CN101257920B - 与抗前列腺癌疫苗有关的方法和组合物 - Google Patents

与抗前列腺癌疫苗有关的方法和组合物 Download PDF

Info

Publication number
CN101257920B
CN101257920B CN200680030353XA CN200680030353A CN101257920B CN 101257920 B CN101257920 B CN 101257920B CN 200680030353X A CN200680030353X A CN 200680030353XA CN 200680030353 A CN200680030353 A CN 200680030353A CN 101257920 B CN101257920 B CN 101257920B
Authority
CN
China
Prior art keywords
psa
cell
antigen
dna
people
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200680030353XA
Other languages
English (en)
Other versions
CN101257920A (zh
Inventor
克里斯托弗·莱德
艾伦·D·金
马克西姆·帕夫伦科
佩维尔·皮萨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cyto Pulse Sciences Inc
Original Assignee
Cyto Pulse Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cyto Pulse Sciences Inc filed Critical Cyto Pulse Sciences Inc
Publication of CN101257920A publication Critical patent/CN101257920A/zh
Application granted granted Critical
Publication of CN101257920B publication Critical patent/CN101257920B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001193Prostate associated antigens e.g. Prostate stem cell antigen [PSCA]; Prostate carcinoma tumor antigen [PCTA]; PAP or PSGR
    • A61K39/001194Prostate specific antigen [PSA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4615Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464493Prostate associated antigens e.g. Prostate stem cell antigen [PSCA]; Prostate carcinoma tumor antigen [PCTA]; Prostatic acid phosphatase [PAP]; Prostate-specific G-protein-coupled receptor [PSGR]
    • A61K39/464494Prostate specific antigen [PSA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5154Antigen presenting cells [APCs], e.g. dendritic cells or macrophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5156Animal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/58Prostate

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明的目的是提供与抗前列腺癌疫苗有关的方法和组合物,所述疫苗包括非人灵长类PSA,其用于对人施用以提供抗人PSA的免疫应答。

