CN101282526A - 一种手机待机电流、待机时间及充电流程的测试设备 - Google Patents

一种手机待机电流、待机时间及充电流程的测试设备 Download PDF

Info

Publication number
CN101282526A
CN101282526A CNA2007101251863A CN200710125186A CN101282526A CN 101282526 A CN101282526 A CN 101282526A CN A2007101251863 A CNA2007101251863 A CN A2007101251863A CN 200710125186 A CN200710125186 A CN 200710125186A CN 101282526 A CN101282526 A CN 101282526A
Authority
CN
China
Prior art keywords
time
data
mobile phone
current
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101251863A
Other languages
English (en)
Inventor
袁玉芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNA2007101251863A priority Critical patent/CN101282526A/zh
Publication of CN101282526A publication Critical patent/CN101282526A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明涉及一种手机待机电流、待机时间及充电流程的测试设备,该设备包括数据采集模块、误差校正模块、专家知识库、数据分析模块、系统内存模块、存储显示模块、CPU模块;采样率高,基于双缓冲DMA的机制确保数据传输可靠;对检流电阻所引入的误差进行了分析和补偿;基于专家知识库识别睡眠和搜网状态,计算睡眠和搜网状态特征值,协助工程师定位问题;通过全程监控电池电压实现待机时间的自动测试;通过全程监控电池电压、充电电压和充电电流充实现电流程的自动测试;成本低廉,操作简单。本发明也适用于mp3/mp4、笔记本、数码相机、DV、手持GPS等便携式电子设备功耗与充电的测试。

