k时刻的转移测量矩阵:
H k = A T 0 B T 0 A C 0 B C 0 ;
Xk表示k时刻双模终端的状态,x(k),
Figure A20081006980400193
表示k时刻双模终端在x方向上的位置坐标和速度,y(k),
Figure A20081006980400194
表示k时刻双模终端在y方向上的位置坐标和速度。
X k = x ( k ) x · ( k ) y ( k ) y · ( k ) T ;
Vk表示k时刻的观测噪声序列,测试表明测量噪声为均值500-700m的随机变量,可采用高斯统计分布来描述。
V k = V T ′ V C ′
观测噪声的方差矩阵为:
R k = E [ V k V k T ]
⑧根据双模终端运动状态方程,距离测量方程建立随机线性系统的Kalman滤波基本方程组,求解方程组,确定双模终端的位置坐标。
根据(1)式和(7)式,建立随机线性系统的Kalman滤波方程,利用卡尔曼滤波算法求解双模终端在k时刻的状态值Xk的估计值
Figure A20081006980400198
随机线性系统的Kalman滤波基本方程如下(8)-(12)式所示:
状态预测方程: X ^ k , k - 1 = F k , k - 1 X ^ k - 1 - - - ( 8 )
状态估计: X ^ k = X ^ k , k - 1 + K k [ Z k - H k X ^ k , k - 1 ] - - - ( 9 )
滤波增益矩阵: K k = P k H k T R k - 1 - - - ( 10 )
估计误差方差阵:Pk=[I-KkHk]]Pk,k-1    (11)
预测误差方差矩阵: P k , k - 1 = F k , k - 1 P k - 1 F k , k - 1 T + Q k - 1 - - - ( 12 )
只要给定双模终端在0时刻的状态初始值
Figure A20081006980400204
和估计误差方差阵P0,就可以根据k时刻的距离观测值Zk,通过上面的递推公式计算出双模终端在k时刻的状态估计值 X ^ k ( k = 1,2 , · · · · · · ) .
就步行的人来说,一般的速度是3.6km/h,那么我们可以设定在0时刻的状态估计值
Figure A20081006980400206
[ x T + x c 2 , 3.6 , y T + y c 2 , 3.6 ] , P0通常设定为4×4的0矩阵。由此我们就可以根据在任一时刻的距离测量值Zk,求得在该时刻双模终端的位置坐标[x,y]。由双模终端的位置坐标我们就可以将其转换为WGS-84坐标,步骤如下:
B = tg - 1 [ ( z + e 2 N sin B ) / x 2 + y 2 ]
L=tg-1(y/x)
□H=xsecBsecL-N
其中z值为两个基站z值的平均值,即 Z = Z T + Z c 2 , B为双模终端的纬度坐标,L为双模终端的经度坐标,□H为双模终端所在点的高程。通过反复迭代就可以求得在任一时刻,双模终端的经纬度坐标信息。
通过采用本发明所述的基于双模终端的数据融合定位方法,可以根据双模终端接收到的两种网络服务基站的信号强度、已知的信道衰落模型和运动模型,实现双模终端的自定位。提高了定位的概率和定位精度。所有定位过程均在终端侧完成,不需要增加额外的硬件设备和占用网络信道资源,并有效阻止了终端位置泄密的途径。
以上实例仅以基于TD-SCDMA和CDMA20001X的双模终端为例对本发明的实施作具体说明,但本发明并不局限于此,在本领域技术人员能够理解的范围内,可以是基于任何网络的双模终端,同时也可以对定位算法和信道损耗模型作适当的修改,以提高定位的精度。

Claims (9)

