CN101253309B - 用于从地层获得井壁芯的旋转取芯装置和方法 - Google Patents

用于从地层获得井壁芯的旋转取芯装置和方法 Download PDF

Info

Publication number
CN101253309B
CN101253309B CN2006800316262A CN200680031626A CN101253309B CN 101253309 B CN101253309 B CN 101253309B CN 2006800316262 A CN2006800316262 A CN 2006800316262A CN 200680031626 A CN200680031626 A CN 200680031626A CN 101253309 B CN101253309 B CN 101253309B
Authority
CN
China
Prior art keywords
drilling tool
stratum
motor
rotary
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800316262A
Other languages
English (en)
Other versions
CN101253309A (zh
Inventor
B·J·恰卡洛夫
B·S·萨格
Q·V·潘
D·W·阿什克拉夫特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of CN101253309A publication Critical patent/CN101253309A/zh
Application granted granted Critical
Publication of CN101253309B publication Critical patent/CN101253309B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/02Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil
    • E21B49/06Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil using side-wall drilling tools pressing or scrapers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明提供一种用于从靠近井筒的地层获取井壁芯的旋转取芯装置。旋转取芯装置包括具有其中带有芯接收器的壳体的取芯工具,该取芯工具适用于在井筒内以选定深度定位。取芯工具还包括可操作的连接到旋转取芯钻具上的第一齿轮组件。第一齿轮组件被构造用于使旋转钻具旋转。旋转取芯装置还包括电动马达,该电动马达构造用于驱动第一齿轮组件使钻具以多个旋转速度中的一个速度旋转。旋转取芯装置还包括液压致动器,该液压致动器构造成用于沿朝向地层的第一方向移动钻具以获得井壁芯以及沿远离地层的第二方向移动钻具。