Description

一种手机待机电流、待机时间及充电流程的测试设备
技术领域
本发明涉及便携式电子产品功耗和充电的测试技术,尤其涉及用于手机待机电流、待机时间和充电流程的测试设备。
背景技术
手机的使用时间是其性能指标之一,主要由功耗决定,功耗越低,使用时间越长。手机移动通讯的特点决定了对低功耗的要求十分苛刻,而日渐丰富的功能则需要更多能量,这一矛盾日益加剧。因此对于手机功耗、待机时间、充电方面的测试和评估,对先期研发和后期入网测试都显得越来越重要。
由于网络环境、运营商、sim卡及使用习惯的不同,同一款手机的实际使用时间有较大的差异,因此难以比较和衡量。目前业界衡量该性能的指标是待机时间和待机电流,其中待机时间是一种理想状态下手机使用时间,即使用充满电的电池,在综测仪或实网环境下,在没有任何外界因素干扰的条件下,从开机持续到关机的时间。而待机电流是在上述条件下,手机进入规律性的搜网、睡眠状态转换,在一段时间内的平均电流。一般情况下,待机电流越小,待机时间越长。
目前业界对待机电流的测试,基本沿用以往传统的电子行业的测试方法,即用电流表采集电流数据,通过GPIB卡传给PC储存和显示;如果需要进一步查看波形,需要引入一个带积分功能的示波器。由于示波器只能检测电压信号,因此还需要电磁式探针或检流电阻将电流信号转换为电压信号。该方法有如下缺点:1)电流表采样率低;2)电流表存在通信瓶颈,会漏数据,也因此需要再引入示波器看波形;3)仅有一个待机电流的结果,缺少对测试结果的分析,不能识别手机的各个状态,难以定位问题;4)电磁式电流探针精度低,而检流电阻所引入的误差缺乏分析和补偿;5)示波器测试时间不能过长,波形结果存储不方便;6)成本高,操作难度较大。
造成这一情况的原因是以往的非便携式电子产品如电视、冰箱等对功耗的要求不高,例如电流差别0.1mA影响不大,但对于手机来讲却是致命的。并且手机有不同的page模式,这些增加手机各种状态的复杂程度,因此有必要开发一种专用于手机待机电流的自动化、智能式的测试设备。
而对于待机时间测试,目前业界没有成熟的自动化方案,只是人手动的按键,点亮液晶屏,查看有无关机,不能精确确定关机时间,并且会打扰手机睡眠流程,误差很大。
对于手机的充电流程,也缺少自动测试设备,主要由人查看时间、手动测量电池电压完成,难以有全面的测试。有的手机提供自测试功能,但是会干扰到充电流程本身。
发明内容
针对以上技术问题,本发明的目的在于提供一种针对手机的专用自动测试设备,包括数据采集模块、误差校正模块、专家知识库、数据分析模块、系统内存模块、存储显示模块、CPU模块;其中:
数据采集模块:包括至少三个采样通道,其中至少一个设有检流电阻作为电流采样通道;不设检流电阻的作为电压采样通道。其中:测试待机电流:手机和手机电池组成放电回路,一个电流采样通道的检流电阻与该回路串联,全程以预先设定的采样率采集手机电流数据,并将该数据以双缓冲DMA的方式存入系统内存中;测试待机时间:手机和手机电池组成放电回路,一个电压采样通道与手机电池并联,全程以预先设定的采样率采集手机电池的电压数据;测试充电流程:手机、手机充电器和手机电池组成充电回路,一个电流采样通道的检流电阻串连在充电器和手机之间采集充电电流,两个电压采样通道分别与手机电池和手机充电器的两极并联采集电池电压和充电电压,上述三个采样通道全程以固定采样率采集充电电流、电池电压和充电电压数据,且各采样通道之间相互隔离,调用上述若干采样通道进行数据采集和数据分析存储的软件进程相互独立;
误差校正模块:该误差校正模块通过误差补偿公式对检流电阻引入的系统误差进行校正和补偿。
专家知识库:该专家知识库的记录由手机电流的特征值,以及睡眠/搜网阶段手机电流的特征值和参考信息构成,上述特征值是指L1范数、能量和熵,上述特征值由手机电流的全部数据,以及其中睡眠/搜网阶段的手机电流数据,经小波变换后得到;上述参考信息指GSM/CDMA制式、page(呼叫)模式和芯片组平台信息;该专家知识库还储存有用于预估剩余待机时间的锂电池放电模型;该专家知识库既可以软件方式存储,也可固化定制芯片内。
数据分析模块:该数据分析模块对上述已采集的手机电流数据进行小波变换,计算L1范数、能量和熵,然后调用专家知识库存储的记录进行模糊推理,求出page(呼叫)模式,识别出睡眠状态和搜网的状态,计算睡眠周期、睡眠电流、睡眠时间、搜网电流、搜网时间、唤醒时间和入睡时间信息;也可依据专家知识库存储的锂电池放电模型,预估剩余的待机时间;
系统内存模块:用于暂时存储测试过程中临时产生的数据信息。
存储显示模块:包括数据存储器和显示装置,该数据存储器存储采集的原始数据和分析结果,该显示装置以数值、实时趋势图和历史趋势图的形式显示原始数据和分析结果。
CPU模块:与数据采集模块、误差校正模块、数据分析模块、专家知识库、系统内存模块和存储显示模块连接,控制数据采集模块、误差校正模块、数据分析模块、专家知识库、系统内存模块和存储显示模块之间的数据交换和工作状态,负责各任务间的管理调度,以及对数据信息进行处理;