1.一种基于TD-SCDMA和CDMA20001X网络的双模终端数据融合定位方法,其特征在于,双模终端信息采集模块捕获寻呼信道,解调获取服务基站的坐标信息以及当前服务网络的载波频率;根据载波频率计算CDMA20001X网络的导频信号功率,并确定CDMA20001X网络的接收信号强度,根据下行同步码确定TD-SCDMA网络的接收信号强度;定位数据处理模块调用服务基站的坐标信息、两种网络的接收信号强度、载波频率、运动类型以及双模终端所处地形环境类型确定的传输损耗,分别建立双模终端运动状态方程和距离测量方程;算法模块调用运动状态方程和距离测量方程确定双模终端的位置坐标。
2.根据权利要求1所述的定位方法,其特征在于,对于TD-SCDMA网络,通过系统信息块提供服务基站的坐标信息,双模终端在TDD频带中搜索发射功率最强的频点作为当前服务网络的载波频率;对于CDMA20001X网络,双模终端根据导频信道中PN偏置、同步信道中获得的长码状态等构造寻呼信道的长码,进行寻呼信道的捕获,通过对寻呼信道的解调获取服务基站的坐标信息以及当前服务网络的载波频率。
3.根据权利要求1所述的定位方法,其特征在于,慢速运动的双模终端采用匀速运动模型描述运动状态方程,运动状态方程采用离散状态方程:Xk=Fk,k-1Xk-1+Wk-1表示双模终端运动向量;高速运动双模终端采用Singer模型、当前统计模型建立运动状态方程。
4.根据权利要求1所述的定位方法,其特征在于,所述距离测量方程根据TD-SCDMA网络传输损耗方程:
LT(dB)=46.3+33.9lgf-13.82lghre-a(hre)+(44.9-6.55lghte)lgdT+CM
和CDMA20001X网络传输损耗方程:
Lc(dB)=69.55+26.16lgfc-13.82lghte-α(hre)+(44.9-6.55lghte)lgdc+Ccell+Cterrain
构建双模终端到两种网络服务基站的距离dT和dc的方程组:
d T = ( x - x T ) 2 - ( y - y T ) 2 + V T d C = ( x - x C ) 2 - ( y - y C ) 2 + V C .
5.根据权利要求1或4所述的定位方法,其特征在于,根据双模终端所处的网络环境,自适应地选择信道传输损耗方程的参数。
6.根据权利要求1、3或4所述的定位方法,其特征在于,算法模块调用运动状态方程和距离测量方程采用卡尔曼滤波算法计算双模终端的位置坐标。
7、一种基于TD-SCDMA和CDMA20001X网络数据融合定位的双模终端,其特征在于,双模终端信息采集模块捕获寻呼信道,解调获取服务基站的坐标信息以及当前服务网络的载波频率;算法模块根据载波频率计算CDMA20001X网络的导频信号功率,并确定其接收信号强度;根据下行同步码确定TD-SCDMA网络的接收信号强度;定位数据处理模块调用存储在双模终端存储器列表中的服务基站坐标信息、两种网络的接收信号强度、运动类型、以及根据双模终端所处地形环境类型确定的路径传输损耗建立双模终端运动状态方程和距离测量方程;算法模块调用运动状态方程和距离测量方程建立随机线性系统的Kalman滤波基本方程组,求解方程组,确定双模终端的位置坐标。
8、根据权利要求7所述的双模终端,其特征在于,对于慢速运动双模终端,采用匀速运动模型建立运动状态方程,由离散状态方程:Xk=Fk,k-1Xk-1+Wk-1表示双模终端运动向量;对于高速运动双模终端,采用Singer模型、当前统计模型建立运动状态方程。
9、根据权利要求7所述的双模终端,其特征在于,定位数据处理模块建立的距离测量方程为:
d T = ( x - x T ) 2 - ( y - y T ) 2 + V T d C = ( x - x C ) 2 - ( y - y C ) 2 + V C .
CN2008100698041A 2008-06-05 2008-06-05 基于td-scdma和cdma20001x网络数据融合定位的双模终端及其定位方法 Expired - Fee Related CN101286808B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100698041A CN101286808B (zh) 2008-06-05 2008-06-05 基于td-scdma和cdma20001x网络数据融合定位的双模终端及其定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100698041A CN101286808B (zh) 2008-06-05 2008-06-05 基于td-scdma和cdma20001x网络数据融合定位的双模终端及其定位方法

Publications (2)

Publication Number Publication Date
CN101286808A true CN101286808A (zh) 2008-10-15
CN101286808B CN101286808B (zh) 2011-07-06

Family

ID=40058797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100698041A Expired - Fee Related CN101286808B (zh) 2008-06-05 2008-06-05 基于td-scdma和cdma20001x网络数据融合定位的双模终端及其定位方法

Country Status (1)