Description

用于从地层获得井壁芯的旋转取芯装置和方法
背景技术
旋转取芯装置已经发展成为从靠近井筒的地下地层获得芯样的装置。一种旋转取芯装置利用液压马达使旋转取芯钻具旋转以获得芯样。这种旋转取芯装置的缺点是当装置在相对高的温度(例如大于350
Figure 2006800316262_0
)下操作时,驱动液压马达的油的粘性减小。当油的粘性减小时,液压马达的输出扭矩减小到低于理想扭矩水平。此外,液压马达的转子的旋转速度减小到低于理想旋转速度。
美国专利No.6,371,221描述了一种旋转取芯装置,该旋转取芯装置利用使旋转取芯钻具旋转的第一电动马达和用于线性地移动旋转取芯钻具的第二马达。这种旋转取芯装置的缺点是当旋转取芯装置被设在几百英尺的地下时,由于从地面上的动力源延伸到旋转取芯装置的导线中的巨大的功率损耗,为两个电动马达提供动力非常困难。
相应地,发明者在此已经认识到一种用来减小和/或消除上述不足的旋转取芯装置的需要。
发明内容
根据本发明的一个示例性实施例,提供一种用于从靠近井筒的地层获得至少一个井壁芯的旋转取芯装置。旋转取芯装置包括具有可操作地连接到旋转取芯钻具上的第一齿轮组件的取芯工具。第一齿轮组件被构造用于使旋转取芯钻具旋转。旋转取芯装置包括电动马达,该电动马达构造成以多个旋转速度中的一个速度驱动用于使旋转取芯钻具旋转的第一齿轮组件。旋转取芯装置还包括液压致动器,该液压致动器构造成用于沿着朝向地层以获得井壁芯的第一方向移动旋转取芯钻具以和沿远离地层的第二方向使旋转取芯钻具移动。
根据另一个示例性实施例,提供一种利用旋转取芯装置从靠近井筒的地层获得至少一个井壁芯的方法。旋转取芯装置包括取芯工具,该取芯工具具有可操作地连接到旋转取芯钻具上的第一齿轮组件。第一齿轮组件被构造成使旋转取芯钻具旋转。旋转取芯装置还包括电动马达,该电动马达构造成驱动用于使旋转取芯钻具旋转的第一齿轮组件。旋转取芯装置还包括液压致动器,该液压致动器被构造成沿着第一方向和第二方向移动旋转取芯钻具。本方法包括利用被电动马达驱动的第一齿轮组件以多个旋转速度中的一个速度使旋转取芯钻具旋转。本方法还包括利用液压致动器沿着朝向地层的第一方向移动旋转取芯钻具以获得井壁芯。
附图说明
图1是根据示例性实施例的具有用于从地层获得井壁芯的取芯设备的芯提取系统结构图;
图2是图1的取芯设备中利用的旋转取芯装置的一部分的剖视图;
图3是图1的取芯设备中利用的旋转取芯装置的一部分的侧视图;
图4是图1的取芯设备中利用的旋转取芯装置的一部分的等轴视图;
图5是设在井筒中的旋转取芯装置的示意图;
图6是用于移动旋转取芯装置的取芯工具到井筒内的理想位置的液压控制系统和液压致动器的示意图;
图7是旋转取芯装置中利用的取芯工具的等轴视图;
图8是在井筒内的第一操作位置的旋转取芯装置的一部分的侧视图;
图9是在井筒内的第二操作位置的旋转取芯装置的一部分的侧视图;
图10是在井筒内的第三操作位置的旋转取芯装置的一部分的侧视图;
图11是根据一个示例性实施例的在旋转取芯装置中利用的可变磁阻位置传感器的侧视图;
图12是图11的可变磁阻位置传感器中利用的转子的等轴视图;
图13是图11的可变磁阻位置传感器剖视图;
图14是图13的可变磁阻位置传感器沿着14-14线所作的剖视图;
图15是图13的可变磁阻位置传感器沿着15-15线所作的剖视图;以及
图16是图1的芯提取系统中利用的位置检测系统的电气示意图。
图17-19是图11的可变磁阻位置传感器产生的位置信号的示意图。
具体实施方式
参照图1,提供用于从靠近井筒的地层20获得井壁芯的芯提取系统10。芯提取系统10包括取芯设备12、提升机14和控制器16。
取芯设备12以选定深度设在地层20的井筒内,经由线缆22连接到提升机14上。取芯设备12被构造成在预定深度获得离井筒18附近的地层的一部分的至少一个井壁芯。取芯设备12包括电动-液压部分30、旋转取芯装置32和芯接收器部分34。
电动-液压部分30被提供以容纳电气元件和电路,所述电路用于响应来自控制器16的控制信号以控制锁定臂40、41的延伸和缩回。特别地,电动-液压部分30沿向外的方向延伸锁定臂40、41,从而移动取芯设备12靠近井筒18的壁面用于获得井壁芯。交替地,电动-液压部分30缩回锁定臂40、41以移动取芯设备12离开壁面。电动-液压部分30还包括液压控制系统40,该液压控制系统将在下面进一步详细描述。