所述的数据分析模块的睡眠周期、睡眠电流、睡眠时间、搜网电流、搜网时间、唤醒时间和入睡时间按照如下方法获得:由专家知识库识别出睡眠和搜网状态,可统计出测试时间内睡眠-搜网状态转换的次数,每睡眠、搜网一次所持续的时间作为睡眠周期;每一次睡眠状态持续的时间作为睡眠时间,该时间内的电流为睡眠电流;每一次搜网状态持续的时间作为搜网时间,该时间内的电流为搜网电流;由睡眠状态切换到搜网状态所经历的时间为唤醒时间,而由搜网状态切换到睡眠状态所经历的时间为唤醒时间;对上述睡眠周期、睡眠电流、睡眠时间、搜网电流、搜网时间、唤醒时间和入睡时间计算平均值、最大值和最小值,并将得到的数据存入存储显示模块的数据存储器内。
CPU模块调用系统内存中的电池电压数据,结合专家知识库存储的锂电池放电的数学模型,估计剩余待机时间。
在测试待机时间时,以高采样率(如1KHz-500MHz)短时间(如3-5秒)采集手机电池电压并判断有无瞬间电压跌落的方法确定手机是否关机。
在充电流程的测试中,以固定采样率进行电池电压、充电电压、充电电流数据的采集。
存储显示模块既可以将实时数据进行实时趋势图显示,也可以对以往的测试数据进行历史趋势图显示。
有益效果:本发明的手机待机电流、待机时间及充电流程的测试设备采样率高,基于双缓冲DMA的机制确保数据通信可靠;对检流电阻所引入的系统误差进行了分析和补偿;基于专家知识库识别睡眠和搜网状态,计算睡眠和搜网状态特征值,协助研发工程师定位问题;待机时间的测试实现了自动化,避免了人工按键查看的干扰;充电流程的测试实现了自动化,无需人工的干扰;成本低廉,操作简单,携带方便。
附图说明
图1、为本发明的模块系统构架图;
图2、为现有测试设备示意图;
图3、为本发明测试待机电流的电路连接示意图;
图4、为本发明测试待机时间的电路连接示意图;
图5、为本发明测试充电流程的电路连接示意图;
图6、为本发明测试待机电流的流程图;
图7、为本发明测试待机时间的流程图;
图8、为本发明测试充电流程的流程图;
图9、为本发明的数据分析模块对数据分析的工作流程图。
具体实施方式
本发明的手机待机电流、待机时间及充电流程测试设备,可用于但不限于手机研发和入网测试阶段中功耗和充电方面的测试,也适用于mp3/mp4、笔记本、数码相机、DV、手持GPS等手持/便携式电子设备功耗与充电方面的测试。
为便于对本发明进一步理解,现结合附图对本发明的手机待机电流、待机时间及充电流程测试设备的两种具体实施例进行阐述。
请参照图2所示,现在常用的手机待机电流测试设备主要由电流表和示波器构成,电流表用来采集各部分的电压和电流数据,并通过GPIB卡传给PC,示波器则用来查看波形,这种测试方法的存在着采样率低,所采集的数据不可靠;缺少对测试结果的分析,难以定位,并且缺乏对检流电阻所引入的误差的分析,造成误差较大;对测试结果的存储不方便;成本高,操作难度较大等缺点。
针对以上技术问题,本发明的目的在于提供一种针对手机的专用自动测试设备,包括测试手机待机电流、待机时间和充电流程三种功能。其中待机电流的测试,采样率高,基于双缓冲DMA的机制确保数据传输可靠;对检流电阻所引入的系统误差进行了分析和补偿;基于专家知识库识别睡眠和搜网状态,计算睡眠和搜网状态特征值,协助研发工程师定位问题。而待机时间的测试,通过全程采集电池电压监控手机电池放电过程,并通过查看有无电池电压瞬间跌落的方法确定手机搜网或关机的状态,避免人工按键查看的干扰;而充电流程的测试,通过全程采集电池电压、充电电压和充电电流监控手机充电的全部流程,实现测试的自动化,避免人工的干预。
请参照图1、图3、图4和图5所示,为实现上述的目的,本发明中测试手机待机电流、待机时间及充电流程的部分采用如下的技术方案来实现,该部分手机待机电流、待机时间及充电流程测试设备包括数据采集模块、误差校正模块、专家知识库、数据分析模块、系统内存模块、存储显示模块、CPU模块;其中:
数据采集模块:包括至少三个采样通道,其中至少一个设有检流电阻作为电流采样通道,不设检流电阻的作为电压采样通道,用于采集待机电流、电池电压、充电电压和充电电流。具体连接方式在后面叙述。
误差校正模块:该误差校正模块通过误差补偿公式对检流电阻引入的系统误差进行补偿,该误差补偿公式为:
Figure A20071012518600121
其中
Figure A20071012518600122
为手机电流的采集值,i(t)为修正后的电流值,V(t)为电源电压值,R0为检流电阻值;
专家知识库:该模块存储用于识别手机page(呼叫)模式、睡眠和搜网状态的专家知识,以及用于预估剩余待机时间的锂电池放电模型,构建方式在后面叙述。
数据分析模块:该数据分析模块对上述数据采集模块采集的手机电流数据进行小波变换,提取特征值,根据专家知识库存储的知识识别出page(呼叫)模式、睡眠状态和搜网的状态,计算睡眠周期、睡眠电流、睡眠时间、搜网电流、搜网时间、唤醒时间和入睡时间;也可依据专家知识库存储的锂电池放电模型,预估剩余的待机时间;
系统内存模块:用于暂时存储测试过程中临时产生的数据信息。