Description

与抗前列腺癌疫苗有关的方法和组合物
相关申请的交叉参考
本申请要求2005年6月21日提交、且尚未授权的美国临时申请60/692,238的优先权。
技术领域
本申请主要涉及与疫苗有关的方法和组合物,更具体地,涉及与抗前列腺癌的疫苗有关的方法和组合物。
背景技术
在介绍背景技术之前,先声明,下文的括号[]中的数字是指,说明书最后的参考文献章节所列的文献的编号。
在美国,前列腺癌是男性最常见的癌症,并且是癌症致死的第二大原因[2]。目前对局部癌症采用的疗法包括外科手术和放疗,它们一般都是成功的。但对转移性疾病的治疗就不那么有效,因为现有的体液疗法只在短时间内起作用[3]。因此需要有新的治疗前列腺癌的方法。
基于CD8+细胞毒T淋巴细胞(CTL)的免疫疗法是一种有前景的潜在新疗法,尤其是对于预防和辅助治疗转移性疾病而言[4,5]。CTL识别靶细胞表面短肽(8-10个氨基酸)形式的、与I类主要组织相容性复合物(MHC)形成复合物的抗原。CTL直接裂解这些细胞的能力使得它们在肿瘤免疫治疗方面很有吸引力。
有人认为,前列腺特异性抗原(PSA)是CTL特异性破坏前列腺癌细胞时用到的肿瘤抗原。PSA高度特异性地仅在前列腺表达,它可以被前列腺癌细胞持续表达,并且迄今已有大量关于PSA的生化、遗传和细胞生物学信息,所有这些都使PSA成为前列腺癌免疫疗法的潜在标靶的极佳候选物。
近期有一些临床试验评价了数种基于PSA的疫苗在晚期前列腺癌患者体内激发抗PSA的免疫应答的效果。这些疫苗包括,表达PSA的重组痘苗病毒(rV-PSA)[6-9],重组PSA蛋白的脂质体制剂[10],经重组PSA蛋白脉冲[11]或已被编码PSA的RNA转染[12]的自体树突细胞(DC)。
CD8+T细胞
CD8+T细胞的主要生物学功能是在机体中消灭被病原体感染的细胞。T细胞识别受感染的细胞的机制目前已了解到分子水平,其有赖于T细胞受体复合物(TCR)与结合到主要组织相容性复合物I类分子(MHC I)上的抗原肽之间的相互作用。由该细胞产生的所有蛋白抗原都最终被降解,所得的肽由MHC I分子呈递在细胞表面。
CD8+T细胞的生成(development)
T细胞在胸腺生成,在胸腺中,TCR的α和β基因节段发生重排,导致每一个T细胞克隆最终表达一种特有的TCR[13]。一些发育中的胸腺细胞产生表面TCR,它们表达CD4和CD8的共受体(co-receptor),并经历复杂的成熟过程,该过程有赖于它们的TCR对自身肽-MHC配体的特异性和亲和力。当胸腺细胞表达的TCR对自身肽-MHC分子无亲和力时,这些胸腺细胞通过程序性细胞死亡机制而死亡。当胸腺细胞表达的TCR对胸腺中多个细胞表面的自身肽-MHC分子有较强的亲和力,致使这些胸腺细胞具有潜在的危害时,它们经由物理删除(physical deletion)[14]、功能失活(functional inactivation)[15]、或受体编辑(receptor editing)[16]等途径而被消灭。只有当胸腺细胞表达的TCR对胸腺基质细胞(thymic stromal cell)表面的自身肽-MHC分子具有低水平但却是显著的亲和力时,这样的胸腺细胞才能在胸腺选择过程中幸存下来[17]。
CD8+原初T细胞的再循环和存活
“原初
Figure S200680030353XD00021
”T细胞是指,尚未遭遇外源肽-MHC配体、而其TCR又对该复合体具有高亲和力的那些T细胞,它们是健康年轻人(healthy youngadult)的二级淋巴器官中的主要T细胞。原初T细胞通过多个二级淋巴器官持续地再循环,这些淋巴器官包括脾脏、淋巴结、和粘膜淋巴器官(如肠内的派尔结(Peyer′s patches))[18,19]。据估计,单个的原初T细胞通过二级淋巴器官进行循环的平均时间为数月[20,21]。CD8+原初T细胞在此正常生命周期(lifespan)期间的存活,是通过低亲和力TCR对自身肽-MHC复合物的识别[22]、以及经由IL-7受体进行的信号传递[23,24]来维持的。虽然经由TCR和IL-7受体进行的信号传递需要有原初T细胞,但在含有正常数量的T细胞的宿主中,这些信号不引起T细胞增殖。相反,原初T细胞转移到T细胞缺陷的宿主体内之后发生增殖。这种“自我平衡性(homeostatic)”增殖也依赖于IL-7[23,24]以及对自身肽-MHC复合物的低亲和力TCR识别[25],但不依赖于IL-2或CD28协同刺激受体[26]。在年幼个体中,胸腺不断产生新的原初T细胞,它们被运送到二级淋巴器官,以替换衰老的(senescent)原初T细胞。而在那些胸腺产生的原初T细胞减少或不产生原初T细胞的年老个体中,衰老的细胞通过剩余的原初T细胞的增殖来更新。
CD8+T细胞的活化
CD8+原初T细胞在移动通过二级淋巴器官的T细胞区时,遭遇由大且形状不规则的树突细胞(DC)组成的密集网络,这些DC组成型地表达高水平的、为该机体中任何细胞都有的MHC分子[27]。在无感染或组织损伤的情况下,二级淋巴器官中的所有DC群体以静息状态存在,其特征是,CD80和CD86等协同刺激分子低水平表达[28]。在这种状态下,DC最有可能的作用是,呈递低亲和力的自身肽-MHC配体,以维持原初T细胞的存活。
在有感染的情况下,多种病毒产物或细菌产物被先天性免疫系统的细胞(包括DC)表面的模式识别受体(pattern recognition receptor)识别[29],所述受体例如Toll-样受体(TLR)。TLR信号传递引起DC的活化,这导致表达高水平的协同刺激分子(CD80和CD86)、和产生促炎细胞因子[30]。然后,活化的DC将病原体来源的肽-MHC I分子的复合物呈递给CD8+原初T细胞。除了通过TLR传递信号,CD8+原初T细胞还需要由协同刺激性CD28受体和IL-12受体传来的信号,才能最大水平地增殖,并分化成细胞毒效应细胞[31-33]。所有这些信号都可以由活化的DC传递给CD8+原初T细胞[34]。
CD8+原初T细胞在体内暴露于抗原后,仅过48小时,就显示有DNA复制和细胞分化的迹象[35-37]。之后数日内,抗原特异性T细胞数呈指数增加。根据刺激的不同,二级淋巴器官中的抗原特异性CD8+T细胞数在经抗原活化后的7-15日即达到最大水平(图2.3)[35,38-43]。
体外试验显示,受抗原刺激的原初T细胞的细胞分化由IL-2的自分泌来启动[44]。但意外的是,在体内,由抗原驱动的原初T细胞增殖对IL-2的依赖很小[45-49]。可见,除了IL-2以外,必有其它信号或生长因子也能驱动T细胞的体内增殖。
体内T细胞增殖受DC传来的协同刺激信号的密切调节(tightlyregulated)。当小鼠中的CD28不能与其配体CD80和CD86相互作用时,这种小鼠中受抗原刺激的CD8+T细胞的增殖大大减少[37,45,50]。CD40配体缺陷对T细胞扩增(expansion)也有类似的影响,这种扩增可能涉及CD40信号传递对抗原呈递细胞表面CD80和CD86的诱导[51]。协同刺激信号通过促进生长因子的产生来调节T细胞增殖。当CD28信号传递消失时,由抗原驱动的IL-2生成被大大削弱[45]。
CD8+效应T细胞
抗原特异性CD8+T细胞在免疫应答高峰时发挥效应物功能,因此它们也称“效应细胞(effector cell)”[52]。效应细胞表达一组特有的粘附受体。与原初细胞不同,效应细胞表达穿孔蛋白(perforin)和粒酶(granzyme),它们使效应细胞具有特定的对展示相应肽-MHC I类分子复合物的靶细胞进行直接杀伤的能力[53]。这些效应T细胞移出T细胞,进入多种非淋巴组织,尤其有抗原沉积的发炎部位。具有裂解细胞的潜能的CD8+效应T细胞移动到非淋巴的器官中,这是从机体各个部位消灭展示肽-MHC I类分子复合物的细胞的一种有效方式。
二级淋巴器官中效应T细胞的数量在增殖高峰之后大大下降[35,38-43]。效应T细胞死亡的分子基础依抗原刺激的性质不同而有不同。在单次施用抗原后发生T细胞反应的情况下,所述死亡不依赖Fas、但对Bcl-2敏感[54],最有可能因生长因子损失(deprivation)而发生死亡[55]。在长期呈递抗原的情况下,有可能发生TCR介导的活化诱导的细胞死亡(AICD)[56]。这种凋亡依赖Fas,很少受Bcl-2抑制[55]。
IL-2在AICD中的作用是,阻止FLICE抑制蛋白的活化,所述抑制蛋白通常抑制Fas信号传递[57]。CD8+效应T细胞的死亡受炎症调节。在无炎症的情况下,二级淋巴器官和非淋巴的器官在增殖高峰之后,其抗原特异性T细胞的彻底损失[58]。相反,将抗原与LPS或IL-1等佐剂一起注射后,更多的细胞经过该损失期之后幸存下来[35,58,59]。
CD8+记忆T细胞
大多数效应细胞在增殖高峰之后死亡,但如果抗原最初是在炎症中呈递的,则有一群接触过该抗原的T细胞能存活较长时间[52]。在多数情况下,可以将记忆细胞看作是回归基础活化状态的效应细胞。事实上,有多方面证据提示,效应细胞是记忆细胞的前体细胞[60,61]。
与CD8+原初T细胞不同,CD8+记忆T细胞的存活不依赖MHC I类分子[62]。虽然大多数CD8+记忆T细胞不进行循环,但任何时候都有一小部分这样的记忆细胞以MHC I类分子非依赖性方式进行增殖[47,62]。这种增殖与死亡之间是平衡的,因为在一段时间内,抗原特异性CD8+记忆T细胞总数维持不变。有证据提示,IL-15在此过程中起作用。CD8+记忆T细胞的抗原非依赖性增殖因注射IL-15而加速[63]、因注射抗IL-15抗体而被阻断[47]。此外,CD8+记忆T细胞数量在IL-15缺陷型小鼠中减少[64]。由于IL-15由非T细胞在先天性免疫应答期间产生,CD8+记忆T细胞的维持有可能是响应于其它感染而生成IL-15所引起的后果[63,65]。
前列腺特异性抗原(PSA)
前列腺特异性抗原(PSA)是仅由前列腺腺泡和导管内壁(lining)的柱状上皮细胞产生的激肽释放酶(kallikrein)样丝氨酸蛋白酶[66-68]。PSA被分泌到前列腺导管腔中,其在精液(seminal plasma)中浓度非常高,为约0.5-5mg/ml[69]。从生理学角度来说,PSA在精液中的作用是,对参与形成凝胶的主要蛋白,即精胶蛋白(semenogelin)I和II、以及纤连蛋白(fibronectin),进行切割,从而增加精子的运动能力[67,70,71]。
PSA被翻译成261个氨基酸的无活性前原PSA(preproPSA)前体。前原PSA有24个额外残基,它们构成前区(信号肽)和前肽。释放该前肽,则得到237个氨基酸的成熟胞外形式,它具有酶活性。人的腺性激肽释放酶2(hKLK2)与PSA相似,优先在前列腺组织中表达,负责前PSA(proPSA)的活化[72]。PSA已显示含有与天冬酰胺-69相连的N连接型寡糖[73]。
PSA也释放到血液中,但浓度较低。在无前列腺癌临床迹象的健康男性中,测出的PSA血清浓度常常不到4ng/ml[74-76]。在血液中,酶活性PSA通过与α1-抗胰凝乳蛋白酶(antichymotrypsin,ACT)形成共价连接复合体而失活[77,78]。无酶活性的(内部修剪的(internally clipped))PSA不能与蛋白酶抑制剂形成复合体,而是在血液中以游离的、非复合形式循环[79]。
PSA具有器官特异性,因此它由良性前列腺增生(BPH)组织、原发性前列腺癌组织、以及转移性前列腺癌组织的上皮细胞产生[66,80]。事实上,正常的前列腺上皮细胞和BPH组织比恶性前列腺组织产生更多的PSA蛋白[81,82]。因此,PSA不是传统意义上的在肿瘤细胞中产量高的肿瘤标志物,反而是,当前列腺构架因创伤或疾病而致异常时,可以使该酶经由毛细血管和淋巴管“渗漏”到基质、进而“渗漏”到血流中的量增加。
PSA在临床(clinic)的最常见用途是监控前列腺癌治疗。如果患者接受了前列腺根除术(radical prostatectomy),PSA的血清水平需降至测不到的水平,因为所有产生PSA的组织都被切除[83,84]。手术后PSA浓度升高,表示该病有复发[83,85,86]。PSA也反映前列腺癌患者中放疗和抗雄激素(激素)疗法的成功[87-89]。
质粒DNA抗癌疫苗
近年来开发出了多种肿瘤接种策略。它们中的大多数有赖于鉴定出可被免疫系统识别的肿瘤抗原。DNA接种是其中的一种方法,用于诱导抗肿瘤抗原的体液免疫应答和细胞免疫应答。动物模型中的研究证实,用DNA进行接种确实可以激发抗肿瘤的保护性免疫应答。但大多数由人的癌细胞表达的肿瘤抗原免疫原性很弱,它们要求开发出在临床应用时增强DNA疫苗效力的策略。下文介绍了一些最新进展,它们涉及对DNA疫苗免疫学的了解以及用于增加DNA疫苗在CTL活性方面的效力的策略。
DNA疫苗的免疫学
DNA疫苗通常是指简单的质粒表达载体。它包含插入在真核启动子和聚腺苷酸化序列之间、编码目标抗原的cDNA,细菌抗生素抗性基因和细菌复制起点。所述真核启动子和聚腺苷酸化序列是在哺乳动物细胞中正确表达抗原所必需的,所述抗生素抗性基因和复制起点使得能够在细菌中生成该载体。
在将裸露的质粒DNA通过肌肉内(i.m.)或皮内(i.d.)接种方式施用后,宿主细胞摄入所述DNA,产生所编码的抗原,所述抗原然后成为免疫应答的目标[90-93]。体内表达抗原很常见,可用强效病毒启动子实现,所述的病毒启动子具有普遍活性,可以在广泛多种类型的细胞中驱动抗原表达。常用的启动子是人巨细胞病毒即早期增强子-启动子(即CMV启动子)[94]。DNA接种导致产生适应性免疫应答(adaptive immune response),这种应答包括调节成分,如诱导抗原特异性CD4+辅助T细胞;还包括效应成分,如生成识别天然抗原的抗体;还包括CD8+细胞毒效应T淋巴细胞(CTL)。后者被引导去对抗细胞表面由I类主要组织相容性分子(MHC I类分子)呈递的抗原肽。
编码蛋白抗原的DNA产生CTL应答的潜力受到极大关注,因为用纯化的重组蛋白进行免疫不能有效诱导CTL(综述见[95,96])。在小鼠中对该机制的研究表明,由DNA分子诱导CD4+辅助T细胞、以及直接活化抗原呈递细胞(APC),是DNA疫苗引发成功的CTL的原因。有观点认为,后一种要求在一定程度上是多余的(见下文)。
我们在这里概述了一些主要的发现,它们开始阐明所观察到的DNA疫苗的免疫原性。
有证据显示,DNA接种之后的CD8+T细胞应答由骨髓来源的APC如树突细胞(DC)发起[97-99]。可以用质粒DNA直接转染相关的APC,这导致在这些细胞中生成抗原,或者这些细胞可以拾取由其它细胞表达并释放的抗原(后一种机制被称为交叉呈递/交叉引发)[100-102]。在上述两种情况中,抗原在APC内部通过蛋白水解消化而被加工,所得的肽由MHC I类分子呈递在所述细胞表面,用于引发CD8+原初T细胞。关于这两种机制哪一种在体内占主要地位仍有争议,且有可能因DNA给药方法的不同而不同[102-104]。
然而,对抗原进行一些修饰(包括与泛蛋白[105]或热休克蛋白[106,107]连接),有可能改进这些抗原靶向常规的或交叉引发的MHC I类分子呈递途径的能力(综述见[108])。
质粒DNA骨架显示包含免疫调节性核苷酸序列,这些序列由非甲基化CpG二核苷酸组成并带有特定的侧翼核苷酸(称为CpG基元)[109-111]。由于真核细胞与原核细胞在CpG二核苷酸的利用频率和甲基化模式方面的差异,这类序列在细菌DNA中比在哺乳动物DNA中出现频率高20倍[112,113]。CpG基元经证实通过Toll-样受体9(TLR9)起作用[114],这种受体在小鼠的巨噬细胞、DC和B细胞上表达,在人体中仅在浆细胞样(plasmacytoid)DC和B细胞上表达[115-117]。TLR9与含CpG的质粒DNA之间的直接相互作用被证实导致上调APC表面的协同刺激分子、并诱导由先天免疫系统的多种细胞分泌的促炎细胞因子IL-12,IL-6,IL-18,TNFα,IFNα/β和IFNγ。
APC的活化已知对于有效引发CD8+原初T细胞很重要,因此,DNA疫苗的骨架中存在一些CpG基元被认为有助于诱导CTL[122]。意外的是,对TLR9信号传递途径有缺陷的小鼠(TLR9-/-或MyD88-/-小鼠)反复进行DNA免疫接种,结果在这些小鼠中,尽管未观察到质粒DNA对APC的直接刺激,仍产生正常的、与在野生型小鼠中同样的CTL应答[123,124]。这一发现提示,CpG基元对APC的活化在应用DNA疫苗的情况下可能是多余的,所必需的APC体内活化可能可以间接地通过诱导CD4+辅助T细胞而发生(综述见[125])。事实上,在CD4+T细胞耗尽或CD4+T细胞区室(compartment)有缺陷(CD4-/-或MHC II类分子-/-敲除)的小鼠中进行的DNA免疫接种试验表明,CD4+T细胞的存在是生成效应CTL应答的关键[126-128]。
动物模型中的抗癌DNA疫苗
DNA疫苗用于开发抗肿瘤的保护性应答的用途首先用模型肿瘤抗原在小鼠中证实。用编码SV40大T抗原[146]、β-半乳糖苷酶[147]、人癌胚抗原(CEA)[148]、人乳头瘤病毒E7[149]或人PSA[150]的质粒进行DNA免疫接种,结果发现能保护小鼠免受表达相应抗原的同基因(syngeneic)肿瘤细胞的致死攻击。损耗研究(Depletion studies)为CD8+细胞毒T淋巴细胞在肿瘤排斥中所起的作用提供了证据[147,149]。这些研究总体上表明用DNA疫苗诱导靶向肿瘤细胞的抗原特异性免疫应答的可行性。但这些研究中所用的所有抗原事实上都是外来蛋白,它们通常比代表自身抗原的“常规(regular)”肿瘤抗原有好得多的免疫原性。
目前已建立了多个鼠模型,以便能测试DNA疫苗抵抗与临床所见抗原更为相似的肿瘤抗原的效力。这些方法有赖于使用以组织特异性方式表达模型肿瘤抗原的转基因小鼠[151,152],或测试靶向人肿瘤抗原的鼠对应物的DNA疫苗[153,154]。
P815A抗原是属于MAGE家族的人肿瘤特异性抗原的鼠等效物[155],抗该抗原的DNA免疫接种导致诱导CTL、并保护小鼠免受致死性肿瘤攻击[153]。该发现提示,对于在大多数正常组织中沉默的天然的肿瘤特异性抗原,可以很容易地诱导抗所述抗原的T细胞。
而天然产生的肿瘤相关抗原则显示较低的固有免疫原性。虽然编码人原癌基因Her2的DNA疫苗在野生型小鼠中很容易地诱导出抗体应答,但同样是这种疫苗,在Her2转基因小鼠中却仅诱导出中度抗体应答,提供的是较弱的抗肿瘤的保护作用[152]。在Her2/neu转基因小鼠中进行CTL应答也得到类似的结果。用大鼠neu DNA疫苗进行免疫接种,在野生型小鼠中诱导出保护性CTL应答,但在未观察到CTL应答的转基因动物中却无效[156]。大鼠neu DNA疫苗在野生型小鼠中诱导CTL应答的能力也许可以解释为:因neu-衍生的CTL表位与鼠Her2对应物(c-erbB-2)之间的氨基酸差异所致[156,157]。因此,能识别neu衍生的表位的CD8+T细胞存在于野生型小鼠中,但很有可能在neu转基因动物中于胸腺选择期间被消除或在外周组织中变得无能。
与上述发现一致,抗鼠黑素细胞分化抗原TRP-1、TRP-2(酪氨酸酶相关蛋白)、及gp100的DNA免疫接种也不成功[154,158,159]。有趣的是,这些研究还证实,用编码TRP-1、TRP-2、或gp100的异基因(xenogeneic)(人)DNA对小鼠进行免疫接种,诱导出抗小鼠B16黑素瘤细胞的同基因肿瘤攻击的免疫应答和保护作用。这种抗肿瘤免疫力通过接种人TRP-1产生的抗体来介导,在人TRP-2和gp100的情况下通过CD8+T细胞来介导(综述见[160])。这些观察的一个明显结论是,用同基因性质的(小鼠)基因进行免疫接种,不诱导T细胞应答或抗体应答,而用异基因性质的(人)基因进行免疫接种,可以导致生成能识别人蛋白和小鼠蛋白两者的抗体和CTL。在CTL应答中,这种交叉反应性的机制在gp100的情况中代表的是,在人序列中随机生成畸形表位(heteroclitic epitope),而这种表位与MHC I类抗原有更好的结合[161]。因此,编码人gp100的DNA疫苗诱导出抵抗这种“人”表位、并能识别相应的鼠内源序列(“鼠”表位)的CD8+T细胞[159,162]。在交叉反应性抗体应答的情况中,认为在异基因序列内部存在强效的辅助性表位[163]。为此,在动物模型中进行了一些DNA疫苗研究,在抗肿瘤的保护作用方面得到了令人鼓舞的结果。将DNA疫苗用作治疗性工具虽然更反映临床实际情况,但仍有一些问题有待解决。如果能更进一步了解T细胞在胸腺内成熟期间形成多样化T细胞库(T cell repertoire)的机制,并作出“自身”肿瘤抗原反应性CTL的真实的表位特异性图谱,将有助于合理设计能诱导特异性抵抗肿瘤相关抗原的更有效免疫应答的DNA疫苗。
DNA疫苗的增强效力
小鼠中的研究表明,DNA疫苗诱导的抗原特异性CTL的频率比病毒诱导的应答低大约10倍,而且,单次DNA接种之后的初次效应性CTL应答略有延迟,在接种后的12-15天达到峰值[164,165]。初次CTL应答中的这些定性差异可部分地归结于:质粒DNA接种后产生的抗原量较小[90]、和APC的无效体内靶向,这两方面总和都不足以确保充分引发原初T细胞并使其扩增(expansion)。
现已开发出多种递送DNA的方法,它们与常用的i.m.或i.d.注射DNA盐水溶液的方法相比,产生更多的抗原和/或改进APC的体内靶向。这些技术包括,将包被有DNA的金粒通过生物射弹方式接种到皮肤中、靶向常驻的抗原呈递性朗汉细胞(Langerhans cell)(也称“基因枪”技术)[91,102],使用阳离子性质的、表面吸附有DNA的聚(DL-丙交酯-共-乙交酯)(PLG)微粒[166,167],经i.m.或i.d.注射DNA后向注射部位施加脉冲电场(也称体内电穿孔)[168-171]。值得注意的是,将裸露DNA直接注射到外周淋巴结中被证实诱导出强CTL应答,质和量都比常规的i.m.或i.d.接种途径好[172]。该发现提示,DNA免疫接种后引发原初T细胞的效力与二级淋巴器官中抗原刺激的强度和持续时间有关。
DNA疫苗的免疫原性也可以通过对质粒编码的抗原进行多种修饰来增强。已知对DNA编码序列进行密码子优化可以在接种DNA之后增加抗原表达,从而获得更好的抗体应答和CTL应答[173,174]。将抗原与泛蛋白单体连接[105]或与热休克蛋白连接[106,175]增强抗原特异性CTL应答,这大概是由于改进了这些融合蛋白对常规的或交叉引发的MHC I类呈递途径的靶向性。
使DNA疫苗对免疫应答的诱导最优化的另一策略是基于以下事实:对CD4+辅助T细胞的诱导明显导致产生效应CTL和抗体应答(见4.1节)。通过将肿瘤抗原与含有强效辅助表位的微生物抗原或病毒抗原连接来提供CD4+T细胞辅助作用,结果发现,在接种DNA后,增强了抗体应答和CTL应答(综述见[176])。重要的是要注意,设计这类肿瘤抗原-“辅助”抗原融合体以达到增强肿瘤抗原特异性CTL应答的目的时,需要考虑其它方面。在自然状态下,CTL应答集中针对大分子抗原上非常少的一些肽表位,已知这是免疫优势现象,用DNA疫苗也可以观察到这种现象[177,178]。因此,为确保CTL应答抵抗肿瘤抗原衍生的表位而不是“辅助”抗原衍生的表位,应去除融合体中“辅助”部分的所有潜在CTL表位[179,180]。
虽然最近在TLR9-/-和MyD88-/-小鼠中进行的研究表明,质粒DNA骨架对APC的活化并非诱导免疫应答所绝对必需[123,124],但CpG介导的对APC的刺激可以为DNA疫苗提供一定程度的佐剂效应。经证实,以合成的寡核苷酸形式提供的CpG基元(CpG-ODN)作为佐剂,在接种DNA后,促进更好的抗体应答和CTL应答(综述见[181])。CpG-ODN的这种佐剂效应在DNA疫苗用量低时具有深远意义,但在DNA疫苗用量较高时仅有适度的意义[182]。重要的是应强调,在小鼠中提供最佳免疫刺激活性的CpG-ODN与在灵长类中起作用的那些CpG-ODN相比有序列差异[183]。
其它多种增强DNA疫苗效力的策略集中于使用多种免疫刺激分子,包括细胞因子和协同刺激分子(综述见[184,185])。这些佐剂可以以重组蛋白或另一个编码所选分子的质粒的形式施用。这类方法的基本原理一般是基于,由细胞因子/协同刺激分子提供额外信号来促进对T细胞的引发,这在单独施用质粒DNA疫苗时可能不是最理想的。成功应用该方法的实例包括,在经CEA编码质粒和IL-12表达质粒免疫的小鼠中增强抗体应答和CTL应答、导致产生更好的抗肿瘤攻击的保护作用[186],在将编码抗原的DNA疫苗和表达鼠粒细胞巨噬细胞集落刺激因子(GM-CSF)的质粒共同施用(co-administration)之后,增强抗体应答/CTL应答[187],[188]。
虽然上文提及的所有策略总体上都显示增加编码模型抗原的DNA疫苗的免疫原性,但其中无一种策略已被稳定确认为,在相应鼠模型中、以及更重要的是在临床试验中,在针对免疫原性弱的“自身”肿瘤抗原进行DNA免疫之后,可以更好地引发CTL应答或抗体应答。
抗癌DNA疫苗在临床试验中
我们在此介绍数个近期实施的抗患者体内肿瘤相关抗原的DNA接种I期临床试验,所述患者是患有以下疾病的患者:与HPV相关的肛门发育不良[213],转移性结直肠癌[212],B细胞淋巴瘤[214],转移性黑素瘤[215,216],以及前列腺癌[211,217]。在这些研究中,用到了多个不同的DNA递送技术和佐剂,它们代表了DNA接种领域的最新进展。
这些试验的大多数都后随标准剂量扩大方案(standard dose escalationscheme),在单个患者中未扩大DNA疫苗剂量。DNA接种以单一疗法的形式进行,患者在参加试验之前的至少3周内未接受任何其它形式的治疗,例外的是在前列腺癌的研究中,患者同时接受激素治疗[217]。
由于加入到这些试验中的患者数有限,所有这些研究的几个主要目的是,评估质粒DNA给药的安全性,监控所述疫苗诱导出的剂量依赖性免疫应答,以及评估疫苗诱导的免疫应答与临床益处之间的关联性。
这些试验总体上表明,反复接种DNA的耐受性很好,未观察到引起毒性作用的剂量限制点,甚至当DNA剂量高达每次注射2mg时也未产生毒性[212],这说明,用DNA进行反复免疫接种是安全的。
在诱导免疫应答方面,结果表明,“外来”抗原具有比“自身”肿瘤相关抗原更强的免疫原性。用编码人乳头瘤病毒E7-衍生的CTL表位的DNA疫苗进行免疫接种,在12例患者的10例中,通过IFNγELISPOT试验观察到,疫苗诱导出T细胞应答[213]。编码CEA和乙肝病毒表面抗原(HbsAg-在该试验中作为对照“外来”抗原)的二元表达载体,经反复免疫接种之后,在8例患者中有6例诱导出HbsAg特异性抗体应答[212]。另外,用编码嵌合免疫球蛋白(Ig)分子的质粒DNA接种,在12例患者中有8例观察到抗鼠Ig恒定区的淋巴增生性应答或抗体应答[214]。而抗自体肿瘤相关抗原的免疫应答水平相对较低。在上述研究中,未观察到CEA特异性抗体应答,17例患者中仅4例出现抗CEA的淋巴增生性应答,但所述应答未显示出与质粒DNA接种量或接种时间有明确的关联性[212]。同样,用嵌合Ig分子进行的免疫接种中,12例患者仅有1例产生抗自体肿瘤衍生的独特型(Id)决定簇的短时T细胞应答[214]。在用编码改良gp100抗原的DNA免疫接种的黑素瘤患者中,检测到抗gp100衍生的HLA-A2限制性CTL表位的CTL应答[215],而在此前进行的研究中,用编码相同DNA构建物的重组禽痘病毒(fowlpoxvirus),在14例患者中发现4例诱导出CTL活性[218]。将编码酪氨酸酶衍生的HLA-A2限制性新表位的质粒DNA注入黑素瘤患者淋巴结中,共24例患者有11例观察到抗该表位的短时CTL应答[216]。
在DNA疫苗和表达PSMA的重组腺病毒反复联用的研究中,所有患者都最终对注射PSMA质粒DNA产生阳性DTH应答,说明诱导出了抗PSMA的细胞免疫应答,但这些结果并未用其它常规体外试验加以证实[217]。
我们最近在患有用激素难以控制的前列腺癌的患者中进行DNA接种的临床试验,共9例患者有2例观察到PSA特异性T细胞免疫应答,这2人都在接受最高DNA测试剂量的组中[211]。这些研究有多个都观察到抗肿瘤相关抗原的T细胞免疫应答的剂量依赖性诱导倾向[211,214],但这些反应性T细胞的表位特异性仍有待确认,以便确认有CTL的存在。
将DNA接种作为单一疗法的临床益处仅为中度,包括:1例B细胞淋巴瘤患者骨髓中肿瘤消退[214],3例严重肛门生殖器发育不良(high-gradeanogenital dysplasia)患者获得部分组织学应答[213],2例前列腺癌患者因PSA血清水平降低而被判定为病情稳定[211],11例检查到抗酪氨酸酶免疫应答的黑素瘤患者比13例无免疫应答的患者存活更好[216]。临床益处与疫苗诱导的免疫应答之间的关联性仅在上述的后两项研究中观察到[211,216]。
总之,DNA反复接种已表明是良好且安全的临床方案,即使在DNA高剂量(处于1mg水平)时也是如此,而这似乎是在人体内诱导出T细胞免疫应答所必需的。应答频率低可能是部分地由于参与试验的晚期患者免疫受损的状态所致。此后的临床试验可以集中在缓解期的患者或疾病残留最少的患者,在这些患者身上更有可能发现DNA疫苗的显著临床益处。
异基因疫苗
一般外来抗原比自身抗原更易诱导免疫应答。由于这个原因,使抗原尽可能是外来抗原但仍诱导抗自身蛋白的免疫力是比较有帮助的。实现这一点的一个策略是,将外来蛋白附着在天然自身蛋白上。这方面常用的蛋白是匙孔
Figure S200680030353XD00131
血蓝蛋白(keyhole lymphet cyanogens,KLH)。诱导抗KLH的免疫应答时常常也诱导出对所附着的蛋白的免疫应答。
另一策略是使用与天然自身蛋白类似但来自另一动物物种的蛋白。它被称为异基因蛋白。这已经用被称为前列腺特异性膜抗原(PSMA)的前列腺抗原实现了。Wolchok等在小鼠中使用PSMA并诱导出抗小鼠PSMA的良好免疫应答。目前已有将啮齿类异基因PSMA用于人的临床试验。
应用异基因蛋白的策略已在其它物种中使用。有人用人酪氨酸酶免疫患黑素瘤的狗。一般而言,选出的物种之间有很大差异。
已有多篇文献描述了异基因或异基因抗原用于诱导免疫应答的用途。其中包括异种抗原的意外或未被承认的用途,如将人PSA用于小鼠中。还包括审慎使用(deliberate use)异种抗原。一个审慎使用异种抗原的实例是,用作为抗黑素瘤疫苗的人抗原对狗进行免疫接种(Bergman et al,2003,Long-term survival of dogs with advanced malignant melanoma after DNAvaccination with xenogeneic human tyrosinase:a phase 1 trial,Clinical CancerResearch,9:1284-1290)。这些文献并未描述,用与天然蛋白之间有最小种间差异的异基因蛋白来诱导抗该天然自身抗原的最佳免疫应答。