参照图1-5,旋转取芯装置32被提供以从地层20获得井壁芯。旋转取芯装置32包括电动马达50、传动装置组件52、位置检测系统54、取芯工具56、液压致动器58、60、轴62、64、导向板66、68、旋转臂70、72、液压致动器74、76、连接臂78,80和顶芯轴82。参照图2,电动马达50被提供以驱动取芯工具56中的齿轮组件,该取芯工具用于以多个旋转速度中的一个速度使旋转取芯钻具130旋转。在一个示例性实施例中,电动马达50包括DC电动马达。应该注意的是,然而,在其他示例性实施例中,电动马达50可以包括现有技术领域的技术人员公知的任何其他马达,比如可变磁阻马达或例如切换式磁阻马达。电动马达50包括定子(未示出)和转子90。该转子响应来自控制器16的切换(commutation)信号以多个旋转速度的一个旋转。例如,控制器16响应第一预定深度处地层20的预定的参数,可以产生用于引起电动马达50以第一预定旋转速度旋转的切换信号。此外,例如,控制器16响应第二预定深度处地层20的预定的参数,可以产生用于引起电动马达50以大于第一预定速度的第二预定旋转速度旋转的切换信号。如所显示的,电动马达50可操作地连接到传动装置组件52。特别地,马达50的转子90可操作地连接到传动装置组件52的连接构件100上。
参照图2和4,传动装置组件50被提供以从马达52传递扭矩给取芯工具56中的齿轮组件。传动装置组件52包括壳体部分96、98、连接构件100、驱动轴102、锥齿轮104和小齿轮106。壳体部分96、98可操作地连接在一起并形成内部区域,用于装入传动装置组件52的剩余元件。连接构件100在第一端被可操作地连接到马达50的转子90上。此外,连接构件100在第二端被可操作地连接到驱动轴102的第一端。驱动轴102的第二端被固定地连接到锥齿轮104上。这样,转子90的旋转引起驱动轴102和锥齿轮104的旋转。锥齿轮104被可操作地连接到小齿轮106上。这样,锥齿轮100的旋转引起小齿轮106的旋转。
参照图4和7,取芯工具56被提供用于从地层20提取井壁芯。取芯工具56包括壳体120、包括有齿轮122和齿轮124的齿轮组件、可动板126、一对导销128(只显示一个)、一对导销129(只显示一个)和旋转取芯钻具130。壳体120形成内部区域用于容纳齿轮122、齿轮124和可动板126。当取芯工具56被移动到操作位置,在该位置处,传动装置组件52的小齿轮106啮合齿轮122,小齿轮106的旋转引起齿轮122的旋转。此外,齿轮122的旋转引起齿轮124和旋转取芯钻具130的旋转。可动板128沿着旋转取芯钻具130的轴线方向可移动。导销128设在可动板126的相反侧上并被提供用于沿线性方向(相对壳体120或者向外或者向内)引导旋转取芯钻具130的运动,进一步的详细描述如下。导销129设在壳体120的相反侧上而且也被提供用于沿线性方向(相对壳体120或者向外或者向内)引导旋转取芯钻具130的运动,进一步地详细描述如下。
参照图5,如上述讨论,旋转取芯装置32包括液压致动器58、60。液压致动器58、60被提供以移动取芯工具56到井筒18内的理想操作位置。液压致动器58、60被构造分别用于延伸和缩回柱塞轴62、64。轴62、64还分别被连接到导向板66、68上。
参照图5和7,导向板66、68被提供以引导取芯工具56运动。导向板66包括延伸穿过该导向板的凸轮槽140、142。凸轮槽140、142被提供以在其中接收处于取芯工具56第一侧的导销128、129。导向板68包括延伸穿过该导向板的凸轮槽144、146。凸轮槽144、146被提供以在其中接收处于取芯工具56第二侧的导销128、129。
参照图5和8,现在将解释旋转取芯装置32的剩余元件。旋转臂70、72可操作地连接到取芯工具56的壳体120上。旋转臂70具有伸长部分160和U形部分162。伸长部分160在第一端被连接到壳体120上。伸长部分160在第二端被连接到连接臂78上。U形部分162从伸长部分160向外延伸而且被构造用于允许旋转臂70相对固定销运动。旋转臂72具有伸长部分164和U形部分166。伸长部分164在第一端被连接到壳体120上。伸长部分164在第二端被连接到连接臂80上。U形部分166从伸长部分164向外延伸而且被构造用于允许旋转臂72相对固定销运动。液压致动器74、76分别可操作地连接到连接臂78、84上,控制取芯工具56的运动。特别地,液压致动器74、76分别缩回或延伸连接臂78、80从而移动取芯工具56。当取芯工具56被设在如图8所示的井筒18中的竖直位置时,利用顶芯轴82接触包含在取芯工具56内的井壁芯,以用于从取芯工具56顶出所述芯进入芯接收部分34。
参照图8,现在将解释用于获得井壁芯的取芯工具56的定位。最初,如所示的,取芯工具56被设在井筒18中的传动装置组件52之下。参照图6和9,此后,控制器16输出指令信号给液压控制系统40。指令信号促使液压控制系统42使液压致动器58、60分别向上推动导向板66、68,这导致旋转取芯工具56旋转,以使旋转取芯钻具13从取芯工具56的壳体120向外移动。特别地,在旋转取芯工具56的第一侧上的导销128、129在凸轮槽140、142内移动。同时,旋转取芯工具56的第二侧上的导销128、129在导向板68上的凸轮槽144、146内移动。参照图10,当液压致动器58、60推动导向板66、66到预定延伸位置,传动装置组件52的齿轮106可操作地结合到取芯工具56的齿轮122上,用于传送扭矩给齿轮122。此外,连接到可动板126上的导销128推动可动板126向外(图10中向右),以使旋转取芯钻具130接触地层20的一部分。此后,控制器16产生切换信号以促使马达50使旋转取芯钻具130旋转从而获取井壁芯。