存储显示模块:包括数据存储器和显示装置,该数据存储器存储采集的原始数据和分析结果,该显示装置以数值、实时趋势图和历史趋势图的形式显示原始数据和分析结果。
CPU模块:控制上述各模块之间的数据交换和工作状态,负责各任务间的管理调度,该CPU模块的处理芯片采用X86兼容芯片;
在上述数据采集模块包括数据采集电路和软件,该数据采集电路与手机、手机电池和充电器之间的电性连接关系如下:
测试待机电流:手机和手机电池组成放电回路,一个电流采样通道的检流电阻与该回路串联,采集该检流电阻的电压数据,根据该检流电阻的阻值计算手机电流值;
测试待机时间:手机和手机电池组成放电回路,一个电压采样通道与手机电池并联,采集手机电池的电压数据;
测试充电流程:手机、手机充电器和手机电池组成充电回路,一个电流采样通道的检流电阻串连在充电器和手机之间采集充电电流,两个电压采样通道分别与手机电池和手机充电器的两极并联采集电池电压和充电电压;
在测试待机电流、待机时间和充电流程时,其数据采集和传输方式如下:
测试待机电流:因为采样率一般较高(如1KHz~500MHz),所以根据用户设定的采样率,设置硬件定时器,保证该高速采样率的精度。采用双缓冲DMA机制传输数据,具体如下:采集的数据先送入FIFO的前半部分,当半满时,FIFO的前半部分写入到系统内存缓冲中。采集的数据继续向FIFO的后半部分写入。当FIFO全写满时,FIFO的后半部分数据再写入系统内存缓冲中。此时,采集的数据会继续写入FIFO前半部分,如此反复,每半满一次,FIFO的前或后半部分就会被写到系统内存缓冲中去,从而达到连续高速采集的功能,避免以往的测试设备丢失数据的缺点。
测试待机时间:全程监控手机电池放电过程时所需采样率较低(如0.1Hz~10Hz),可以根据用户设定的采样率,由CPU设置软件定时器,定时采集电池电压,CPU模块以该软件定时器中断或查询的方式得到上述电池电压采集值;在通过判断有无瞬间电压跌落的方法确定手机是否关机时,以高采样率(如1KHz-500MHz)短时间(如3-5秒)采集手机电池电压数据,并以双缓冲DMA方式传输数据到系统内存中。
测试充电流程:全程监控手机充电流程时所需采样率较低(如0.1Hz~10Hz),可以根据用户设定的采样率,由CPU设置软件定时器,定时采集电池电压/充电电压/充电电流数据,CPU模块以该软件定时器中断或查询的方式得到上述数据;
专家知识库的构建过程如下:该专家知识库的记录由手机电流的特征值,以及睡眠/搜网阶段手机电流的特征值和参考信息构成,上述特征值是指L1范数、能量和熵,该特征值由手机电流的全部数据,以及其中睡眠/搜网阶段的手机电流数据,经小波变换后得到;上述参考信息指GSM/CDMA制式、page(呼叫)模式和芯片组平台信息;
该专家知识库是建立在以往大量测试数据的基础上的。针对处于不同制式(GSM/CDMA等)、不同平台、不同page(呼叫)模式下的手机待机电流测试数据,提取上述特征值和参考信息,作为若干条记录,构建专家知识库。
上述专家知识库既可以软件形式存在,也可固化在定制芯片内。
为了保证待机电流、待机时间、充电流程三项测试功能的独立,上述的采样通道之间相互隔离,调用上述若干采样通道进行数据采集和数据分析存储的软件进程相互独立,因此一台该设备,可以对一台手机进行上述三项测试功能中的任一项进行测试,也可以通过测试通道的切换和软件的选择,对多台手机分别进行待机电流、待机时间、充电流程的测试。
对上述的待机电流测试过程、待机时间测试过程、充电流程分别进行测试时,其步骤如下:
请参照图6所示,待机电流的测试流程:
步骤100、用户在软件界面设置采样率(1KHz~500MHz),测试时间(如60秒),选择采样通道和测试数据保存路径;
步骤101、测试开始后,CPU模块根据用户设定的采样率设置硬件定时器,启动电流数据采集进程,采集手机电流数据,以双缓冲DMA的方式传输到系统内存中,直至测试时间结束;
步骤102、从该步骤起进入后续处理阶段。CPU模块首先调用误差校正模块进行误差补偿,对手机电流的测量值进行校正;
步骤103、CPU模块调用存储显示模块,保存测试的原始数据,并以图形的方式进行显示;
步骤104、然后调用数据处理模块,根据专家知识库的知识,识别出page(呼叫)模式、睡眠和搜网状态,确定睡眠结束点、搜网起始点、搜网结束点和睡眠起始点,计算睡眠周期、睡眠电流、睡眠时间、搜网电流、搜网时间、唤醒时间和入睡时间的最大/最小/平均值;
步骤105、调用存储显示模块,以数据形式显示上述步骤104的分析数据,以不同的颜色在上述步骤104的待机电流图上显示睡眠和搜网的阶段;以不同的标记(如*、#等)标注出上述步骤104中的睡眠结束点、搜网起始点、搜网结束点、睡眠起始点,和睡眠电流、搜网电流的最大/最小值,上述颜色和标记可由用户编辑;
也可由用户选择以往测试的历史数据,确定后由CPU模块调用存储显示模块,以数据和图形的方式进行显示;然后执行步骤104,进行数据分析并显示。
请参照图7所示,待机时间的测试流程:
步骤200、用户在软件界面设置采样率(0.1Hz~100Hz),选择采样通道,和测试数据保存路径,并确定硬件连接正确;