人PSA蛋白于二十世纪七十年代被发现并被鉴定。PSA蛋白于1979年首次被纯化。从所分析的蛋白和组织制得抗兔血清。人PSA仅见于前列腺组织,未见于其它组织(Wang et al Purification of a human prostate specificantigen 1979,Invest.Urol.17:159-63)。另有人发现,人PSA在其它组织中有类似的含量。该蛋白在肺癌和乳腺癌的上皮样细胞中以低水平表达(Zarghami et al Frequency of expression of prostate-specific antigen mRNA inlung tumors,1997 Am J Clin Pathol 108(2):184-90;Smith et al Prostate-specificantigen messenger RNA is expressed in non-prostate cells:implications fordetection of micrometastases 1995 Cancer Res.55(12):2640-44)。
人前列腺特异性抗原的基因在1989年被测序(Digby et al Humanprostate specific antigen(PSA)gene:structure and linkage to kallifrein-like gene1989 Nucleic Acids Research,17(5):2137;Klobeck et al,Genome sequence ofhuman prostate specific antigen,1989 nucleic Acids Research 17(10):3981)。
人(Homo Sapiens)PSA的cDNA序列在Genebank中有记录。其中一个序列为Genebank登录号AJ459783,另一个序列于1988年公开,为Genebank登录号X07730(Schultz et al.Sequence of a cDNA clone encompassing thecomplete mature human Prostate specific Antigen(PSA)and an unspliced leadersequence;1988 Nucleic Acids Research 16(13):6226)。人cDNA的另一个序列为Genebank登录号BC056665。
非人灵长类动物食蟹猴(Macaca fasicularis)的前列腺特异性抗原前体的cDNA序列为Genebank登录号AY647976。
猕猴(Macaca mulatta)的前列腺特异性抗原的cDNA序列为Genebank登录号X73560。
比较以上3种基因发现,人PSA与猕猴或与食蟹猴的PSA cDNA有30个碱基对不同。即有3.8%的差异。因此,猕猴PSA与人PSA相比的氨基酸差异为9.9%,食蟹猴PSA与人PSA相比的氨基酸差异为10.7%。
附图中有3页是DNA序列比较(图1A,1B和1C),其显示了人PSA的cDNA序列(Genebank登录号为BC056665的cDNA),猕猴PSA的cDNA序列,以及食蟹猴PSA的cDNA序列之间的同源性。
除了上述科技文献,还发现下列相关专利和已公开的专利申请。
已公开的美国专利申请20040141958披露了治疗性疫苗接种的新方法,并讨论了自身肽或带有呈递外来肽的CTL表位的蛋白的用途。这是一种嵌合蛋白。该申请未提及将完整外来蛋白用于诱导抗天然蛋白的交叉免疫力的用途。
美国专利5,925,362披露了用人前列腺特异性抗原激发抗肿瘤应答的方法。该专利描述了需有两个部分的一种前列腺癌疫苗。一个部分是PSA,另一个部分是用于原位产生人PSA的表达系统。这是表达人PSA的DNA疫苗。该专利未描述异基因PSA DNA疫苗的用途。
美国专利6,165,460披露了产生抗人前列腺特异性抗原(PSA)的免疫应答。该专利描述了PSA DNA疫苗。其中一个权利要求限定了用于表达PSA的痘病毒载体。它未特别指明人PSA,也未提到异基因PSA。另一权利要求涉及使用PSA(或PSA CTL表位)、之后再次给予PSA。这是传统的疫苗加强策略,包括用表达另一种PSA的载体或用PSA蛋白本身进行加强免疫。还有一个权利要求提及单独使用CTL表位。用于评价该疫苗的动物模型是使用人PSA的猕猴模型,但未提及反过来将猕猴PSA用于人的方法。
美国专利6,818,751;6,800,746;6,759,515;6,664,377;6,657,056;6,630,305;6,620,922;6,613,872;6,329,505;6,262,245;6,261,562;5,854,206都描述了用前列腺特异性肽诊断前列腺癌,产生抗所述肽的抗体,以及对前列腺癌进行免疫治疗。但它们并未描述将异基因PSA用作免疫原。
美国专利6,699,483披露了癌症治疗,其中在前列腺癌疫苗中用到三种人前列腺癌细胞系。这些细胞系都是人的细胞系,它们呈现宽范围内的多种抗原。该专利未描述异基因细胞系,异基因PSA的用途或DNA疫苗的用途。
从上文可看出,文献中已描述了很多种涉及疫苗的方法,包括异基因的方法。
为本发明的目的,对相关观点进行简要综述。
已知将非人抗原引入人体后,人的免疫应答产生抗该非人抗原的抗体。
据信,在一些特例中,将病例特异性非人抗原引入人体后,人的免疫应答产生抗类似的病例特异性人抗原的抗体。
只有灵长类有前列腺特异性抗原(PSA)。人有人PSA,非人灵长类有非人灵长类PSA。象小鼠和狗这样的物种有激肽释放酶蛋白类的丝氨酸蛋白酶,但它们与PSA有明显区别,因而不会被视为PSA。
非人灵长类很多,其中包括猕猴和黑猩猩。
人PSA有约260个氨基酸(见图2的″huPSA″);猕猴PSA有约260个氨基酸(见图2的″rhPSA″)。猕猴PSA氨基酸序列中有约10%的氨基酸与人PSA氨基酸序列不同。
尽管人PSA与异基因PSA如猕猴PSA之间存在相似性,人PSA与猕猴PSA之间的差异仍很显著,以致于检测人PSA的实验室测试不会检测出异基因PSA如猕猴PSA。
具体到人前列腺癌,对其进行的治疗涉及外科手术切除整个前列腺。进一步的治疗包括,尝试破坏经手术仍未被切除的前列腺细胞。为此,应将疫苗设计成能杀灭所有经手术仍未被切除的前列腺细胞。
人前列腺细胞产生人PSA,而抗人前列腺癌的疫苗应引发人免疫应答,导致杀灭产生人PSA的人细胞。这样一来,因接种抗人前列腺癌的疫苗,可以杀灭经手术仍未被切除的前列腺细胞。
在现有技术的基础上,本发明人的导致本发明的一个发现是,最好是在人体中使用异基因抗原(例如蛋白),且所用的异基因抗原与人自身抗原的种间差异相对较少,以便在该人体内诱导出抗其天然自身抗原的最佳免疫应答。
本发明人的导致本发明的另一发现是,最好在人体中使用非人灵长类异基因抗原(例如蛋白),且所用的非人灵长类异基因抗原与人自身抗原的种间差异相对较少,以便在该人体内诱导出抗其天然自身抗原的最佳免疫应答。
本发明人的导致本发明的另一特别发现是,最好在人体中使用非人灵长类异基因PSA抗原,且所用的非人灵长类异基因PSA抗原与人自身PSA抗原的种间差异相对较少,以便在该人体内诱导出抗其天然自身PSA抗原的最佳免疫应答。
本发明人的导致本发明的另一更特别发现是,最好提供一种在人体中诱导出抗人PSA的免疫应答的方法,其使用与人PSA有≥88%且≤98%的氨基酸同源性(或差别为2-12%)的非人PSA。
更具体地,所述方法包括获得从非人灵长类分离出的PSA,对该非人灵长类PSA进行分子水平的改造,以将其与人PSA之间的氨基酸同源性调整至最佳平衡点。更具体地,最好是提供最佳同源性平衡点,使得该非人灵长类PSA与人PSA有足够的氨基酸序列差异以在该人体中诱导出抗该非人灵长类PSA的免疫应答、但同时也使得该非人灵长类PSA与人PSA有足够的氨基酸序列相似性以便在该人体中产生抗人PSA的免疫应答。
本发明还包括DNA序列,所述序列的表达产生出的蛋白具有与人PSA88-98%同源性的氨基酸序列。本发明还包括所述DNA序列在多核苷酸疫苗如DNA或RNA疫苗中的用途。
使用非人灵长类PSA而不是人工制备的PSA的基本原理是,在对蛋白进行的维持丝氨酸蛋白酶活性的天然选择中所作的所有改变选出具有相似构象的蛋白。这意味着,针对这种蛋白上构象依赖性区域的免疫应答在人和灵长类的异基因PSA之间更有可能相似或相同。
根据本发明,递送疫苗可采用多种方法,包括例如,在有转染的化学增强剂的情况下进行注射,生物射弹方法,或电穿孔。
因此,尽管上述现有技术表明,在非人动物模型中用异基因抗原激起一些免疫应答是已知的,上述现有技术并未教导或披露具有以下想要的特性的涉及抗前列腺癌疫苗的方法和组合物:(1)抗前列腺的疫苗,其被设计为能杀灭经手术仍未被切除的前列腺细胞;(2)引发人免疫应答,以杀灭产生人PSA的人细胞;(3)不限于激素疗法;(4)在人体中使用异基因抗原(例如蛋白),且所述异基因抗原与人自身抗原之间具有较少种间差异,以便在人体中诱导出抗人天然自身抗原的最佳免疫应答;(5)在人体中使用非人灵长类异基因抗原(例如蛋白),且所述非人灵长类异基因抗原与人自身抗原之间具有较少种间差异,以便在人体中诱导出抗人天然自身抗原的最佳免疫应答;和(6)在人体中使用非人灵长类异基因PSA抗原,且所述非人灵长类异基因PSA抗原与人自身PSA抗原之间具有较少种间差异,以便在人体中诱导出抗人天然自身PSA抗原的最佳免疫应答。上述想要的特性由本发明与抗前列腺癌的疫苗有关的独特方法和组合物提供,可参见以下详述。本发明的其它优点也可从以下的描述中看出。
发明内容
本发明一个目标是,提供与抗前列腺癌的疫苗有关的新的改进方法和组合物,其经设计能杀灭所有经手术仍未被切除的前列腺细胞。
本发明另一目标是,提供与抗前列腺癌的疫苗有关的新的改进方法和组合物,其引发人免疫应答以杀灭产生人PSA的人细胞。
本发明另一目标是,提供与抗前列腺癌的疫苗有关的新的改进方法和组合物,其不限于激素疗法。
本发明另一目标是,提供与抗前列腺癌的疫苗有关的新的改进方法和组合物,其在人体中使用异基因抗原(例如蛋白),且所述异基因抗原与人自身抗原之间具有较少种间差异,以便在人体中诱导出抗人天然自身抗原的最佳免疫应答。
本发明另一目标是,提供与抗前列腺癌的疫苗有关的新的改进方法和组合物,其在人体中使用非人灵长类异基因抗原(例如蛋白),且所述非人灵长类异基因抗原与人自身抗原之间具有较少种间差异,以便在人体中诱导出抗人天然自身抗原的最佳免疫应答。
本发明另一目标是,提供与抗前列腺癌的疫苗有关的新的改进方法和组合物,其在人体中使用非人灵长类异基因PSA抗原,且所述非人灵长类异基因PSA抗原与人自身PSA抗原之间具有较少种间差异,以便在人体中诱导出抗人天然自身PSA抗原的最佳免疫应答。
根据本发明的一个方面,提供一种组合物,其包括非人灵长类PSA和用于人的可药用载体。
根据本发明的另一方面,提供一种人用疫苗,其包含非人灵长类PSA用于人的可药用载体。
根据本发明的另一方面,提供一种疫苗,其中的非人灵长类PSA引发人免疫应答,该应答产生抗人PSA的抗体。
根据本发明的另一方面,将非人灵长类PSA用于制备人用疫苗以提供抗人PSA的免疫应答。
根据本发明的另一方面,提供一种疫苗,其中的人免疫应答导致对包含人PSA的人细胞产生细胞毒性、细胞介导的免疫力。
根据本发明的另一方面,提供治疗人的方法,包括将非人灵长类DNA序列引入人体中以给该人体提供人灵长类PSA的步骤。
根据本发明的另一方面,用非人灵长类DNA序列提供抗原,用于制备人用疫苗以在人体中提供抗该抗原的免疫应答。根据本发明的另一方面,将非人灵长类PSA DNA序列用于制备人用疫苗以在人体中提供抗人PSA的免疫应答。
根据本发明的另一方面,提供治疗人的前列腺癌的方法,包括将非人灵长类PSA引入人体以引发产生抗人PSA的抗体的人免疫应答。
根据本发明的另一方面,提供治疗人的前列腺癌的方法,包括将非人灵长类PSA引入人体的步骤,其中人免疫应答导致产生抗人PSA的抗体。
根据本发明的另一方面,提供治疗人的前列腺癌的方法,包括将非人灵长类PSA引入人体引发免疫应答的步骤,所述应答包括对抗含有人PSA的T细胞的细胞毒性、细胞介导的免疫力。
根据本发明的另一方面,提供治疗人的前列腺癌的方法,包括将非人灵长类PSA引入人体的步骤,其中的人免疫应答导致对抗含有人PSA的T细胞的细胞毒性、细胞介导的免疫力。
根据本发明的另一方面,提供递送核酸疫苗的方法,所述疫苗在人的细胞中表达非人灵长类抗原,所述方法包括,将一定量(a quantity of)的所述核酸疫苗施用到人的组织,并对所述人组织施加电场,从而使表达非人灵长类抗原的所述核酸疫苗被递送到所述人组织的细胞中。
根据本发明的另一方面,提供递送核酸疫苗的方法,所述疫苗在人的细胞中表达非人灵长类PSA,所述方法包括,将一定量(a quantity of)的所述核酸疫苗施用到人的组织,并对所述人组织施加电场,从而使表达非人灵长类PSA的所述核酸疫苗被递送到所述人组织的细胞中。
根据本发明的另一方面,提供人用DNA疫苗,其包括从非人灵长类PSA的基因衍生的基因序列。
根据本发明的另一方面,提供在人体中诱导抗人PSA的免疫应答的方法,其包括将非人PSA引入人体的步骤,其中所述非人PSA具有与人PSA的氨基酸同源性,所述同源性在等于或大于88%、且等于或小于98%的范围。
根据本发明的另一方面,提供在人体中诱导抗人PSA的免疫应答的方法,其包括将从非人PSA基因衍生的基因序列引入人体的步骤。所述非人PSA基因序列在该人体中表达为非人PSA。所引入的非人基因序列与从人PSA基因衍生的基因序列有碱基同源性,所述同源性在等于或大于88%、且小于或等于98%的范围。优选地,权利要求18的方法。所述同源性在等于或大于92%、且小于或等于99%的范围。
根据本发明的另一方面,提供表达非人灵长类抗原的载体的用途,其用于制备人用疫苗以提供抗人抗原的免疫应答。一方面,所述载体可以是DNA载体。另一方面,所述载体可以是RNA载体。
根据本发明的另一方面,提供表达非人灵长类PSA的载体的用途,其用于制备人用疫苗以提供抗人PSA的免疫应答。一方面,所述载体可以是DNA载体。另一方面,所述载体可以是RNA载体。
本发明的上述目标和其它目标,以及使本发明具有新颖性的多个特征,都在构成本说明书一部分的所附权利要求书中具体化。为了更好地理解本发明,其操作优点和其应用所获得的具体目标,请参考附图和说明书,它们举例说明了本发明的优选实施方案。
附图说明
参考以下的详细描述,可以更好地理解本发明和上述目的,以及除了上文描述的以外的其它目的。这些描述可参考附图进行理解,在附图中:
图1A、1B、和1C显示已知的cDNA的比较,所述cDNA是:人PSA的cDNA,猕猴的非人灵长类PSA cDNA,以及食蟹猴的非人灵长类PSAcDNA。
图2显示,人PSA有261个氨基酸(第一部分中的″huPSA″);猕猴PSA有261个氨基酸(第一部分中的″rhPSA″)。图2还显示,人PSA的DNA序列有786个核苷酸(第二部分中的″huPSA″,Genebank登录号#X73560);猕猴PSA的DNA序列有786个核苷酸(第二部分中的″rhPSA″,Genebank登录号#X07730)。
图3显示猕猴PSA在人树突细胞中的表达,所述细胞已用pVAX/rhPSA(表达猕猴PSA的质粒)和对照质粒(pVAX)转导。
图4显示人T细胞对pVAX/rhPSA转染的单核细胞衍生的人树突细胞的刺激的应答。
实施方式
本发明提供了在人体中使用异基因抗原(例如蛋白)的方法和装置,所述异基因抗原与人自身抗原之间具有较少种间差异,以便在该人体中诱导出抗人天然自身抗原的最佳免疫应答。
相关种间差异见图1A,1B,1C和2。
根据本发明一个方面,提供了组合物,其包含非人灵长类PSA和用于人的可药用载体。参见下文实施例1。
根据本发明的另一方面,提供了人用疫苗,其包含非人灵长类PSA和用于人的可药用载体。参见下文实施例1。
实施例1
这里描述制备疫苗制剂的步骤,所述制剂包含重组非人灵长类PSA。
包含重组非人灵长类PSA的疫苗制剂可以用标准的疫苗佐剂来配制。一种制剂可以含有90mg抗原(重组猕猴PSA),0.7mg/ml铝,和140mM氯化钠。该制剂可以用以下方法制备:
先制得三种溶液。
第一,制得2.1mg/ml氢氧化铝混合物,方法是将铝胶(Alhydrogel,来自Accurate Chemical and Scientific Corporation,Westbury NY)用10mMMOPS缓冲液(pH 7.4)稀释,使铝的终浓度为2.1%。混合物中的铝胶用量参考该铝胶附带的说明书(insert)来确定。
第二,将重组猕猴PSA在10mM MOPS缓冲液中稀释至终浓度为270mg/ml。
第三,制得3%氯化钠(420mM)的水溶液。
将第一种溶液和第二种溶液(铝胶和重组猕猴PSA溶液)等量(例如各1ml)混合。将该混合物在4℃上下颠倒30分钟进行温和混合。
最后,加入与该混合物中铝胶溶液等量(例如1ml)的氯化钠,以稀释该疫苗混合物,并使氯化钠浓度达到140mM。这样最终制得的疫苗混合物为组合物,其中包含非人灵长类PSA和用于人的可药用载体。
实施例1所用的重组猕猴PSA通过在昆虫细胞中表达重组猕猴PSA蛋白而制得。简言之,将rhPSA基因序列以与his标签序列和蛋白信号裂解位点的序列形成的融合基因形式克隆到杆状病毒中。通过转录和翻译产生重组rhPSA蛋白。
制剂中所用的重组rhPSA蛋白用亲和层析从被杆状病毒感染的昆虫细胞的裂解物中纯化出,然后进行his标签的蛋白裂解,大小排阻层析,以及基于序列分析的重折叠。所述序列分析可以在尿素浓度递减的缓冲液中进行。
根据本发明的另一方面,提供一种疫苗,其中的非人灵长类PSA引发人免疫应答,所述应答产生抗人PSA的抗体。参见以上的实施例1。
根据本发明的另一方面,将非人灵长类PSA用于制备人用疫苗以提供抗人PSA的免疫应答。参见以上的实施例1。
根据本发明的另一方面,提供一种疫苗,其中人免疫应答导致抗包含人PSA的人细胞的细胞毒性、细胞介导的免疫力。参见以上的实施例1。
根据本发明的另一方面,治疗人的方法包括将含有非人灵长类DNA序列的载体引入人体、以便在该人体中表达非人灵长类PSA的步骤。所述载体可以是DNA或RNA载体。载体的例子有,哺乳动物表达质粒,病毒RNA或DNA,mRNA或其它核酸构建体,它们引入哺乳动物细胞后导致非人灵长类PSA的表达。参见以下的实施例2。
实施例2
在一个方法中,制得DNA疫苗,其含有在CMV启动子控制下表达非人灵长类PSA的质粒。该质粒含有生成该质粒所必需的其它DNA序列如细菌复制起点,以及抗生素抗性基因如卡那霉素抗性基因。将该质粒在合适的载体中混合至0.5-5μg/μl的浓度,所述载体如半强度磷酸缓冲盐水(halfstrength phosphate buffered saline)。为了进行施用,将所述载体混合物装填到带有半英寸长的27号针头的结核菌素型注射器(tuberculin type syringe)中。在三角肌以上部位或在前臂,皮内注射20-50μl所述质粒混合物。
然后,将带有两排针(针的直径0.3mm,排间距4mm,1排内的针间距1mm,1排有4个针,针长3mm)的电极插入皮内2-3mm深处,使该注射部位每一侧有1排针。然后对所插入的电极施加电穿孔脉冲。一个脉冲组是:2个1125V/cm的脉冲(50微秒的持续时间(duration),脉冲之间间歇0.125秒),0.5秒之后为8个275V/cm的脉冲(10毫秒的持续时间,脉冲之间间歇0.125秒)。
根据本发明的另一方面,将包含非人灵长类DNA序列的载体用于制备人用疫苗以便在人体中提供抗该抗原的免疫应答。参见以上的实施例2。
根据本发明的另一方面,将包含非人灵长类DNA序列的载体用于制备人用疫苗以便提供抗人PSA的免疫应答。参见以上的实施例2。
根据本发明的另一方面,提供治疗人的前列腺癌的方法,其包括将非人灵长类PSA引入人体以引发人免疫应答的步骤,所述应答产生抗人PSA的抗体。参见以上的实施例1和2关于非人灵长类PSA和表达非人PSA的载体。
根据本发明的另一方面,提供治疗人的前列腺癌的方法,其包括将非人灵长类PSA或表达非人PSA的载体引入人体的步骤,其中人的免疫应答导致产生抗人PSA的抗体。参见以上的实施例1和2关于非人灵长类PSA和表达非人PSA的载体。
根据本发明的另一方面,提供治疗人的前列腺癌的方法,其包括将非人灵长类PSA或表达非人PSA的载体引入人体以引发免疫应答的步骤,所述应答包括对抗含有人PSA的T细胞的细胞毒性、细胞介导的免疫力。参见以上的实施例1和2关于非人灵长类PSA和表达非人PSA的载体。
根据本发明的另一方面,提供治疗人的前列腺癌的方法,其包括将非人灵长类PSA或表达非人PSA的载体引入人体的步骤,其中人的免疫应答导致对抗含有人PSA的T细胞的细胞毒性、细胞介导的免疫力。参见以上的实施例1和2关于非人灵长类PSA和表达非人PSA的载体。
根据本发明的另一方面,提供递送核酸疫苗的方法,所述疫苗在人的细胞中表达非人PSA,所述方法包括,将一定量的所述核酸疫苗施用到人的组织中,并对所述人的组织施加电场,从而将所述表达非人灵长类抗原的核酸疫苗递送到所述人组织的细胞中。参见以上的实施例2和以下的实施例3。
实施例3
可通过实施电穿孔技术来施加电场。合适的电穿孔技术可参见美国专利6,010,613、6,603,998和6,713,291,它们都引入本文作参考。
根据本发明的另一方面,提供递送核酸疫苗的方法,所述疫苗在人的细胞中表达非人灵长类PSA,所述方法包括,将一定量的所述核酸疫苗施用到人的组织中,并对所述人的组织施加电场,从而将所述表达非人灵长类PSA的核酸疫苗递送到所述人组织的细胞中。参见以上的实施例2和以下的实施例3。
根据本发明的另一方面,提供人用DNA疫苗,其包含由非人灵长类PSA的基因衍生的基因序列。
根据本发明的另一方面,提供在人体中诱导抗人PSA的免疫应答的方法,包括将非人PSA引入人体的步骤,其中的非人PSA包含与人PSA的氨基酸同源性,所述同源性等于或大于88%、且小于或等于98%。见上文关于非人PSA的实施例1。
根据本发明的另一方面,提供在人体中诱导抗人PSA的免疫应答的方法,包括对人施用由非人PSA基因衍生的基因序列的步骤。所述非人PSA基因序列在该人体中表达为非人PSA。所引入的非人基因序列与从人PSA基因衍生的基因序列有碱基同源性,所述同源性在等于或大于88%、且小于或等于98%的范围。优选地,所述同源性在等于或大于92%、且小于或等于99%的范围。见上文的实施例2。
根据本发明的另一方面,提供表达非人灵长类抗原的载体的用途,其用于制备人用疫苗以提供抗人抗原的免疫应答。一方面,所述载体可以是DNA载体。另一方面,所述载体可以是RNA载体。参见以上的实施例2。
根据本发明的另一方面,提供表达非人灵长类PSA的载体的用途,其用于制备人用疫苗以提供抗人PSA的免疫应答。一方面,所述载体可以是DNA载体。另一方面,所述载体可以是RNA载体。参见以上的实施例2。
非人灵长类PSA(例如猕猴PSA)在刺激人的免疫系统攻击产生人PSA的人细胞方面的用途可用图3和4进行举例说明。
图4显示人T细胞对由pVAX/rhPSA转染的单核细胞衍生的人树突细胞带来的刺激的应答。未成熟的人单核细胞树突细胞通过使人单核细胞在有细胞因子的条件下生长而制得。人单核细胞衍生的树突细胞经pVAX/rhPSA转导。这些细胞通过在含有poly I:C的培养基中保温而成熟。成熟的细胞被用于在体外免疫接种中刺激自体人T细胞。经两轮再刺激(re-stimulation)后,用IFNgamma ELISPOT试验评估人PSA特异性。将特异性T细胞与接受对照人血清白蛋白(HSA)刺激的T细胞进行比较。所述应答显示,在经猕猴PSA转染的人树突细胞刺激的细胞中,出现人PSA特异性T细胞应答。这表明,在体外免疫接种中,受猕猴PSA刺激的人T细胞产生应答,表现为攻击含有人PSA的人细胞。
在上述的人树突细胞转染中,为证实事实上被转染的细胞表达猕猴PSA,进行Western印迹。更具体地,图3显示,猕猴PSA在经pVAX/rhPSA(表达猕猴PSA的质粒)和对照质粒(pVAX)转染的人树突细胞中表达。Western印迹显示预计的猕猴PSA 30kda蛋白有表达。为了进行该表达,用pVAX/rhPSA和对照质粒通过电穿孔转导人树突细胞。在Western印迹的24小时后分析细胞,检测到猕猴PSA,为30kda的泳带。
使用和操作本发明的方式也可以从以上的描述明显看出,并因此无需另外提供关于使用和操作方式的说明。
从以上可以明显看出,本发明通过提供与抗前列腺癌的疫苗有关的、可以有利地用于杀灭人体中经前列腺切除术仍未被切除的前列腺细胞的、新的改进方法和组合物,而实现了所有目标。本发明提供与抗前列腺癌的疫苗有关的方法和组合物,其引发人免疫应答以杀灭产生人PSA的人细胞。本发明提供与抗前列腺癌的疫苗有关的方法和组合物,其不限于激素疗法。本发明提供与抗前列腺癌的疫苗有关的方法和组合物,其在人体中使用异基因抗原(例如蛋白),且所述异基因抗原与人自身抗原之间具有较少种间差异,以便在人体中诱导出抗人天然自身抗原的最佳免疫应答。本发明提供与抗前列腺癌的疫苗有关的方法和组合物,其在人体中使用非人灵长类异基因抗原(例如蛋白),且所述非人灵长类异基因抗原与人自身抗原之间具有较少种间差异,以便在人体中诱导出抗人天然自身抗原的最佳免疫应答。本发明提供与抗前列腺癌的疫苗有关的方法和组合物,其在人体中使用非人灵长类异基因PSA抗原,且所述非人灵长类异基因PSA抗原与人自身PSA抗原之间具有较少种间差异,以便在人体中诱导出抗人天然自身PSA抗原的最佳免疫应答。
因此,本发明在附图中显示,并在上文中具体详细地进行全面描述,所描述的内容被视为本发明的最实用和最优选方案,但本领域技术人员应理解,可以对所述内容进行多种改动而不背离本文所述的原则和精髓,所述改动包括但不限于改变操作、装配(assembly)和用途的用量、材料、形状、形式、功能和方式。
参考文献
1.Lundwall,A.and H.Lilja,Molecular cloning of human prostate specificantigen cDNA.FEBS Lett,1987.214(2):p.317-22.
2.Greenlee,R.T.,et al.,Cancer statistics,2000.CA Cancer J Clin,2000.50(1):p.7-33.
3.Richie,J.P.,Anti-androgens and other hormonal therapies for prostate cancer.Urology,1999.54(6A Suppl):p.15-8.
4.Lord,E.M.and J.G.Frelinger,Tumor immunotherapy:cytokines and antigenpresentation.Cancer Immunol Immunother,1998.46(2):p.75-81.
5.Rosenberg,S.A.,A new era for cancer immunotherapy based on the genes thatencode cancer antigens.Immunity,1999.10(3):p.281-7.
6.Sanda,M.G.,et al.,Recombinant vaccinia-PSA(PROSTVAC)can induce aprostate-specific immune response in androgen-modulated human prostate cancer.Urology,1999.53(2):p.260-6.
7.Eder,J.P.,et al.,A phase I trial of a recombinant vaccinia virus expressingprostate-specific antigen in advanced prostate cancer.Clin Cancer Res,2000.6(5):p.1632-8.
8.Gulley,J.,et al.,Phase I study of a vaccine using recombinant vaccinia virusexpressing PSA(rV-PSA)in patients with metastatic androgen-independent prostate cancer.Prostate,2002.53(2):p.109-17.
9.Kaufman,H.L.,et al.,Phase II randomized study of vaccine treatment of advancedprostate cancer(E7897):a trial of the Eastern Cooperative Oncology Group.J Clin Oncol,2004.22(11):p.2122-32.
10.Meidenbauer,N.,et al.,Generation of PSA-reactive effector cells aftervaccination with a PSA-based vaccine in patients with prostate cancer.Prostate,2000.43(2):p.88-100.
11.Barrou,B.,et al.,Vaccination of prostatectomized prostate cancer patients inbiochemical relapse,with autologous dendritic cells pulsed with recombinant human PSA.Cancer Immunol Immunother,2004.53(5):p.453-60.
12.Heiser,A.,et al.,Autologous dendritic cells transfected with prostate-specificantigen RNA stimulate CTL responses against metastatic prostate tumors.J Clin Invest,2002.109(3):p.409-17.
13.Davis,M.M.,T cell receptor gene diversity and selection.Annu Rev Biochem,1990.59:p.475-96.
14.Kappler,J.W.,et al.,A T cell receptor V beta segment that imparts reactivity to aclass II major histocompatibility complex product.Cell,1987.49(2):p.263-71.
15.Ramsdell,F.,T.Lantz,and B.J.Fowlkes,A nondeletional mechanism ofthymic self tolerance.Science,1989.246(4933):p.1038-41.
16.McGargill,M.A.,J.M.Derbinski,and K.A.Hogquist,Receptor editing indeveloping T cells.Nat Immunol,2000.1(4):p.336-41.
17.Jameson,S.C.,K.A.Hogquist,and M.J.Bevan,Positive selection ofthymocytes.Annu Rev Immunol,1995.13:p.93-126.
18.Ford,W.L.and J.L.Gowans,The traffic of lymphocytes.Semin Hematol,1969.6(1):p.67-83.