Country Link
CN (1) CN101286808B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998231A (zh) * 2009-08-10 2011-03-30 中国移动通信集团辽宁有限公司 终端定位方法、装置及系统
WO2011082693A1 (zh) * 2010-01-08 2011-07-14 华为技术有限公司 多模终端的资源分配方法和装置
CN102348160A (zh) * 2011-07-15 2012-02-08 中国电信股份有限公司 基于多模信号的定位方法与系统、定位平台
WO2012075883A1 (zh) * 2010-12-07 2012-06-14 中兴通讯股份有限公司 探测序列的分配方法和基站
CN102611510A (zh) * 2011-01-24 2012-07-25 苏州大学 2.4gb信道链接质量及通信距离的测量方法与系统
CN103391140A (zh) * 2013-07-19 2013-11-13 京信通信系统(中国)有限公司 Cdma2000和evdo混合信号的功率检测方法和系统
CN103582115A (zh) * 2012-07-27 2014-02-12 华为技术有限公司 一种定位方法、控制设备及移动通信系统
CN104602336A (zh) * 2014-12-25 2015-05-06 大连楼兰科技股份有限公司 基于at指令的gsm网络下基站定位方法
CN105554876A (zh) * 2015-12-09 2016-05-04 广东欧珀移动通信有限公司 一种移动终端定位方法及移动终端
CN110113774A (zh) * 2018-12-30 2019-08-09 中国科学院软件研究所 一种超短波无线电台的信道建模方法
CN110418279A (zh) * 2019-07-31 2019-11-05 深圳市沃特沃德股份有限公司 多卡多待定位的方法、装置、存储介质和计算机设备
CN110462418A (zh) * 2017-02-02 2019-11-15 弗劳恩霍夫应用研究促进协会 使用毫米波波束基础设施对无人机的定位
CN115460537A (zh) * 2021-06-08 2022-12-09 中移(上海)信息通信科技有限公司 基站定位方法、装置及网络设备
CN115460537B (zh) * 2021-06-08 2024-10-22 中移(上海)信息通信科技有限公司 基站定位方法、装置及网络设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287632C (zh) * 2004-07-09 2006-11-29 重庆邮电学院 适用于td-scdma系统的混合定位方法
CN100411490C (zh) * 2006-06-27 2008-08-13 重庆邮电大学 可适用于td-scdma网络的aoa/toa与gps混合定位方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998231A (zh) * 2009-08-10 2011-03-30 中国移动通信集团辽宁有限公司 终端定位方法、装置及系统
CN101998231B (zh) * 2009-08-10 2014-10-01 中国移动通信集团辽宁有限公司 终端定位方法、装置及系统
US8340704B2 (en) 2010-01-08 2012-12-25 Huawei Technologies Co., Ltd. Resource allocation method and apparatus for multi-mode terminal
WO2011082693A1 (zh) * 2010-01-08 2011-07-14 华为技术有限公司 多模终端的资源分配方法和装置
WO2012075883A1 (zh) * 2010-12-07 2012-06-14 中兴通讯股份有限公司 探测序列的分配方法和基站
CN102573069A (zh) * 2010-12-07 2012-07-11 中兴通讯股份有限公司 探测序列的分配方法和基站
CN102573069B (zh) * 2010-12-07 2014-07-02 中兴通讯股份有限公司 探测序列的分配方法和基站
CN102611510A (zh) * 2011-01-24 2012-07-25 苏州大学 2.4gb信道链接质量及通信距离的测量方法与系统
CN102348160B (zh) * 2011-07-15 2014-01-22 中国电信股份有限公司 基于多模信号的定位方法与系统、定位平台
CN102348160A (zh) * 2011-07-15 2012-02-08 中国电信股份有限公司 基于多模信号的定位方法与系统、定位平台
CN103582115A (zh) * 2012-07-27 2014-02-12 华为技术有限公司 一种定位方法、控制设备及移动通信系统
US10101434B2 (en) 2012-07-27 2018-10-16 Huawei Technologies Co., Ltd Positioning method, control device, and mobile communications system
CN103582115B (zh) * 2012-07-27 2019-05-10 华为技术有限公司 一种定位方法、控制设备及移动通信系统
CN103391140A (zh) * 2013-07-19 2013-11-13 京信通信系统(中国)有限公司 Cdma2000和evdo混合信号的功率检测方法和系统
CN103391140B (zh) * 2013-07-19 2015-10-14 京信通信系统(中国)有限公司 Cdma2000和evdo混合信号的功率检测方法和系统
CN104602336A (zh) * 2014-12-25 2015-05-06 大连楼兰科技股份有限公司 基于at指令的gsm网络下基站定位方法
CN105554876B (zh) * 2015-12-09 2019-02-05 Oppo广东移动通信有限公司 一种移动终端定位方法及移动终端
CN105554876A (zh) * 2015-12-09 2016-05-04 广东欧珀移动通信有限公司 一种移动终端定位方法及移动终端
CN110462418A (zh) * 2017-02-02 2019-11-15 弗劳恩霍夫应用研究促进协会 使用毫米波波束基础设施对无人机的定位
US11755037B2 (en) 2017-02-02 2023-09-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Positioning of unmanned aerial vehicles using millimeter-wave beam infrastructure
CN110462418B (zh) * 2017-02-02 2024-02-06 弗劳恩霍夫应用研究促进协会 使用毫米波波束基础设施对无人机的定位
CN110113774A (zh) * 2018-12-30 2019-08-09 中国科学院软件研究所 一种超短波无线电台的信道建模方法
CN110418279A (zh) * 2019-07-31 2019-11-05 深圳市沃特沃德股份有限公司 多卡多待定位的方法、装置、存储介质和计算机设备
CN115460537A (zh) * 2021-06-08 2022-12-09 中移(上海)信息通信科技有限公司 基站定位方法、装置及网络设备
CN115460537B (zh) * 2021-06-08 2024-10-22 中移(上海)信息通信科技有限公司 基站定位方法、装置及网络设备