步骤201、测试开始后,CPU模块首先在界面上显示当前时间,然后根据用户设定的采样率设置软件定时器,启动数据采集进程,采集电池电压数据;
步骤202、CPU模块以上述软件定时器中断或查询的方式得到电池电压数据,然后调用存储显示模块,保存该数据,并以数值和实时趋势图的形式在界面上显示;
步骤203、数据处理模块调用专家知识库中锂电池放电模型,根据当前电池电压值和放电速率,估计剩余待机时间;
步骤204、用户点击“历史曲线”按钮,CPU模块调用存储显示模块以趋势图的形式显示从测试开始到现在的电池电压数据。
步骤205、每隔一段时间(1秒钟~2小时)以高采样率(如1KHz-500MHz)对手机电池电压进行短时间(如3-5秒)采集并判断有无瞬间电压跌落,如有,说明搜网正常,手机工作正常;如无,说明已关机,记录此时的时间,与测试开始时间相比较得到实测待机时间,并调用存储显示模块保存并显示该待机时间值。
也可由用户单击“查看是否关机”按钮,进行上述步骤205中高速采集电池电压并判断有无电压跌落的操作,同时调用存储显示模块以图形的方式显示该段时间(如3-5秒)的电池电压数据,无需人工按键查看是否关机,避免对待机时间测试的干扰。
而判断待测手机已关机后,也不停止待机时间的测试,除非人工停止。此操作的目的在于查看手机低电压自动关机是否成功,关机后漏电流是否过大等问题。
也可由用户选择以往测试的历史数据,确定后由CPU模块调用存储显示模块,以图形的方式进行显示;
请参照图8所示,充电流程的测试流程:
步骤300、用户在软件界面设置采样率(0.1Hz~100Hz),选择采样通道,和测试数据保存路径,并确定硬件连接正确;
步骤301、测试开始后,CPU模块首先在界面上显示当前时间,然后根据用户设定的采样率设置软件定时器,启动数据采集进程,采集电池电压/充电电压/充电电流数据;
步骤302、CPU模块以上述软件定时器中断或查询的方式得到电池电压/充电电压/充电电流数据,然后调用存储显示模块,保存上述数据,并以数值和实时趋势图的形式在界面上显示;
用户点击“历史曲线”按钮,CPU模块调用存储显示模块以趋势图的形式显示从测试开始到现在的电池电压/充电电压/充电电流数据,除非人工停止,否则不停止充电流程的测试。如此操作的目的是查看手机在充电完成后的操作是否正常,如有无及时停止充电,产生电池过充的问题,以及错误的由电池供电,充电时间越长电池电压越低等问题。
也可由用户选择以往测试的历史数据,确定后由CPU模块调用存储显示模块,以图形的方式进行显示;
请参阅图9,本发明与专家知识库相配合的数据分析模块的作用是确定睡眠起始点、睡眠结束点、搜网起始点和搜网结束点,识别出page(呼叫)模式、睡眠和搜网状态,计算睡眠周期、睡眠电流、睡眠时间、搜网电流、搜网时间、唤醒时间和入睡时间,流程如下:
步骤400:数据分析模块计算本次测试数据的特征值(L1范数、熵、平均能量);
步骤405:分别与专家知识库中各条记录的特征值(L1范数、熵、平均能量)求差值,计算隶属度,进行模糊推理,求得最相近的一条记录,即可确认page模式;制式、芯片组平台信息可帮助缩小搜索空间;
步骤410:得到该记录中睡眠和搜网阶段的特征值(L1范数、熵、平均能量);在本次测试数据中取前L个数据;
步骤415:对该L个数据计算特征值,与步骤410中得到的特征值进行比较,如果相符,即为睡眠或搜网阶段,至步骤425;如果不符,至步骤420;
步骤420:继续取后L个数据,重复步骤415;
步骤425:找出本L个数据中两切换阶段状态的分隔值。
以睡眠切换到搜网状态为例,当该L个数据中的前i个数据的特征值与睡眠特征值的差值小于期望值,而i+1则反之时,则第i个数据为睡眠结束点;而该L个数据中的后j个数据的特征值与睡眠特征值的差值小于期望值,而j+1则反之时,则第j个数据为搜网起始点;同理在搜网切换到睡眠状态时,可以计算出搜网结束点和睡眠起始点。
从上述睡眠起始点开始,取后L个数据,重复步骤415,计算下一组睡眠结束点、搜网起始点、搜网结束点和睡眠起始点,直至全部数据结束。
步骤430:由步骤425确定出睡眠起始点、睡眠结束点、搜网起始点和搜网结束点,则可识别出睡眠和搜网状态:睡眠起始点和结束点之间的状态为睡眠状态,搜网起始点和结束点之间的状态为搜网状态;
步骤435:统计出测试时间内睡眠-搜网状态转换的次数,每睡眠、搜网一次所持续的时间作为睡眠周期;每一次睡眠状态持续的时间为睡眠时间,该时间内的电流为睡眠电流;每一次搜网状态持续的时间为搜网时间,该时间内的电流为搜网电流;由睡眠状态切换到搜网状态所经历的时间为唤醒时间,而由搜网状态切换到睡眠状态所经历的时间为唤醒时间;对上述睡眠周期、睡眠电流、睡眠时间、搜网电流、搜网时间、唤醒时间和入睡时间计算平均值、最大值和最小值,并将得到的数据存入存储显示模块的数据存储器内。