参照图13-16,位置检测系统54被提供用于产生用于指示马达50的转子90的旋转位置的位置信号。由位置检测系统54产生的信号被控制器16接收,而且控制器16响应位置信号产生切换信号用于控制马达50的操作。位置检测系统54包括可变磁阻位置传感器180和放大器电路182。
参照图11-15,可变磁阻位置传感器180被构造用于机械连接到马达50的转子90上,用于产生指示转子90位置的电压信号。可变磁阻(reluctance)位置传感器180的一个优点是传感器不被电气连接到马达50上,从而从由传感器180产生的位置信号中消除了马达50产生的电噪声。可变磁阻位置传感器180的另一个优点是当传感器180在相对高温下操作时,可以产生精确的位置信号。可变磁阻位置传感器180包括壳体190、转子192、磁体194、196、198、200、202、204、206、208和定子组件210。
壳体190被提供用于装入可变磁阻位置传感器180的剩余元件。壳体190由例如铝的非磁性材料构造而成。
转子192被定位在定子组件210形成的孔内。转子192大体上为圆柱形,而且由例如塑料的非磁性材料构造而成。转子192包括第一多个孔隙,所述第一多个孔隙从转子192的外表面向内延伸进入转子192中用于在其中接收磁体194、196、198和200。磁体194、196、198和200在沿着转子192的第一预定轴向位置处被设在绕轴201彼此隔开的90°位置。转子192包括第二多个孔隙,所述第二多个孔隙从转子192的外表面向内延伸进入转子192中用于在其中接收磁体202、204、206和208。磁体202、204、206和208在沿着转子192的第二预定轴向位置处被设在绕轴201彼此隔开的90°位置。磁体202、204、206和208绕轴201从磁体194、196、198和200偏离45°。转子192还包括孔隙193,所述孔隙193从转子192的第一端向内延伸进入转子192预定距离。孔隙193被构造用于接收马达50的转子90的一端,用于固定地将转子192结合到转子90上。从而,转子192以与马达50的转子90大体相同的速度旋转。
定子组件210包括非磁性主体部分212、线圈支架214、216、218和线圈230、232、234。非磁性主体部分212大体上为环形而且具有延伸贯穿其中的孔隙,该孔隙的直径大于转子192的外径。换句话说,在转子192的外表面和由非磁性主体部分212形成的内表面之间形成小气隙。线圈支架214、216、218被提供用于固定地容纳其上相应的线圈230、232、234。线圈支架214、216、218被构造用于设在延伸进入非磁性主体部分212的外表面的孔隙中。线圈支架214、216、218被设在绕轴线201彼此隔开120°的位置。此外,线圈支架214、216、218由碳钢构造而成,用于分别环绕线圈230,232,234从转子磁体集中磁通量。
现在将解释可变磁阻位置传感器180的操作。当转子192旋转时,传感器180利用转子192上的磁体产生的电磁场和响应于电磁场移动穿过线圈230、232、234而在线圈230、232、234中产生的电流之间的相互作用。法拉第电磁感应定律规定当磁通线相对导线为直角时,在比如线圈的导体中感生出电压(即电磁力EMF)。从而,特别地,当磁体以速度(w)弧度/秒移动穿过线圈时,该线圈具有长度(L)、匝数(N)和横截面积(A),由磁体产生的磁场(B)以直角均匀地移动穿过导体,在线圈中感生出电压(E),其可用下列方程描述:
E=BNLAw sin(wt)
此外,由于线圈230、232、234被彼此以120°相偏离,由转子192上的磁体旋转在线圈230、232、234中产生的电压(Ea)、(Eb)、(Ec)可用下列方程描述:
Ea=ENLAw sin(wt)
Eb=BNLAw sin(wt-120°)
Ec=ENLAw sin(wt-240°)。
参照图17,图中显示了表示由线圈230产生的随时间而变的电压(Ea)的一个示例性电压波形236。此外,参照图18,图中显示了表示由线圈232产生的随时间而变化的电压(Eb)的一个示例性电压波形238。此外,参照图19,图中显示了表示由线圈234产生的随时间而变化的电压(Ec)的一个示例性电压波形240。
可变磁阻位置传感器180的转子192的电动位置和机械位置之间的关系利用下列方程确定:
θe=(Pr/2)*θm
其中:
θe对应于用于磁体方位的转子192的电动度数(electrical degree)位置;