19.Mackay,C.R.,Homing of naive,memory and effector lymphocytes.Curr OpinImmunol,1993.5(3):p.423-7.
20.Sprent,J.and D.F.Tough,Lymphocyte life-span and memory.Science,1994.265(5177):p.1395-400.
21.Ferreira,C.,et al.,Differential survival of naive CD4 and CD8 T cells.JImmunol,2000.165(7):p.3689-94.
22.Tanchot,C.,et al.,Differential requirements for survival and proliferation ofCD8 naive or memory T cells.Science,1997.276(5321):p.2057-62.
23.Schluns,K.S.,et al.,Interleukin-7 mediates the homeostasis of naive and memoryCD8 T cells in vivo.Nat Immunol,2000.1(5):p.426-32.
24.Tan,J.T.,et al.,IL-7 is critical for homeostatic proliferation and survival ofnaive T cells.Proc Natl Acad Sci U S A,2001.98(15):p.8732-7.
25.Ernst,B.,et al.,The peptide ligands mediating positive selection in the thymuscontrol T cell survival and homeostatic proliferation in the periphery.Immunity,1999.11(2):p.173-81.
26.Prlic,M.,et al.,Homeostatic expansion occurs independently of costimulatorysignals.J Immunol,2001.167(10):p.5664-8.
27.Banchereau,J.and R.M.Steinman,Dendritic cells and the control ofimmunity.Nature,1998.392(6673):p.245-52.
28.De Smedt,T.,et al.,Regulation of dendritic cell numbers and maturation bylipopolysaccharide in vivo.J Exp Med,1996.184(4):p.1413-24.
29.Medzhitov,R.and C.Janeway,Jr.,Innate immune recognition:mechanismsand pathways.Immunol Rev,2000.173:p.89-97.
30.Kaisho,T.,et al.,Endotoxin-induced maturation of MyD88-deficient dendriticcells.J Immunol,2001.166(9):p.5688-94.
31.Whitmire,J.K.and R.Ahmed,Costimulation in antiviral immunity:differential requirements for CD4(+)and CD8(+)T cell responses.Curr Opin Immunol,2000.12(4):p.448-55.
32.Gajewski,T.F.,et al.,Costimulation with B7-1,IL-6,and IL-12 is sufficient forprimary gereration of murine antitumor cytolytic T lymphocytes in vitro.J Immunol,1995.154(11):p.5637-48.
33.Curtsinger,J.M.,et al.,Inflammatory cytokines proyide a third signal foractivation of naive CD4+and CD8+T cells.J Immunol,1999.162(6):p.3256-62.
34.Reis e Sousa,C.,et al.,In vivo microbial stimulation induces rapid CD40ligand-independent production of interleukin 12 by dendritic cells and their redistribution to Tcell areas.J Exp Med,1997.186(11):p.1819-29.
35.Kearney,E.R.,et al.,Visualization of peptide-specific T cell immunity andperipheral tolerance induction in vivo.Immunity,1994.1(4):p.327-39.
36.Veiga-Fernandes,H.,et al.,Response of naive and memory CD8+T cells toantigen stimulation in vivo.Nat Immunol,2000.1(1):p.47-53.
37.Gudmundsdottir,H.,A.D.Wells,and L.A.Turka,Dynamics andrequirements of T cell clonal expansion in vivo at the single-cell level:effector function islinked to proliferative capacity.J Immunol,1999.162(9):p.5212-23.
38.Murali-Krishna,K.,et al.,Counting antigen-specific CD8 T cells:a reevaluationof bystander activation during viral infection.Immunity,1998.8(2):p.177-87.
39.Busch,D.H.,et al.,Coordinate regulation of complex T cell populationsresponding to bacterial infection.Immunity,1998.8(3):p.353-62.
40.Rocha,B.and H.von Boehmer,Peripheral selection of the T cell repertoire.Science,1991.251(4998):p.1225-8.
41.McHeyzer-Williams,M.G.and M.M.Davis,Antigen-specific development ofprimary and memory T cells in vivo.Science,1995.268(5207):p.106-11.
42.Gulbranson-Judge,A.and I.MacLennan,Sequential antigen-specific growthof T cells in the T zones and follicles in response to pigeon cytochrome c.Eur J Immunol,1996.26(8):p.1830-7.
43.Zimmerman,C.,et al.,Visualization,characterization,and turnover of CD8+memory T cells in virus-infected hosts.J Exp Med,1996.183(4):p.1367-75.
44.Schorle,H.,et al.,Development and function of T cells in mice renderedinterleukin-2 deficient by gene targeting.Nature,1991.352(6336):p.621-4.
45.Khoruts,A.,et al.,A natural immunological adjuvant enhances T cell clonalexpansion through a CD28-dependent,interleukin(IL)-2-independent mechanism.J ExpMed,1998.187(2):p.225-36.
46.Kneitz,B.,et al.,Normal clonal expansion but impaired Fas-mediated cell deathand anergy induction in interleukin-2-deficient mice.Eur J Immunol,1995.25(9):p.2572-7.
47.Ku,C.C.,et al.,Control of homeostasis of CD8+memory T cells by opposingcytokines.Science,2000.288(5466):p.675-8.
48.Leung,D.T.,S.Morefield,and D.M.Willerford,Regulation of lymphoidhomeostasis by IL-2 receptor signals in vivo.J Immunol,2000.164(7):p.3527-34.
49.Lantz,O.,et al.,Gamma chain required for naive CD4+T cell survival but notfor antigen proliferation.Nat Immunol,2000.1(1):p.54-8.
50.Suresh,M.,et al.,Role of CD28-B7 interactions in generation and maintenanceof CD8 T cell memory.J Immunol,2001.167(10):p.5565-73.
51.Ranheim,E.A.and T.J.Kipps,Activated T cells induce expression of B7/BB1on normal or leukemic B cells through a CD40-dependent signal.J Exp Med,1993.177(4):p.925-35.
52.Dutton,R.W.,L.M.Bradley,and S.L.Swain,T cell memory.Annu RevImmunol,1998.16:p.201-23.
53.Harrington,L.E.,et al.,Differentiating between memory and effector CD8 T cellsby altered expression of cell surface O-glycans.J Exp Med,2000.191(7):p.1241-6.
54.Petschner,F.,et al.,Constitutive expression of Bcl-xL or Bcl-2 prevents peptideantigen-induced T cell deletion but does not influence T cell homeostasis after a viral infection.Eur J Immunol,1998.28(2):p.560-9.
55.Lenardo,M.,et al.,Mature T lymphocyte apoptosis--immune regulation in adynamic and unpredictable antigenic environment.Annu Rev Immunol,1999.17:p.221-53.
56.Refaeli,Y.,L.Van Parijs,and A.K.Abbas,Genetic models of abnormalapoptosis in lymphocytes.Immunol Rev,1999.169:p.273-82.
57.Refaeli,Y.,et al.,Biochemical mechanisms of IL-2-regulated Fas-mediated Tcell apoptosis.Immunity,1998.8(5):p.615-23.
58.Reinhardt,R.L.,et al.,Visualizing the generation of memory CD4 T cells in thewhole body.Nature,2001.410(6824):p.101-5.
59.Vella,A.T.,et al.,Lipopolysaccharide interferes with the induction of peripheralT cell death.Immunity,1995.2(3):p.261-70.
60.Opferman,J.T.,B.T.Ober,and P.G.Ashton-Rickardt,Linear differentiationof cytotoxic effectors into memory T lymphocytes.Science,1999.283(5408):p.1745-8.
61.Jacob,J.and D.Baltimore,Modelling T-cell memory by genetic marking ofmemory T cells in vivo.Nature,1999.399(6736):p.593-7.
62.Murali-Krishna,K.,et al.,Persistence of memory CD8 T cells in MHC classI-deficient mice.Science,1999.286(5443):p.1377-81.
63.Zhang,X.,et al.,Potent and selective stimulation of memory-phenotype CD8+Tcells in vivo by IL-15.Immunity,1998.8(5):p.591-9.
64.Kennedy,M.K.,et al.,Reversible defects in natural killer and memory CD8 Tcell lineages in interleukin 15-deficient mice.J Exp Med,2000.191(5):p.771-80.
65.Lodolce,J.P.,et al.,T cell-independent interleukin 15Ralpha signals are requiredfor bystander proliferation.J Exp Med,2001.194(8):p.1187-94.
66.Wang,M.C.,et al.,Prostate antigen:a new potential marker for prostatic cancer.Prostate,1981.2(1):p.89-96.
67.Lilja,H.,A kallikrein-like serine protease in prostatic,fluid cleaves thepredominant seminal vesicle protein.J Clin Invest,1985.76(5):p.1899-903.
68.Watt,K.W.,et al.,Human prostate-specific antigen:structural and functionalsimilarity with serine proteases.Proc Natl Acad Sci U S A,1986.83(10):p.3166-70.
69.Sensabaugh,G.F.,Isolation and characterization of a semen-specific proteinfrom human seminal plasma:a potential new marker for semen identification.J Forensic Sci,1978.23(1):p.106-15.
70.Lilja,H.and A.Lundwall,Molecular cloning of epididymal and seminalvesicular transcripts encoding a semenogelin-related protein.Proc Natl Acad Sci U S A,1992.89(10):p.4559-63.
71.Lilja,H.,et al.,Seminal vesicle-secreted proteins and their reactions duringgelation and liquefaction of human semen.J Clin Invest,1987.80(2):p.281-5.
72.Lovgren,J.,et al.,Activation of the zymogen form of prostate-specific antigen byhuman glandular kallikrein 2.Biochem Biophys Res Commun,1997.238(2):p.549-55.
73.Belanger,A.,et al.,Molecular mass and carbohydrate structure of prostatespecific antigen:studies for establishment of an international PSA standard.Prostate,1995.27(4):p.187-97.
74.Catalona,W.J.,et al.,Measurement of prostate-specific antigen in serum as ascreening test for prostate cancer.N Engl J Med,1991.324(17):p.1156-61.
75.Chu,T.M.,Prostate-specific antigen in screening of prostate cancer.J ClinLab Anal,1994.8(5):p.323-6.
76.Babaian,R.J.,et al.,The distribution of prostate specific antigen in men withoutclinical or pathological evidence of prostate cancer:relationship to gland volume and age.JUrol,1992.147(3 Pt 2):p.837-40.
77.Stenman,U.H.,et al.,A complex between prostate-specific antigen and alpha1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients withprostatic cancer:assay of the complex improves clinical sensitivity for cancer.Cancer Res,1991.51(1):p.222-6.
78.Leinonen,J.,et al.,Double-label time-resolved immunofluorometric assay ofprostate-specific antigen and of its complex with alpha 1-antichymotrypsin.Clin Chem,1993.39(10):p.2098-103.
79.Lilja,H.,et al.,Prostate-specific antigen in serum occurs predominantly incomplex with alpha 1-antichymotrypsin.Clin Chem,1991.37(9):p.1618-25.
80.Nadji,M.,et al.,Prostatic-specific antigen:an immunohistologic marker forprostatic neoplasms.Cancer,1981.48(5):p.1229-32.
81.Wang,M.C.,et al.,Purification of a human prostate specific antigen.InvestUrol,1979.17(2):p.159-63.
82.Papsidero,L.D.,et al.,Prostate antigen:a marker for human prostate epithelialcells.J Natl Cancer Inst,1981.66(1):p.37-42.
83.Lange,P.H.,et al.,The value of serum prostate specific antigen determinationsbefore and after radical prostatectomy.J Urol,1989.141(4):p.873-9.
84.Oesterling,J.E.,et al.,Prostate specific antigen in the preoperative andpostoperative evaluation of localized prostatic cancer treated with radical prostatectomy.JUrol,1988.139(4):p.766-72.
85.Seamonds,B.,et al.,Evaluation of prostate-specific antigen and prostatic acidphosphatase as prostate cancer markers.Urology,1986.28(6):p.472-9.
86.Lightner,D.J.,et al.,Prostate specific antigen and local recurrence after radicalprostatectomy.J Urol,1990.144(4):p.921-6.
87.Dundas,G.S.,A.T.Porter,and P.M.Venner,Prostate-specific antigen.Manitoring the response of carcinoma of the prostate to radiotherapy with a new tumor marker.Cancer,1990.66(1):p.45-8.
88.Stamey,T.A.,J.N.Kabalin,and M.Ferrari,Prostate specific antigen in thediagnosis and treatment of adenocarcinoma of the prostate.III.Radiation treated patients.J Urol,1989.141(5):p.1084-7.
89.Stamey,T.A.,et al.,Prostate specific antigen in the diagnosis and treatment ofadenocarcinoma of the prostate.IV.Anti-androgen treated patients.J Urol,1989.141(5):p.1088-90.
90.Wolff,J.A.,et al.,Direct gene transfer into mouse muscle in vivo.Science,1990.247(4949 Pt 1):p.1465-8.
91.Williams,R.S.,et al.,Introduction of foreign genes into tissues of living mice byDNA-coated microprojectiles.Proc Natl Acad Sci U S A,1991.88(7):p.2726-30.
92.Tang,D.C.,M.DeVit,and S.A.Johnston,Genetic immunization is a simplemethod for eliciting an immune response.Nature,1992.356(6365):p.152-4.
93.Ulmer,J.B.,et al.,Heterologous protection against influenza by injection of DNAencoding a viral protein.Science,1993.259(5102):p.1745-9.
94.Boshart,M.,et al.,A very strong enhancer is located upstream of an immediateearly gene of human cytomegalovirus.Cell,1985.41(2):p.521-30.
95.Pieters,J.,MHC class II restricted antigen presentation.Curr Opin Immunol,1997.9(1):p.89-96.
96.Jondal.M.,R.Schirmbeck,and J.Reimann,MHC class I-restricted CTLresponses to exogenous antigens.Immunity,1996.5(4):p.295-302.
97.Doe,B.,et al.,Induction of cytotoxic T lymphocytes by intramuscularimmunization with plasmid DNA is facilitated by bone marrow-derived cells.Proc Natl AcadSci U S A,1996.93(16):p.8578-83.
98.Iwasaki,A.,et al.,The dominant role of bone marrow-derived cells in CTLinduction following plasmid DNA immunization at different sites.J Immunol,1997.159(1):p.11-4.
99.Corr,M.,et al.,Gene vaccination with naked plasmid DNA:mechanism of CTLpriming.J Exp Med,1996.184(4):p.1555-60.
100.Condon,C.,et al.,DNA-based immunization by in vivo transfection of dendriticcells.Nat Med,1996.2(10):p.1122-8.
101.Cho,J.H.,J.W.Youn,and Y.C.Sung,Cross-priming as a predominantmechanism for inducing CD8(+)T cell responses in gene gun DNA immunization.J Immunol,2001.167(10):p.5549-57.
102.Porgador,A.,et al.,Predominant role for directly transfected dendritic cells inantigen presentation to CD8+T cells after gene gun immunization.J Exp Med,1998.188(6):p.1075-82.
103.Corr,M.,et al.,In vivo priming by DNA injection occurs predominantly byantigen transfer.J Immunol,1999.163(9):p.4721-7.
104.Akbari,O.,et al.,DNA vaccination:transfection and activation of dendriticcells as key events for immunity.J Exp Med,1999.189(1):p.169-78.
105.Rodriguez,F.,J.Zhang,and J.L.Whitton,DNA immunization:ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviralprotection but abrogates antibody induction.J Virol,1997.71(11):p.8497-503.
106.Hauser,H.and S.Y.Chen,Augmentation of DNA vaccine potency throughsecretory heat shock protein-mediated antigen targeting.Methods,2003.31(3):p.225-31.
107.Pavlenko,M.,et al.,Comparison of PSA-specific CD8(+)CTL responses andantitumor immunity generated by plasmid DNA vaccines encoding PSA-HSP chimeric proteins.Cancer Immunol Immunother,2004.53(12):p.1085-1092.
108.Leifert,J.A.,et al.,Targeting plasmid-encoded proteins to the antigenpresentation pathways.Immunol Rev,2004.199:p.40-53.