上述分析数据可测试和评估手机的性能,以及帮助工程师定位问题。例如睡眠电流可帮助工程师评估手机睡眠时电流泄漏的情况;搜网电流可帮助工程师评估射频模块探测功率、功率控制的情况;睡眠周期可评估有无软件的不良设计是否打扰到手机的睡眠,唤醒时间和入睡时间可评估睡眠与搜网状态的转换是否存在问题。这些测试数据和分析结果是提高手机待机时间和降低待机电流的重要手段,这是现有测试设备所不具备的。
下面结合具体的实施例,对本发明的手机待机电流、待机时间及充电流程测试设备的实施方式进行具体的阐明:
实施例1
结合图1阐述本发明手机待机电流、待机时间及充电流程测试设备的一具体实施例,本实施例中测试手机待机电流、待机时间及充电流程的部分采用如下的技术方案来实现,该手机待机电流、待机时间及充电流程测试设备包括数据采集模块、误差校正模块、专家知识库、数据分析模块、系统内存模块、存储显示模块、CPU模块;其中:
数据采集模块:本实施例设置8个采样通道,全部设有检流电阻,阻值25mΩ,均可通过硬件跳线选择使用/禁止该检流电阻。例如使能其中2个检流电阻,作为电流采样通道,则其他6个作为电压采样通道。根据说明书所述硬件采样通道相互隔离,软件进程相互独立,因此可对2台手机同时进行待机电流的测试,同时对其他6台手机进行待机时间的测试;或者对1台手机进行充电流程的测试(占用1个电流采样通道和2个电压采样通道),同时对另1台手机进行待机电流的测试,以及另4台手机进行待机时间的测试;或者对2台手机进行充电流程的测试(占用2个电流采样通道和4个电压采样通道),同时对另2台手机进行待机时间的测试。只要符合本发明所述的测试原理,不限于其他的组合方式。
测试待机电流时,采样率设置为1MHz/10MHz/100MHz,供用户选择;测试待机时间和充电流程时设置1Hz/10Hz/100Hz,供用户选择。
测试待机时间,在电池电压在3.6V~4.2V之间时,每5分钟,以20KHz采样率采集3秒钟的电池电压数据,判断有无电压跌落,以此确定手机是否关机;而在电池电压小于3.6V时,每1分钟进行上述操作一次。如此待机时间可精确到分钟等级,如待机时间100小时,测量误差为1/6000。上述电池电压数据以软件定时器查询或中断的方式获得。
专家知识库和数据分析模块:该专家知识库的构建和数据分析模块均采用二进离散小波变换,以Mallat塔式快速算法实现:
S 2 j f ( n ) = Σ k ∈ Z h k S 2 j - 1 f ( n - 2 j - 1 k )
W 2 j f ( n ) = Σ k ∈ Z g k S 2 j - 1 f ( n - 2 j - 1 k )
其中
Figure A20071012518600223
称作光滑算子, S 2 j f ( n ) = f * φ 2 j ( n ) , φ为尺度函数;且有 S 2 0 f ( n ) = dn , dn是待机电流的采集数据,在每个尺度2j上,
Figure A20071012518600226
被分解为近似信号
Figure A20071012518600227
和细节信号
Figure A20071012518600228
是信号f(n)的二进小波变换。{hk|k∈Z}和{gk|k∈Z}分别是低通滤波器H(ω)和高通滤波器G(ω)的系数,满足下列关系:
φ ^ ( 2 ω ) = H ( ω ) φ ^ ( ω )
ψ ^ ( 2 ω ) = G ( ω ) φ ^ ( ω )
                |H(ω)|2+|G(ω)|2=1
其中^表示函数的傅立叶变换。
本实施方式所选的小波为三阶样条小波,相应的hk和gk值如下:
h1=0.3750,h2=0.1250,h3=0
g1=0.5798,g2=0.0869,g3=0.0061
hk=h1-k,gk=-g1-k,hk=gk=0(若k>3)。
模糊推理的隶属度函数采用三角函数。
CPU模块采用ARM内核的芯片。
实施例2
数据采集模块:本实施例设置16个采样通道,偶数通道设有检流电阻,阻值35mΩ,奇数通道不设检流电阻。
测试待机电流时,采样率设置为1MHz/10MHz/50MHz/100MHz,供用户选择;测试待机时间和充电流程时设置1Hz/10Hz/50Hz/100Hz,供用户选择。
测试待机时间,在电池电压属于3.6V~4.2V之间时,每5分钟,以10KHz采样率采集3秒钟的电池电压数据,判断有无电压跌落,以此确定手机是否关机;在电池电压属于3.5V~3.6V时,每1分钟进行上述操作一次;而在电池电压小于3.5V时,每30秒钟进行上述操作一次。如此待机时间可精确到30秒,如待机时间100小时,测量误差为1/12000
专家库的构建和数据分析模块,均采用连续小波变换,即在连续尺度a和位移τ值下,待机电流采集值d(t)与小波函数 ψ α , τ ( t ) = 1 α ψ ( t - τ α ) 的卷积:
W x ( α , τ ) = ∫ - ∞ + ∞ x ( t ) ψ α , τ * ( t ) dt
本实施方式用于连续小波变换的基小波函数为Mrolet小波,其数学表达式为:
ψ ( t ) = e - t 2 / 2 e tw 0 t
模糊推理的隶属度函数采用高斯型函数。