Also Published As

Publication number Publication date
CN101286808B (zh) 2011-07-06

Similar Documents

Publication Publication Date Title
CN101286808B (zh) 基于td-scdma和cdma20001x网络数据融合定位的双模终端及其定位方法
Keating et al. Overview of positioning in 5G new radio
CN102056292B (zh) 无线通信系统中的位置确定
JP4111951B2 (ja) モバイルユニットの速度および位置を決定するための方法及びシステム
CN101933304B (zh) 一种移动装置定位方法及设备
CN101601270B (zh) 用于自动确定小区发射器参数以帮助定位无线设备的系统
JP5665545B2 (ja) 無線アクセスシステムにおける位置決定のシステム及び方法
CN102549448B (zh) 使用多载波的定位
KR100728894B1 (ko) 위치 정보 제공 시스템, 기지국과 이를 이용하는 위치 정보 제공 방법, 및 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체
CN100406907C (zh) 用于确定位置信息的方法
CN101137226B (zh) 单天线终端测向方法
WO2000069198A1 (en) Wireless location system
WO2011073830A1 (en) Apparatus and method for determining a location of wireless communication devices
CN103238356A (zh) 定位节点、用户设备以及其中的方法
EP1988736A2 (en) Method and system for locating a mobile subscriber in a CDMA communication system
KR101429953B1 (ko) pCell 측위를 위한 데이터베이스 갱신 방법 및 장치
WO2008022575A1 (fr) Procédé et dispositif pour améliorer le positionnement d'équipement d'utilisateur
CN103781155A (zh) 移动终端及其搜网方法
KR100622218B1 (ko) 무선통신시스템에서 단일 셀을 이용한 단말기 위치 결정장치 및 그 방법
Sellami et al. Neighbor-assisted localization for massive MIMO 5G systems
Campos et al. A fast database correlation algorithm for localization of wireless network mobile nodes using coverage prediction and round trip delay
El Assaad et al. Vehicle self-localization for advanced driver assistance systems
CN106612490A (zh) 一种实现站点定位的方法及装置
Fund et al. How bad is the flat earth assumption? Effect of topography on wireless systems
CN115278876B (zh) 一种在5g网络和uwb共同定位的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SHENZHEN TINNO WIRELESS TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: CHONGQING UNIV. OF POST AND TELECOMMUNICATION

Effective date: 20130829

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 400065 NANAN, CHONGQING TO: 518000 SHENZHEN, GUANGDONG PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20130829

Address after: 518000, H3, building 501, Chengdong Industrial Zone, overseas Chinese, Shenzhen, Guangdong, Nanshan District

Patentee after: Shenzhen Tinno Wireless Technology Co., Ltd.

Address before: 400065 Chongqing Nan'an District huangjuezhen pass Chongwen Road No. 2

Patentee before: Chongqing University of Posts and Telecommunications

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110706

Termination date: 20190605

CF01 Termination of patent right due to non-payment of annual fee