109.Yamamoto,S.,et al.,Unique palindromic sequences in syntheticoligonucleotides are required to induce IFN[correction of INF]and augment IFN-mediated[correction of INF]natural killer activity.J Immunol,1992.148(12):p.4072-6.
110.Krieg,A.M.,CpG motifs in bacterial DNA and their immune effects.AnnuRev Immunol,2002.20:p.709-60.
111.Krieg,A.M.,et al.,CpG motifs in bacterial DNA trigger direct B-cell activation.Nature,1995.374(6522):p.546-9.
112.Razin,A.and J.Friedman,DNA methylation and its possible biologicalroles.Prog Nucleic Acid Res Mol Biol,1981.25:p.33-52.
113.Cardon,L.R.,et al.,Pervasive CpG suppression in animal mitochondrialgenomes.Proc Natl Acad Sci U S A,1994.91(9):p.3799-803.
114.Hemmi,H.,et al.,A Toll-like receptor recognizes bacterial DNA.Nature,2000.408(6813):p.740-5.
115.Hornung,V.,et al.,Quantitative expression of toll-like receptor 1-10 mRNA incellular subsets of human peripheral blood mononuclear cells and sensitivity to CpGoligodeoxynucleotides.J Immunol,2002.168(9):p.4531-7.
116.Bauer,M.,et al.,Bacterial CpG-DNA triggers activation and maturation ofhuman CD11c-,CD123+dendritic cells.J Immunol,2001.166(8):p.5000-7.
117.Kadowaki,N.,et al.,Subsets of human dendritic cell precursors expressdifferent toll-like receptors and respond to different microbial antigens.J Exp Med,2001.194(6):p.863-9.
118.Wagner,H.,Bacterial CpG DNA activates immune cells to signal infectiousdanger.Adv Immunol,1999.73:p.329-68.
119.Sparwasser,T.,et al.,Macrophages sense pathogens via DNA motifs:inductionof tumor necrosis factor-alpha-mediated shock.Eur J Immunol,1997.27(7):p.1671-9.
120.Sparwasser,T.,et al.,Bacterial DNA and immunostimulatory CpGoligonucleotides trigger maturation and activation of murine dendritic cells.Eur J Immunol,1998.28(6):p.2045-54.
121.Halpern,M.D.,R.J.Kurlander,and D.S.Pisetsky,Bacterial DNA inducesmurine interferon-gamma production by stimulation of interleukin-12 and tumor necrosisfactor-alpha.Cell Immunol,1996.167(1):p.72-8.
122.Sato,Y.,et al.,Immunostimulatory DNA sequences necessary for effectiveintradermal gene immunization.Science,1996.273(5273):p.352-4.
123.Spies,B.,et al.,Vaccination with plasmid DNA activates dendritic cells viaToll-like receptor 9(TLR9)but functions in TLR9-deficient mice.J Immunol,2003.171(11):p.5908-12.
124.Babiuk,S.,et al.,TLR9-/- and TLR9+/+ mice display similar immune responsesto a DNA vaccine.Immunology,2004.113(1):p.114-20.
125.Bourgeois,C.and C.Tanchot,Mini-review CD4 T cells are required forCD8 T cell memory generation.Eur J Immunol,2003.33(12):p.3225-31.
126.Maecker,H.T.,et al.,Cytotoxic T cell responses to DNA vaccination:dependence on antigen presentation via class II MHC.J Immunol,1998.161(12):p.6532-6.
127.Chan,K.,et al.,The roles of MHC class II,CD40,and B7 costimulation in CTLinduction by plasmid DNA.J Immunol,2001.166(5):p.3061-6.
128.Wild,J.,et al.,Priming MHC-I-restricted cytotoxic T lymphocyte responses toexogenous hepatitis B surface antigen is CD4+T cell dependent.J Immunol,1999.163(4):p.1880-7.
129.Renkvist,N.,et al.,A listing of human tumor antigens recognized by T cells.Cancer Immunol Immunother,2001.50(1):p.3-15.
130.Van Pel,A.,et al.,Genes coding for tumor antigens recognized by cytolytic Tlymphocytes.Immunol Rev,1995.145:p.229-50.
131.Gjertsen,M.K.,et al.,Vaccination with mutant ras peptides and induction ofT-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RASmutation.Lancet,1995.346(8987):p.1399-400.
132.Yanuck,M.,et al.,A mutant p53 tumor suppressor protein is a target forpeptide-induced CD8+cytotoxic T-cells.Cancer Res,1993.53(14):p.3257-61.
133.Boel,P.,et al.,BAGE:a new gene encoding an antigen recognized on humanmelanomas by cytolytic T lymphocytes.Immunity,1995.2(2):p.167-75.
134.Traversari,C.,et al.,A nonapeptide encoded by human gene MAGE-1 isrecognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E.JExp Med,1992.176(5):p.1453-7.
135.Van den Eynde,B.,et al.,A new family of genes coding for an antigenrecognized by autologous cytolytic T lymphocytes on a human melanoma.J Exp Med,1995.182(3):p.689-98.
136.Eiben,G.L.,et al.,Cervical cancer vaccines:recent advances in HPV research.Viral Immunol,2003.16(2):p.111-21.
137.Taylor,G.S.,T cell-based therapies for EBV-associated malignancies.ExpertOpin Biol Ther,2004.4(1):p.11-21.
138.Klyushnenkova,E.N.,et al.,CD4 and CD8 T-lymphocyte recognition ofprostate specific antigen in granulomatous prostatitis.J Immunother,2004.27(2):p.136-46.
139.Brichard,V.,et al.,The tyrosinase gene codes for an antigen recognized byautologous cytolytic T lymphocytes on HLA-A2 melanomas.J Exp Med,1993.178(2):p.489-95.
140.Ioannides,C.G.,et al.,Cytotoxic T cells isolated from ovarian malignant ascitesrecognize a peptide derived from the HER-2/neu proto-oncogene.Cell Immunol,1993.151(1):p.225-34.
141.Vonderheide,R.H.,et al.,Characterization of HLA-A3-restricted cytotoxic Tlymphocytes reactive against the widely expressed tumor antigen telomerase.Clin CancerRes,2001.7(11):p.3343-8.
142.Tsang,K.Y.,et al.,Generation of human cytotoxic T cells specific for humancarcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEAvaccine.J Natl Cancer Inst,1995.87(13):p.982-90.
143.Benvenuti,F.,M.Cesco-Gaspere,and O.R.Burrone,Anti-idiotypic DNAvaccines for B-cell lymphoma therapy.Front Biosci,2002.7:p.d228-34.
144.Di Carlo,E.,et al.,Inhibition of mammary carcinogenesis by systemicinterleukin 12 or p185neu DNA vaccination in Her-2/neu transgenic BALB/c mice.ClinCancer Res,2001.7(3 Suppl):p.830s-837s.
145.Niethammer,A.G.,et al.,A DNA vaccine against VEGF receptor 2 preventseffective angiogenesis and inhibits tumor growth.Nat Med,2002.8(12):p.1369-75.
146.Bright,R.K.,et al.,Protection against a lethal challenge withSV40-transformed cells by the direct injection of DNA-encoding SV40 large tumor antigen.Cancer Res,1996.56(5):p.1126-30.
147.Ross,H.M.,et al.,Priming for T-cell-mediated rejection of established tumorsby cutaneous DNA immunization.Clin Cancer Res,1997.3(12 Pt 1):p.2191-6.
148.Conry,R.M.,et al.,A carcinoembryonic antigen polynucleotide vaccine has invivo antitumor activity.Gene Ther,1995.2(1):p.59-65.
149.Tuting,T.,et al.,Induction of tumor antigen-specific immunity using plasmidDNA immunization in mice.Cancer Gene Ther,1999.6(1):p.73-80.
150.Roos,A.K.,et al.,Induction of PSA-specific CTLs and anti-tumor immunity bya genetic prostate cancer vaccine.Prostate,2005.62(3):p.217-23.
151.Zhou,H.,et al.,A novel transgenic mouse model for immunological evaluationof carcinoembryonic antigen-based DNA minigene vaccines.J Clin Invest,2004.113(12):p.1792-8.
152.Piechocki,M.P.,et al.,Human ErbB-2(Her-2)transgenic mice:a model systemfor testing Her-2 based vaccines.J Immunol,2003.171(11):p.5787-94.
153.Rosato,A.,et al.,CTL response and protection against P815 tumor challengein mice immunized with DNA expressing the tumor-specific antigen P815A.Hum Gene Ther,1997.8(12):p.1451-8.
154.Bowne,W.B.,et al.,Coupling and uncoupling of tumor immunity andautoimmunity.J Exp Med,1999.190(11):p.1717-22.
155.Van den Eynde,B.,et al.,The gene coding for a major tumor rejection antigenof tumor P815 is identical to the normal gene of syngeneic DBA/2 mice.J Exp Med,1991.173(6):p.1373-84.
156.Ercolini,A.M.,et al.,Identification and charocterization of theimmunodominant rat HER-2/neu MHC class I epitope presented by spontaneous mammarytumors from HER-2/neu-transgenic mice.J Immunol,2003.170(8):p.4273-80.
157.Nagata,Y.,et al.,Peptides derived from a wild-type murine proto-oncogenec-erbB-2/HER2/neu can induce CTL and tumor suppression in syngeneic hosts.Sequences ofmurine c-erbB-2,human Her2 and rat neu antigens.J Immunol,1997.159(3):p.1336-43.
158.Weber,L.W.,et al.,Tumor immunity and autoimmunity induced byimmunization with homologous DNA.J Clin Invest,1998.102(6):p.1258-64.
159.Hawkins,W.G.,et al.,Immunization with DNA coding for gp100 results in CD4T-cell independent antitumor immunity.Surgery,2000.128(2):p.273-80.
160.Guevara-Patino,J.A.,et al.,Immunity to cancer through immune recognition ofaltered self:studies with melanoma.Adv Cancer Res,2003.90:p.157-77.
161.Overwijk,W.W.,et al.,gp100/pmel 17 is a murine tumor rejection antigen:induction of″self″-reactive,tumoricidal T cells using high-affinity,altered peptide ligand.JExp Med,1998.188(2):p.277-86.
162.Gold,J.S.,et al.,A single heteroclitic epitope determines cancer immunity afterxenogeneic DNA immunization against a tumor differentiation antigen.J Immunol,2003.170(10):p.5188-94.
163.Wolchok,J.D.,et al.,DNA vaccines:an active immunization strategy forprostate cancer.Semin Oncol,2003.30(5):p.659-66.
164.Hassett,D.E.,et al.,Direct ex vivo kinetic and phenotypic analyses of CD8(+)T-cell responses induced by DNA immunization.J Virol,2000.74(18):p.8286-91.
165.Kwissa,M.,et al.,Cytokine-facilitated priming of CD8(+)T cell responses byDNA vaccination.J Mol Med,2003.81(2):p.91-101.
166.Denis-Mize,K.S.,et al.,Plasmid DNA adsorbed onto cationic microparticlesmediates target gene expression and antigen presentation by dendritic cells.Gene Ther,2000.7(24):p.2105-12.
167.O′Hagan,D.,et al.,Induction of potent immune responses by cationicmicroparticles with adsorbed human immunodeficiency virus DNA vaccines.J Virol,2001.75(19):p.9037-43.
168.Drabick,J.J.,et al.,Cutaneous transfection and immune responses tointradermal nucleic acid vaccination are significantly enhanced by in vivoelectropermeabilization.Mol Ther,2001.3(2):p.249-55.
169.Quaglino,E.,et al.,Electroporated DNA vaccine clears away multifocalmammary carcinomas in her-2/neu transgenic mice.Cancer Res,2004.64(8):p.2858-64.
170.Mir,L.M.,et al.,High-efficiency gene transfer into skeletal muscle mediated byelectric pulses.Proc Natl Acad Sci U S A,1999.96(8):p.4262-7.
171.Widera,G.,et al.,Increased DNA vaccine delivery and immunogenicity byelectroporation in vivo.J Immunol,2000.164(9):p.4635-40.
172.Maloy,K.J.,et al.,Intralymphatic immunization enhances DNA vaccination.Proc Natl Acad Sci U S A,2001.98(6):p.3299-303.
173.Leder,C.,et al.,Enhancement of capsid gene expression:preparing the humanpapillomavirus type 16 major structural gene L1 for DNA vaccination purposes.J Virol,2001.75(19):p.9201-9.
174.Liu,W.J.,et al.,Codon modified human papillomavirus type 16 E7 DNAvaccine enhances cytotoxic T-lymphocyte induction and anti-tumour activity.Virology,2002.301(1):p.43-52.
175.Chen,C.H.,et al.,Enhancement of DNA vaccine potency by linkage of antigengene to an HSP70 gene.Cancer Res,2000.60(4):p.1035-42.
176.Stevenson,F.K.,et al.,DNA vaccines to attack cancer.Proe Natl Acad Sci US A,2004.101 Suppl 2:p.14646-52.
177.Rodriguez,F.,et al.,Immunodominance in virus-induced CD8(+)T-cellresponses is dramatically modified by DNA immunization and is regulated by gammainterferon.J Virol,2002.76(9):p.4251-9.
178.Deng,Y.,et al.,MHC affinity,peptide liberation,T cell repertoire,andimmunodominance all contribute to the paucity of MHC class I-restricted peptides recognizedby antiviral CTL.J Immunol,1997.158(4):p.1507-15.
179.Rice,J.,et al.,DNA fusion vaccine designed to induce cytotoxic T cell responsesagainst defined peptide motifs:implications for cancer vaccines.J Immunol,2001.167(3):p.1558-65.
180.Rice,J.,S.Buchan,and F.K.Stevenson,Critical components of a DNAfusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumorantigen.J Immunol,2002.169(7):p.3908-13.
181.Klinman,D.M.,et al.,Use of CpG oligodeoxynucleotides as immune adjuvants.Immunol Rev,2004.199:p.201-16.
182.Klinman,D.M.,G.Yamshchikov,and Y.Ishigatsubo,Contribution of CpGmotifs to the immunogenicity of DNA vaccines.J Immunol,1997.158(8):p.3635-9.
183.Takeshita,F.,et al.,Cutting edge:Role of Toll-like receptor 9 in CpGDNA-induced activation of human cells.J Immunol,2001.167(7):p.3555-8.
184.Conry,R.M.,et al.,Selected strategies to augment polynucleotide immunization.Gene Ther,1996.3(1):p.67-74.
185.Pasquini,S.,et al.,Cytokines and costimulatory molecules as genetic adjuvants.Immunol Cell Biol,1997.75(4):p.397-401.
186.Song,K.,Y.Chang,and G.J.Prud′homme,IL-12 plasmid-enhanced DNAvaccination against carcinoembryonic antigen(CEA)studied in immune-gene knockout mice.Gene Ther,2000.7(18):p.1527-35.
187.Kwissa,M.,et al.,Cytokine-facilitated priming of CD8+T cell responses byDNA vaccination.J Mol Med,2003.81(2):p.91-101.
188.Bowne,W.B.,et al.,Injection of DNA encoding granulocyte-macrophagecolony-stimulating factor recruits dendritic cells for immune adjuvant effects.Cytokines CellMol Ther,1999.5(4):p.217-25.
189.Pertmer,T.M.,et al.,Gene gun-based nucleic acid immunization:elicitation ofhumoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogramquantities of DNA.Vaccine,1995.13(15):p.1427-30.
190.Haynes,J.R.,Particle-mediated DNA vaccine delivery to the skin.ExpertOpin Biol Ther,2004.4(6):p.889-900.
191.O′Hagan,D.T.,M.Singh,and J.B.Ulmer,Microparticles for the delivery ofDNA vaccines.Immunol Rev,2004.199:p.191-200.
192.Davis,H.L.,et al.,Direct gene transfer in skeletal muscle:plasmid DNA-basedimmunization against the hepatitis B virus surface antigen.Vaccine,1994.12(16):p.1503-9.
193.Trimble,C.,et al.,Comparison of the CD8+T cell responses and antitumoreffects generated by DNA vaccine administered through gene gun,biojector,and syringe.Vaccine,2003.21(25-26):p.4036-42.
194.Schneeberger,A.,et al.,CpG motifs are efficient adjuvants for DNA cancervaccines.J Invest Dermatol,2004.123(2):p.371-9.
195.Chattergoon,M.A.,et al.,Co-immunization with plasmid IL-12 generates astrong T-cell memory response in mice.Vaccine,2004.22(13-14):p.1744-50.
196.Kim,J.J.,et al.,Engineering of in vivo immune responses to DNA immunizationvia codelivery of costimulatory molecule genes.Nat Biotechnol,1997.15(7):p.641-6.