Claims (9)

1、一种手机待机电流、待机时间及充电流程的测试设备,其特征在于,该设备包括数据采集模块、误差校正模块、专家知识库、数据分析模块、系统内存模块、存储显示模块、CPU模块;其中:
数据采集模块:包括至少三个采样通道,其中至少一个设有检流电阻作为电流采样通道;不设检流电阻的作为电压采样通道。其中:测试待机电流:手机和手机电池组成放电回路,一个电流采样通道的检流电阻与该回路串联,全程以预先设定的采样率采集手机电流数据,并将该数据以双缓冲DMA的方式存入系统内存中;测试待机时间:手机和手机电池组成放电回路,一个电压采样通道与手机电池并联,全程以预先设定的采样率采集手机电池的电压数据;测试充电流程:手机、手机充电器和手机电池组成充电回路,一个电流采样通道的检流电阻串连在充电器和手机之间采集充电电流,两个电压采样通道分别与手机电池和手机充电器的两极并联采集电池电压和充电电压,上述三个采样通道全程以固定采样率采集充电电流、电池电压和充电电压数据;
误差校正模块:该误差校正模块通过误差补偿公式对检流电阻引入的系统误差进行校正和补偿。
专家知识库:该专家知识库的记录由手机电流的特征值,以及睡眠/搜网阶段手机电流的特征值和参考信息构成,上述特征值是指L1范数、能量和熵,上述特征值由手机电流的全部数据,以及其中睡眠/搜网阶段的手机电流数据,经小波变换后得到;上述参考信息指GSM/CDMA制式、page(呼叫)模式和芯片组平台信息;该专家知识库还储存有用于预估剩余待机时间的锂电池放电模型;
数据分析模块:该数据分析模块对上述已采集的手机电流数据进行小波变换,计算L1范数、能量和熵,然后调用专家知识库存储的记录进行模糊推理,求出page(呼叫)模式,识别出睡眠状态和搜网的状态,计算睡眠周期、睡眠电流、睡眠时间、搜网电流、搜网时间、唤醒时间和入睡时间;也可依据专家知识库存储的锂电池放电模型,预估剩余的待机时间;
系统内存模块:用于暂时存储测试过程中临时产生的数据信息。
存储显示模块:包括数据存储器和显示装置,该数据存储器存储采集的原始数据和分析结果,该显示装置以数值、实时趋势图和历史趋势图的形式显示原始数据和分析结果。
CPU模块:与数据采集模块、误差校正模块、专家知识库、数据分析模块、系统内存模块和存储显示模块连接,控制数据采集模块、误差校正模块、数据分析模块、专家知识库、系统内存模块和存储显示模块之间的数据交换和工作状态,负责各任务间的管理调度。
2、如权利要求1所述的一种手机待机电流、待机时间及充电流程测试设备,其特征在于,上述的采样通道之间相互隔离,调用上述若干采样通道进行数据采集和数据分析存储的软件进程相互独立。
3、如权利要求1或2所述的一种手机待机电流、待机时间及充电流程测试设备,其特征在于,上述数据分析模块调用专家知识库,分析数据采集模块所采集的手机电流数据,计算上述睡眠周期、睡眠电流、睡眠时间、搜网电流、搜网时间、唤醒时间和入睡时间,计算方法如下所示:由专家知识库识别出睡眠和搜网状态,可统计出测试时间内睡眠-搜网状态转换的次数,每睡眠、搜网一次所持续的时间作为睡眠周期;每一次睡眠状态持续的时间作为睡眠时间,该时间内的电流为睡眠电流;每一次搜网状态持续的时间作为搜网时间,该时间内的电流为搜网电流;由睡眠状态切换到搜网状态所经历的时间为唤醒时间,而由搜网状态切换到睡眠状态所经历的时间为唤醒时间;对上述睡眠周期、睡眠电流、睡眠时间、搜网电流、搜网时间、唤醒时间和入睡时间计算平均值、最大值和最小值,并将得到的数据存入存储显示模块的数据存储器内。
4、如权利要求1所述的一种手机待机电流、待机时间及充电流程试设备,其特征在于,数据分析模块调用已采集的电池电压数据,结合专家知识库存储的锂电池放电模型,估计剩余待机时间。
5、如权利要求1所述的一种手机待机电流、待机时间及充电流程测试设备,其特征在于,以高采样率(如1KHz-500MHz)短时间(如3-5秒)采集手机电池电压并判断有无瞬间电压跌落的方法确定手机是否关机。
6、如权利1所述的一种手机待机电流、待机时间及充电流程测试设备,其特征在于,上述充电流程的测试,以固定采样率采集电池电压、充电电压、充电电流,进行全程监控;上述待机时间的测试,以固定采样率采集电池电压,进行全程监控。
7、如权利要求1所述的一种手机待机电流、待机时间及充电流程测试设备,其特征在于,上述数据采集模块以双缓冲DMA的方式传输所采集的手机电流数据。
8、如权利要求1所述的一种手机待机电流、待机时间及充电流程测试设备,其特征在于,上述专家知识库既可以软件方式存储,也可固化定制芯片内。
9、如权利要求1所述的一种手机待机电流、待机时间及充电流程测试设备,其特征在于,上述误差校正模块通过误差补偿公式对检流电阻引入的系统误差进行校正和补偿。
CNA2007101251863A 2007-12-20 2007-12-20 一种手机待机电流、待机时间及充电流程的测试设备 Pending CN101282526A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007101251863A CN101282526A (zh) 2007-12-20 2007-12-20 一种手机待机电流、待机时间及充电流程的测试设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007101251863A CN101282526A (zh) 2007-12-20 2007-12-20 一种手机待机电流、待机时间及充电流程的测试设备