θm对应于转子192的机械度数位置;以及Pr对应于转子192上的磁体数量。
转子192的机械和电动速度之间的关系利用下列方程确定:
ωe=Pr/2*ωm
其中:
ωe对应于转子192的弧度/秒(或RPM)的电动速度;
ωm对应于转子192的弧度/秒(或RPM)的机械速度。
参照图16,图中显示了用于放大和滤除电压(Ea)、(Eb)和(Ec)中的噪声的放大器电路182。放大器电路182包括差动放大器250、252、254,噪声消除放大器256、258、260和导线262、264、266、268、270、272、274、276、278、280、282和284。
线圈230经导线262被电连接到放大器250的输入端。放大器250具有分别经导线264、266电连接到放大器256的第一和第二端的第一和第二输出端。放大器256的输出端经导线268被电连接到控制器16。在操作过程中,放大器250接收来自线圈230的电压(Ea)并输出放大的电压(G*Ea)到导线264上和输出放大的电压(-G*Ea)到导线266上,其中G对应于预定电压增益。噪声消除放大器256响应接收的电压(G*Ea)和(-G*Ea),输出具有比电压(Ea)小的电噪声的电压(Ea′)。用于指示转子90的位置的电压(Ea′)被控制器16接收。
线圈232经导线270被电连接到放大器252的输入端。放大器252具有分别经导线272、274电连接到放大器258的第一和第二端的第一和第二输出端。放大器258的输出端经导线276被电连接到控制器16。在操作过程中,放大器252接收来自线圈232的电压(Eb)并输出放大的电压(G*Eb)到导线272上和输出放大的电压(-G*Eb)到导线274上,其中G对应于预定电压增益。噪声消除放大器258响应接收的电压(G*Eb)和(-G*Eb),输出具有比电压(Eb)小的电噪声的电压(Eb′),用于指示转子90的位置的电压(Eb′)被控制器16接收。
线圈234经导线278被电连接到放大器254的输入端。放大器254具有分别经导线280、282电气连接到放大器260的第一和第二端的第一和第二输出端。放大器260的输出端经导线284被电连接到控制器16。在操作过程中,放大器254接收来自线圈234的电压(Ec)并输出放大的电压(G*Ec)到导线280上和输出放大的电压(-G*Ec)到导线282上,其中G对应于预定电压增益。噪声消除放大器260响应接收的电压(G*Ec)和(-G*Ec),输出具有比电压(Ec)小的电噪声的电压(Ec′)。用于指示转子90的位置的电压(Ec′)被控制器16接收。
再次参照图1,控制器16被提供用于控制取芯设备12和提升机14的操作。特别地,控制器16产生用于控制提升机14操作的控制信号,该提升机用于将旋转取芯装置32定位在井筒18内的预定深度。此外,控制器16产生用于控制液压控制系统44操作的控制信号,该液压控制系统用于确定井筒20内的旋转取芯装置32的取芯工具56的方位以获取井壁芯。此外,控制器16产生用于控制旋转取芯装置32所用的马达50操作的控制信号,该马达用于驱动旋转取芯钻具130。此外,控制器16接收来自位置检测系统54的位置电压(Ea′)、(Eb′)、(Ec′)而且利用位置电压控制马达50的操作。
用于获取井壁芯的旋转取芯装置和方法提供了实质性的超过其它设备和方法的优点。特别地,旋转取芯装置提供利用电动马达驱动旋转取芯钻具在相对高的温度(即大于350
Figure 2006800316262_1
)下有效操作的技术效果,同时利用液压致动器确定井筒内的取芯工具的方位,减小了获取井壁芯所需的电功率值。
上述方法可以被以计算机执行过程的形式和用于实现这些过程的设备具体实施。在一个示例性实施例中,该方法在由计算机或控制器执行的计算机程序代码中被具体实施。本方法可以以计算机程序代码的形式被具体实施,该计算机程序代码包含在有形介质中具体体现的指令,该有形介质为如软盘、CD-ROM、硬盘驱动器或任何其它计算机可读的存储介质,其中,当计算机程序代码被加载进入控制器并被控制器执行时,控制器成为用于实现本发明的设备。
术语“第一”、“第二”″及类似术语,在此不表示任何次序、数量或重要性,而是用于区别元件,而且术语“一个(a和“an)”在此不表示数量的限制,而是表示至少出现一个参考项,除非另有规定,否则,在此使用的技术和科学术语具有本发明所属现有技术领域的技术人员通常理解的含义。
尽管参考具体实施例已经描述了本发明,将被现有技术领域的技术人员理解的是,所做的各种改变和其中可被替换的元件的等效元件不超出本发明的范围。另外,根据本发明的原理所做的许多修改用于适应特殊环境或材料而不超出本发明的基本范围。因此,本发明旨在不限于用于实现本发明预期的最佳模式所公开的特殊的实施例,而是本发明将包括所有落入所附权利要求的范围内的所有实施例。