197.Kim,J.J.,et al.,Engineering DNA vaccines via co-delivery of co-stimulatorymolecule genes.Vaccine,1998.16(19):p.1828-35.
198.Kim,J.J.,et al.,Chemokine gene adjuvants can modulate immune responsesinduced by DNA vaccines.J Interferon Cytokine Res,2000.20(5):p.487-98.
199.Sumida,S.M.,et al.,Recruitment and expansion of dendritic cells in vivopotentiate the immunogenicity of plasmid DNA vaccines.J Clin Invest,2004.114(9):p.1334-42.
200.Badovinac,V.P.and J.T.Harty,Memory lanes.Nat Immunol,2003.4(3):p.212-3.
201.Kaech,S.M.,et al.,Selective expression of the interleukin 7 receptor identifieseffector CD8 T cells that give rise to long-lived memory cells.Nat Immunol,2003.4(12):p.1191-8.
202.Wherry,E.J.,et al.,Lineage relationship and protective immunity of memoryCD8 T cell subsets.Nat Immunol,2003.4(3):p.225-34.
203.Zinkernagel,R.M.,et al.,On immunological memory.Annu Rev Immunol,1996.14:p.333-67.
204.Ochsenbein,A.F.,et al.,Immune surveillance against a solid tumor failsbecause of immunological ignorance.Proc Natl Acad Sci U S A,1999.96(5):p.2233-8.
205.Zinkernagel,R.M.,Immunity against solid tumors?Int J Cancer,2001.93(1):p.1-5.
206.Speiser,D.E.,et al.,Self antigens expressed by solid tumors Do not efficientlystimulate naive or activated T cells:implications for immunotherapy.J Exp Med,1997.186(5):p.645-53.
207.Kursar,M.,et al.,Regulatory CD4+CD25+T cells restrict memory CD8+Tcell responses.J Exp Med,2002.196(12):p.1585-92.
208.Robinson,H.L.,Prime boost vaccines power up in people.Nat Med,2003.9(6):p.642-3.
209.McConkey,S.J.,et al.,Enhanced T-cell immunogenicity of plasmid DNAvaccines boosted by recombinant modified vaccinia virus Ankara in humans.Nat Med,2003.9(6):p.729-35.
210.Kim,J.J.,et al.,Induction of immune responses and safety profiles in rhesusmacaques immunized with a DNA vaccine expressing human prostate specific antigen.Oncogene,2001.20(33):p.4497-506.
211.Pavlenko,M.,et al.,A phase I trial of DNA vaccination with a plasmidexpressing prostate-specific antigen in patients with hormone-refractory prostate cancer.BrJ Cancer,2004.91(4):p.688-94.
212.Conry,R.M.,et al.,Safety and immunogenicity of a DNA vaccine encodingcarcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients.Clin Cancer Res,2002.8(9):p.2782-7.
213.Klencke,B.,et al.,Encapsulated plasmid DNA treatment for humanpapillomavirus 16-associated anal aysplasia:a Phase I stuay of ZYC101.Clin Cancer Res,2002.8(5):p.1028-37.
214.Timmerman,J.M.,et al.,Immunogenicity of a plasmid DNA vaccine encodingchimeric idiotype in patients with B-cell lymphoma.Cancer Res,2002.62(20):p.5845-52.
215.Roserberg,S.A.,et al.,Inability to immunize patients with metastatic melanomausing plasmid DNA encoding the gp100 melanoma-melanocyte antigen.Hum Gene Ther,2003.14(8):p.709-14.
216.Tagawa,S.T.,et al.,Phase I stuay of intranodal delivery of a plasmid DNAvaccine for patients with Stage IV melanoma.Cancer,2003.98(1):p.144-54.
217.Mincheff,M.,et al.,Naked DNA and adenoviral immunizations forimmunotherapy of prostate cancer:a phase I/II clinical trial.Eur Urol,2000.38(2):p.208-17.
218.Rosenberg,S.A.,et al.,Recombinant fowlpox viruses encoding theanchor-modified gp100 melanoma antigen can generate antitumor immune responses inpatients with metastatic melanoma.Clin Cancer Res,2003.9(8):p.2973-80.
219.Hollon,T.,Researchers and regulators reflect on first gene therapy death.Nat Med,2000.6(1):p.6.
220.Krieg,A.M.,Antitumor applications of stimulating toll-like receptor 9 withCpG oligodeoxynucleotides.Curr Oncol Rep,2004.6(2):p.88-95.
221.Matsuo,H.,et al.,Peptide-selected T cell lines from myasthenia gravis patientsand controls recognize epitopes that are not processed from whole acetylcholine receptor.JImmunol,1995.155(7):p.3683-92.
222.Vitiello,A.,et al.,Comparison of cytotoxic T lymphocyte responses induced bypeptide or DNA immunization:implications on immunogenicity and immunodominance.EurJ Immunol,1997.27(3):p.671-8.
223.Xue,B.H.,et al.,Induction of human cytotoxic T lymphocytes specific forprostate-specific antigen.Prostate,1997.30(2):p.73-8.
224.Alexander,R.B.,Induction of human cytotoxic T lymphocytes specific forprostate-specific antigen.Prostate,1997.32(1):p.73-4.
225.Chakraborty,N.G.,et al.,Recognition of PSA-derived peptide antigens by Tcells from prostate cancer patients without any prior stimulation.Cancer ImmunolImmunother,2003.52(8):p.497-505.
226.Alexander,R.B.,et al.,Specific T cell recognition of peptides derived fromprostate-specific antigen in patients with prostate cancer.Urology,1998.51(1):p.150-7.
227.Correale,P.,et al.,Generation of human cytolytic T lymphocyte lines directedagainst prostate-specific antigen(PSA)employing a PSA oligoepitope peptide.J Immunol,1998.161(6):p.3186-94.
228.Perambakam,S.,et al.,Induction of Tc2 cells with specificity forprostate-specific antigen from patients with hormone-refractory prostate cancer.CancerImmunol Immunother,2002.51(5):p.263-70.
229.Correale,P.,et al.,In vitro generation of human cytotoxic T lymphocytesspecific for peptides derived from prostate-specific antigen.J Natl Cancer Inst,1997.89(4):p.293-300.
230.Corman,J.M.,E.E.Sercarz,and N.K.Nanda,Recognition ofprostate-specific antigenic peptide determinants by human CD4 and CD8 T cells.Clin ExpImmunol,1998.114(2):p.166-72.
231.Harada,M.,et al.,Prostate-specific antigen-derived epitopes capable ofinducing cellular and humoral responses in HLA-A24+prostate cancer patients.Prostate,2003.57(2):p.152-9.
232.Berlyn,K.A.,et al.,Generation of CD4(+)and CD8(+)T lymphocyte responsesby dendritic cells armed with PSA/anti-PSA(antigen/antibody)complexes.Clin Immunol,2001.101(3):p.276-83.
233.Heiser,A.,et al.,Human dendritic cells transfected with renal tumor RNAstimulate polyclonal T-cell responses against antigens expressed by primary and metastatictumors.Cancer Res,2001.61(8):p.3388-93.
234.Ozenci,V.,et al.,Presence and specificity of tumor associated lymphocytesfrom ascites fluid in prostate cancer.Prostate,2005.
235.Rini,B.I.,et al.,Prostate-specific antigen kinetics as a measure of the biologiceffect of granulocyte-macrophage colony-stimulating factor in patients with serologicprogression of prostate cancer.J Clin Oncol,2003.21(1):p.99-105.
236.Freedland,S.J.,et al.,Immunotherapy of prostate cancer.Curr Urol Rep,2001.2(3):p.242-7.
237.Olsson,A.Y.,H.Lilja,and A.Lundwall,Taxon-specific evolution ofglandular kallikrein genes and identification of a progenitor of prostate-specific antigen.Genomics,2004.84(1):p.147-56.
238.Yousef,G.M.and E.P.Diamandis,The new human tissue kallikrein genefamily:structure,function,and association to disease.Endocr Rev,2001.22(2):p.184-204.
239.Young,C.Y.,et al.,Tissue-specific and hormonal regulation of humanprostate-specific glandular kallikrein.Biochemistry,1992.31(3):p.818-24.
240.Wolf,D.A.,P.Schulz,and F.Fittler,Transcriptional regulation of prostatekallikrein-like genes by androgen.Mol Endocrinol,1992.6(5):p.753-62.
241.Karr,J.F.,et al.,The presence of prostate-specific antigen-related genes inprimates and the expression of recombinant human prostate-specific antigen in a transfectedmurine cell line.Cancer Res,1995.55(11):p.2455-62.
242.Gauthier,E.R.,et al.,Characterization of rhesus monkey prostate specificantigen cDNA.Biochim Biophys Acta,1993.1174(2):p.207-10.
243.Olsson,A.Y.and A.Lundwall,Organization and evolution of the glandularkallikrein locus in Mus musculus.Biochem Biophys Res Commun,2002.299(2):p.305-11.
244.van Leeuwen,B.H.,et al.,Mouse glandular kallikrein genes.Identification,structure,and expression of the renal kallikrein gene.J Biol Chem,1986,261(12):p.5529-35.
245.Evans,B.A.,C.C.Drinkwater,and R.I.Richards,Mouse glandularkallikrein genes.Structure and partial sequence analysis of the kallikrein gene locus.J BiolChem,1987.262(17):p.8027-34.
246.Wei,C.,et al.,Expression of human prostate-specific antigen(PSA)in a mousetumor cell line reduces tumorigenicity and elicits PSA-specific cytotoxic T lymphocytes.Cancer Immunol Immunother,1996.42(6):p.362-8.
247.Elzey,B.D.,et al.,Immunization with type 5 adenovirus recombinant for atumor antigen in combination with recombinant canarypox virus(ALVAC)cytokine genedelivery induces destruction of established prostate tumors.Int J Cancer,2001.94(6):p.842-9.
248.Kim,J.J.,et al.,Molecular and immunological analysis of genetic prostatespecific antigen(PSA)vaccine.Oncogene,1998.17(24):p.3125-35.
249.Willis,R.A.,et al.,Dendritic cells transduced with HSV-1 amplicons expressingprostate-specific antigen generate antitumor immunity in mice.Hum Gene Ther,2001.12(15):p.1867-79.
250.Wei,C.,et al.,Tissue-specific expression of the human prostate-specific antigengene in transgenic mice:implications for tolerance and immunotherapy.Proc Natl Acad SciU S A,1997.94(12):p.6369-74.
251.Nossal,G.J.,Negative selection of lymphocytes.Cell,1994.76(2):p.229-39.
252.Turner,M.J.,et al.,T-cell antigen discovery(T-CAD)assay:a novel techniquefor identifying T cell epitopes.J Immunol Methods,2001.256(1-2):p.107-19.
253.Vitiello,A.,et al.,Analysis of the HLA-restricted influenza-specific cytotoxic Tlymphocyte response in transgenic mice carrying a chimeric human-mouse class I majorhistocompatibility complex.J Exp Med,1991.173(4):p.1007-15.
254.Wentworth,P.A.,et al.,Differences and similarities in the A2.1-restrictedcytotoxic T cell repertoire in humans and human leukocyte antigen-transgenic mice.Eur JImmunol,1996.26(1):p.97-101.
255.Alexander,J.,et al.,Derivation of HLA-A11/Kb transgenic mice:functionalCTL repertoire and recognition of human A11-restricted CTL epitopes.J Immunol,1997.159(10):p.4753-61.
256.Gotoh,M.,et al.,Development of HLA-A2402/K(b)transgenic mice.Int JCancer,2002.100(5):p.565-70.
257.Ciupitu,A.M.,et al.,Immunization with a lymphocytic choriomeningitis viruspeptide mixed with heat shock protein 70 results in protective antiviral immunity and specificcytotoxic T lymphocytes.J Exp Med,1998.187(5):p.685-91.
258.Suto,R.and P.K.Srivastava,A mechanism for the specific immunogenicityof heat shock protein-chaperoned peptides.Science,1995.269(5230):p.1585-8.
259.Suzue,K.,et al.,Heat shock fusion proteins as vehicles for antigen delivery intothe major histocompatibility complex class I presentation pathway.Proc Natl Acad Sci U SA,1997.94(24):p.13146-51.
260.Hsu,K.F.,et al.,Enhancement of suicidal DNA vaccine potency by linkingMycobacterium tuberculosis heat shock protein 70 to an antigen.Gene Ther,2001.8(5):p.376-83.
261.Barrios,C.,et al.,Heat shock proteins as carrier molecules:in vivo helper effectmediated by Escherichia coli GroEL and DnaK proteins requires cross-linking with antigen.Clin Exp Immunol,1994.98(2):p.229-33.
262.Chu,N.R.,et al.,Immunotherapy of a human papillomavirus(HPV)type 16E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovisbacille Calmette-Guerin(BCG)hsp65 and HPV16 E7.Clin Exp Immunol,2000.121(2):p.216-25.
263.Udono,H.,et al.,Generation of cytotoxic T lymphocytes by MHC class Iligands fused to heat shock cognate protein 70.Int Immunol,2001.13(10):p.1233-42.
264.McCormack,R.T.,et al.,Molecular forms of prostate-specific antigen and thehuman kallikrein gene family:a new era.Urology,1995.45(5):p.729-44.
265.Planelles,L.,et al.,DNA immunization with Trypanosoma cruzi HSP70 fused tothe KMP11 protein elicits a cytotoxic and humoral immune response against the antigen andleads to protection.Infect Immun,2001.69(10):p.6558-63.
266.Michel,N.,et al.,Enhanced immunogenicity of HPV 16 E7 fusion proteins inDNA vaccination.Virology,2002.294(1):p.47-59.
267.Ohashi,P.S.,et al.,Ablation of″tolerance″and induction of diabetes by virusinfection in viral antigen transgenic mice.Cell,1991.65(2):p.305-17.
268.Grossmann,M.E.,E.Davila,and E.Celis,Avoiding Tolerance AgainstProstatic Antigens With Subdominant Peptide Epitopes.J Immunother,2001.24(3):p.237-241.
269.Gross,D.A.,et al.,High vaccination efficiency of low-affinity epitopes inantitumor immunotherapy.J Clin Invest,2004.113(3):p.425-33.
270.Schirle,M.,T.Weinschenk,and S.Stevanovic,Combining computeralgorithms with experimental approaches permits the rapid and accurate identification of Tcell epitopes from defined antigens.J Immunol Methods,2001.257(1-2):p.1-16.
271.Rammensee,H.,et al.,SYFPEITHI:database for MHC ligands and peptidemotifs.Immunogenetics,1999.50(3-4):p.213-9.
272.Gairin,J.E.,et al.,Optimal lymphocytic choriomeningitis virus sequencesrestricted by H-2Db major histocompatibility complex class I molecules and presented tocytotoxic T lymphocytes.J Virol,1995.69(4):p.2297-305.
273.Zhang,W.,et al.,Crystal structure of the major histocompatibility complexclass I H-2Kb molecul containing a single viral peptide:implications for peptide binding andT-cell receptor recognition.Proc Natl Acad Sci U S A,1992.89(17):p.8403-7.
274.Hacker,H.,et al.,Immune cell activation by bacterial CpG-DNA throughmyeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor(TRAF)6.J Exp Med,2000.192(4):p.595-600.
275.Zelenay,S.,F.Elias,and J.Flo,Immunostimulatory effects of plasmid DNAand synthetic oligodeoxynucleotides.Eur J Immunol,2003.33(5):p.1382-92.
276.Chace,J.H.,et al.,Bacterial DNA-induced NK cell IFN-gamma production isdependent on macrophage secretion of IL-12.Clin Immunol Immunopathol,1997.84(2):p.185-93.
277.Cowdery,J.S.,et al.,Bacterial DNA induces NK cells to produce IFN-gamma invivo and increases the toxicity of lipopolysaccharides.J Immunol,1996.156(12):p.4570-5.