Publications (1)

Publication Number Publication Date
CN101282526A true CN101282526A (zh) 2008-10-08

Family

ID=40014753

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101251863A Pending CN101282526A (zh) 2007-12-20 2007-12-20 一种手机待机电流、待机时间及充电流程的测试设备

Country Status (1)

Country Link
CN (1) CN101282526A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010145287A1 (zh) * 2009-06-15 2010-12-23 中兴通讯股份有限公司 一种显示移动终端待机时间的方法及其装置
CN101771795B (zh) * 2008-12-27 2012-12-12 佳能株式会社 数据存储设备及其控制方法
CN103278707A (zh) * 2013-04-25 2013-09-04 北京百纳威尔科技有限公司 获取终端待机时间的方法及终端
CN103454509A (zh) * 2012-05-30 2013-12-18 联芯科技有限公司 手机充电检测系统和方法
WO2014117340A1 (en) * 2013-01-30 2014-08-07 St-Ericsson Sa Method and device for measuring state of charge of mobile terminal
CN104486779A (zh) * 2014-12-05 2015-04-01 沈阳晨讯希姆通科技有限公司 移动通信终端慢时钟测试方法及其测试系统
CN105093027A (zh) * 2015-08-20 2015-11-25 小米科技有限责任公司 多功能测试仪及多功能测试方法
CN106706998A (zh) * 2016-11-28 2017-05-24 深圳天珑无线科技有限公司 终端测试系统和终端测试方法
CN108761187A (zh) * 2018-06-06 2018-11-06 Oppo(重庆)智能科技有限公司 一种基底电流测试方法、系统及终端设备
CN111624918A (zh) * 2020-06-08 2020-09-04 上海东软载波微电子有限公司 微控制器工作状态获取方法及装置、系统、可读存储介质
CN112684360A (zh) * 2020-12-15 2021-04-20 闻泰通讯股份有限公司 充电测试方法、装置、终端和存储介质
CN114168365A (zh) * 2021-12-07 2022-03-11 中国船舶重工集团公司第七0七研究所 一种基于stm32f450处理器的实时数据录取方法
CN114509637A (zh) * 2022-04-19 2022-05-17 深圳市森树强电子科技有限公司 一种充电器充放电评估方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771795B (zh) * 2008-12-27 2012-12-12 佳能株式会社 数据存储设备及其控制方法
WO2010145287A1 (zh) * 2009-06-15 2010-12-23 中兴通讯股份有限公司 一种显示移动终端待机时间的方法及其装置
CN103454509B (zh) * 2012-05-30 2016-02-03 联芯科技有限公司 手机充电检测系统和方法
CN103454509A (zh) * 2012-05-30 2013-12-18 联芯科技有限公司 手机充电检测系统和方法
CN105283772A (zh) * 2013-01-30 2016-01-27 意法-爱立信有限公司 测量移动终端电池状态的方法和装置
WO2014117340A1 (en) * 2013-01-30 2014-08-07 St-Ericsson Sa Method and device for measuring state of charge of mobile terminal
CN103278707B (zh) * 2013-04-25 2015-08-19 北京百纳威尔科技有限公司 获取终端待机时间的方法及终端
CN103278707A (zh) * 2013-04-25 2013-09-04 北京百纳威尔科技有限公司 获取终端待机时间的方法及终端
CN104486779B (zh) * 2014-12-05 2018-10-30 沈阳晨讯希姆通科技有限公司 移动通信终端慢时钟测试方法及其测试系统
CN104486779A (zh) * 2014-12-05 2015-04-01 沈阳晨讯希姆通科技有限公司 移动通信终端慢时钟测试方法及其测试系统
CN105093027A (zh) * 2015-08-20 2015-11-25 小米科技有限责任公司 多功能测试仪及多功能测试方法
CN106706998A (zh) * 2016-11-28 2017-05-24 深圳天珑无线科技有限公司 终端测试系统和终端测试方法
CN106706998B (zh) * 2016-11-28 2020-02-21 上海熙扬市场营销策划有限公司 终端测试系统和终端测试方法
CN108761187A (zh) * 2018-06-06 2018-11-06 Oppo(重庆)智能科技有限公司 一种基底电流测试方法、系统及终端设备
CN111624918A (zh) * 2020-06-08 2020-09-04 上海东软载波微电子有限公司 微控制器工作状态获取方法及装置、系统、可读存储介质
CN112684360A (zh) * 2020-12-15 2021-04-20 闻泰通讯股份有限公司 充电测试方法、装置、终端和存储介质
CN114168365A (zh) * 2021-12-07 2022-03-11 中国船舶重工集团公司第七0七研究所 一种基于stm32f450处理器的实时数据录取方法
CN114168365B (zh) * 2021-12-07 2023-06-20 中国船舶重工集团公司第七0七研究所 一种基于stm32f450处理器的实时数据录取方法
CN114509637A (zh) * 2022-04-19 2022-05-17 深圳市森树强电子科技有限公司 一种充电器充放电评估方法

Similar Documents

Publication Publication Date Title
CN101282526A (zh) 一种手机待机电流、待机时间及充电流程的测试设备
CN103616648B (zh) 多级联高压、大功率电池组监测管理装置
CN201716409U (zh) 智能电能表现场检测装置
CN103558453B (zh) 多电源供电直购电客户最大需量采集系统
CN101222735B (zh) 测试移动终端待机时间的方法、装置
CN102174807B (zh) 无缆式静力触探仪及数据采集处理方法
CN107886702A (zh) 基于载波通讯的远程通讯电能表及其工作流程
CN109507625A (zh) 电池模拟器的自动校准方法及终端设备
CN108445321A (zh) 一种继电保护故障智能录波方法
CN108445322A (zh) 一种继电保护故障回放方法
CN110297192B (zh) 一种估算电池充放电时电量的方法及开机时电量校正方法
CN115420943A (zh) 基于大数据的窃电检测方法、装置、设备及存储介质
CN206960550U (zh) 低压电缆电流测试记录仪
CN105046934B (zh) 一种可与海底热流测量单元实现数据通信的设备及通信方法
CN107328994A (zh) 变压器绝缘电阻试验装置及方法
Mamo et al. Power quality indicators
CN112505613B (zh) 一种高供高计全失压计量故障损失电量估算方法及系统
CN109407039A (zh) 智能电表及其系统、自诊断方法和故障检测方法
CN113128117A (zh) 基于ai人工神经网络的研究的低压集抄运维仿真装置
CN114252784A (zh) 一种锂亚电池剩余电量的计算方法
CN201174139Y (zh) 时率工况监测装置
Konstantakos et al. In-chip configuration for monitoring power consumption in micro-processing systems
CN213803993U (zh) 用于金属管道阴极保护的实时采集系统
CN211176327U (zh) 管路参数记录仪
CN105099823A (zh) 遥信系统测试仪及基于其的遥信系统测试方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081008