Claims (15)

1.用于切削靠近井筒的地层的旋转切削装置,包括:
(a)具有被可操作地连接到钻具上的第一齿轮组件的工具,所述第一齿轮组件构造成用于旋转所述钻具;
(b)电动马达,其构造来用于驱动第一齿轮组件使钻具旋转;
(c)控制器,其电连接到电动马达上,所述控制器被构造成用于产生切换信号以促使电动马达以至少两个速度旋转所述钻具,第一旋转速度基于与地层的一部分相关联的第一参数,第二旋转速度基于与地层的一部分相关联的第二参数,其中,第二旋转速度大于第一旋转速度;以及
(d)液压致动器,其构造来用于沿朝向地层而远离所述工具的第一方向移动所述钻具。
2.如权利要求1所述的旋转切削装置,其中,电动马达包括DC电动马达。
3.如权利要求1所述的旋转切削装置,还包括驱动轴组件,所述驱动轴组件可操作地结合在电动马达和第一齿轮组件之间,所述驱动轴组件包括驱动轴和第二齿轮组件,所述驱动轴的第一端连接至电动马达的转子,所述驱动轴的第二端连接至第二齿轮组件,第二齿轮组件可操作地结合到第一齿轮组件上。
4.如权利要求1所述的旋转切削装置,还包括可变磁阻位置传感器,所述可变磁阻位置传感器可操作地连接到电动马达的转子上,所述位置传感器产生用来指示转子的旋转位置的位置信号。
5.如权利要求1所述的旋转切削装置,其中,液压致动器还被构造来用于沿与第一方向相反的第二方向移动钻具。
6.如权利要求1所述的旋转切削装置,其中,所述钻具还被构造来用于从地层获得井壁芯。
7.如权利要求1所述的旋转切削装置,其中,液压致动器还被构造来用于在0-90度的角度范围中旋转所述工具。
8.如权利要求7所述的旋转切削装置,其中,在0度位置处,钻具沿大体平行于地层的方向延伸,而在90度位置处,钻具沿大体垂直于地层的另一方向延伸。
9.用于在地层中切削至少一个孔的方法,包括:
(a)利用被电动马达驱动的第一齿轮组件旋转钻具;
(b)利用控制器产生用于以至少两个旋转速度控制电动马达操作的切换信号;
(c)使电动马达的第一旋转速度基于地层的第一参数;
(d)使电动马达的第二旋转速度基于地层的第二参数,其中,第二旋转速度大于第一旋转速度;以及
(e)利用液压致动器沿朝向地层的第一方向移动旋转钻具,从而在地层中切制孔;
10.如权利要求9所述的方法,还包括利用液压致动器沿远离地层的第二方向移动所述钻具。
11.如权利要求9所述的方法,还包括利用可操作地连接到转子上的可变磁阻位置传感器产生用于指示转子的旋转位置的位置信号。
12.如权利要求9所述的方法,还包括沿与第一方向相反的第二方向移动钻具。
13.如权利要求9所述的方法,还包括利用钻具从地层获得井壁芯。
14.如权利要求9所述的方法,还包括在0-90度的角度范围内旋转钻具。
15.如权利要求14所述的方法,其中,在0度位置处,钻具沿大体平行于地层的方向延伸,而在90度位置处,所述钻具沿大体垂直于地层的另一方向延伸。
CN2006800316262A 2005-08-30 2006-08-28 用于从地层获得井壁芯的旋转取芯装置和方法 Expired - Fee Related CN101253309B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/215,271 US7530407B2 (en) 2005-08-30 2005-08-30 Rotary coring device and method for acquiring a sidewall core from an earth formation
US11/215,271 2005-08-30
PCT/US2006/033697 WO2007027683A2 (en) 2005-08-30 2006-08-28 Rotary coring device and method for acquiring a sidewall core from an earth formation