Claims (8)

1.组合物,是人用疫苗,其包括猕猴前列腺特异性抗原(PSA)和对人施用的可药用载体,其中所述猕猴PSA引起人的免疫应答,该免疫应答产生抗人PSA的抗体。
2.权利要求1的组合物,是疫苗,且其中人的免疫应答导致对含有人PSA的人类细胞的细胞毒性、细胞介导型免疫。
3.猕猴PSA在制备人用疫苗中的用途,所述疫苗用于提供抗人PSA的免疫应答。
4.猕猴PSA的DNA序列在制备人用疫苗中的用途,所述疫苗用于提供抗人PSA的免疫应答。
5.人用DNA疫苗,包含源自猕猴PSA基因的基因序列。
6.表达猕猴PSA的载体在制备人用疫苗中的用途,所述疫苗用于提供抗人PSA的免疫应答。
7.权利要求6的用途,其中所述载体是DNA载体。
8.权利要求6的用途,其中所述载体是RNA载体。
CN200680030353XA 2005-06-21 2006-06-21 与抗前列腺癌疫苗有关的方法和组合物 Active CN101257920B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US69223805P 2005-06-21 2005-06-21
US60/692,238 2005-06-21
PCT/US2006/024076 WO2007002149A2 (en) 2005-06-21 2006-06-21 Methods and compositions relating to a vaccine against prostate cancer

Publications (2)

Publication Number Publication Date
CN101257920A CN101257920A (zh) 2008-09-03
CN101257920B true CN101257920B (zh) 2012-09-05

Family

ID=37595771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680030353XA Active CN101257920B (zh) 2005-06-21 2006-06-21 与抗前列腺癌疫苗有关的方法和组合物

Country Status (6)

Country Link
US (1) US8293701B2 (zh)
EP (1) EP1909828A4 (zh)
JP (1) JP2008546788A (zh)
CN (1) CN101257920B (zh)
CA (1) CA2612225A1 (zh)
WO (1) WO2007002149A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2411088A4 (en) * 2009-03-26 2014-03-12 Cellectis METHOD AND DEVICE FOR THE ADMINISTRATION OF POLYNUCLEOTIDE CANCER VACCINES IN MALE SKIN
MX346784B (es) * 2010-11-12 2017-03-31 Inovio Pharmaceuticals Inc Antigenos prostaticos de consenso, molecula de acido nucleico que los codifica y vacuna y usos que los comprenden.
US9240178B1 (en) * 2014-06-26 2016-01-19 Amazon Technologies, Inc. Text-to-speech processing using pre-stored results
KR20180110107A (ko) 2016-02-16 2018-10-08 리제너론 파마슈티칼스 인코포레이티드 돌연변이 키뉴레니나아제 유전자를 갖는 비인간 동물
CN106119231A (zh) * 2016-06-24 2016-11-16 安徽未名细胞治疗有限公司 一种肿瘤抗原psa的ctl识别表位肽及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925362A (en) * 1993-08-11 1999-07-20 Jenner Technologies Method to elicit an antitumor response with human prostate-specific antigen
US6165460A (en) * 1995-07-10 2000-12-26 Therion Biologics Corporation Generation of immune responses to prostate-specific antigen (PSA)
WO2003103706A2 (en) * 2002-06-11 2003-12-18 Glaxosmithkline Biologicals S.A. Immunogenic compositions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3879200A (en) * 1999-08-16 2001-03-13 Zonagen, Inc. Methods and materials for the treatment of prostatic carcinoma
CA2516128A1 (en) * 2003-02-14 2004-09-02 Sagres Discovery, Inc. Therapeutic targets in cancer
US7767387B2 (en) * 2003-06-13 2010-08-03 Sagres Discovery, Inc. Therapeutic targets in cancer
US7342107B2 (en) * 2004-05-27 2008-03-11 Centocor, Inc. Cynomolgus prostate specific antigen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925362A (en) * 1993-08-11 1999-07-20 Jenner Technologies Method to elicit an antitumor response with human prostate-specific antigen
US6165460A (en) * 1995-07-10 2000-12-26 Therion Biologics Corporation Generation of immune responses to prostate-specific antigen (PSA)
WO2003103706A2 (en) * 2002-06-11 2003-12-18 Glaxosmithkline Biologicals S.A. Immunogenic compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李卫鹏等.前列腺特异抗原研究进展.《放射免疫学杂志》.2003,第16卷(第1期),第59-61页. *

Also Published As

Publication number Publication date
CA2612225A1 (en) 2007-01-04
US20100047260A1 (en) 2010-02-25
WO2007002149A3 (en) 2007-03-22
WO2007002149A2 (en) 2007-01-04
US8293701B2 (en) 2012-10-23
EP1909828A2 (en) 2008-04-16
JP2008546788A (ja) 2008-12-25
CN101257920A (zh) 2008-09-03
EP1909828A4 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
Bocchia et al. Antitumor vaccination: where we stand
Davis et al. Rational approaches to human cancer immunotherapy
Berzofsky et al. Progress on new vaccine strategies for the immunotherapy and prevention of cancer
Senovilla et al. Trial watch: DNA vaccines for cancer therapy
Davila et al. Generation of antitumor immunity by cytotoxic T lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade
Chen et al. Experimental vaccine strategies for cancer immunotherapy
Mocellin et al. Part I: Vaccines for solid tumours
KR101294290B1 (ko) 예방 또는 치료를 위해 제i류 주조직 적합성복합체〔mhc〕-제한 에피토프에 대한 면역 반응을 유발,향상 및 지속하는 방법
Tüting et al. Induction of tumor antigen-specific immunity using plasmid DNA immunization in mice
CN101257920B (zh) 与抗前列腺癌疫苗有关的方法和组合物
Huang et al. CEA-based vaccines
Yu et al. DNA vaccines for cancer too
Kim et al. Modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination
Mocellin et al. Colorectal cancer vaccines: principles, results, and perspectives
Krejci et al. Immunotherapy for urological malignancies
Weigel et al. Dendritic cells pulsed or fused with AML cellular antigen provide comparable in vivo antitumor protective responses
Reisfeld et al. DNA vaccines designed to inhibit tumor growth by suppression of angiogenesis
Chen et al. Superior anti-tumor protection and therapeutic efficacy of vaccination with dendritic cell/tumor cell fusion hybrids for murine Lewis lung carcinoma
Arlen et al. Therapeutic vaccines for prostate cancer: a review of clinical data
Hörig et al. Prostate-specific antigen vaccines for prostate cancer
Tanyi et al. Dendritic cell-based tumor vaccinations in epithelial ovarian cancer: a systematic review
Pavlenko et al. Plasmid DNA vaccines against cancer: cytotoxic T-lymphocyte induction against tumor antigens
Pavlenko Induction of t-cell responses against PSA by plasmid DNA immunization
Pilon-Thomas et al. Dendritic cell-based therapeutics for breast cancer
Roos Delivery of DNA vaccines against cancer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: CELLECTIS SA

Free format text: FORMER OWNER: SAITLE PALLS SCIENCE + TECH. CORP.

Effective date: 20120223

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20120223

Address after: France

Applicant after: Cyto Pulse Sciences Inc.

Address before: American Maryland

Applicant before: Saitle Palls Science & Tech. Corp.

C14 Grant of patent or utility model
GR01 Patent grant