Publications (2)

Publication Number Publication Date
CN101253309A CN101253309A (zh) 2008-08-27
CN101253309B true CN101253309B (zh) 2012-06-27

Family

ID=37802457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800316262A Expired - Fee Related CN101253309B (zh) 2005-08-30 2006-08-28 用于从地层获得井壁芯的旋转取芯装置和方法

Country Status (6)

Country Link
US (1) US7530407B2 (zh)
EP (1) EP1920136B1 (zh)
CN (1) CN101253309B (zh)
CA (1) CA2619976C (zh)
EA (1) EA011911B1 (zh)
WO (1) WO2007027683A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104373120A (zh) * 2014-11-28 2015-02-25 中国石油天然气集团公司 一种测井钻进式井壁取心器的控制系统及控制方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2448928B (en) * 2007-05-04 2009-12-09 Dynamic Dinosaurs Bv Power transmission system for use with downhole equipment
US8061446B2 (en) 2007-11-02 2011-11-22 Schlumberger Technology Corporation Coring tool and method
US8550184B2 (en) * 2007-11-02 2013-10-08 Schlumberger Technology Corporation Formation coring apparatus and methods
US7836951B2 (en) * 2008-04-09 2010-11-23 Baker Hughes Incorporated Methods and apparatus for collecting a downhole sample
US7841402B2 (en) * 2008-04-09 2010-11-30 Baker Hughes Incorporated Methods and apparatus for collecting a downhole sample
GB2478455B (en) * 2008-10-31 2013-04-10 Schlumberger Holdings An integrated coring system
MX338277B (es) * 2009-10-09 2016-04-11 Schlumberger Technology Bv Extraccion automatizada de muestras de las paredes laterales.
DE102010013724B4 (de) * 2010-03-31 2015-09-24 Gdf Suez Horizontalbohrvorrichtung
US8919460B2 (en) 2011-09-16 2014-12-30 Schlumberger Technology Corporation Large core sidewall coring
US10551516B2 (en) 2011-09-26 2020-02-04 Saudi Arabian Oil Company Apparatus and methods of evaluating rock properties while drilling using acoustic sensors installed in the drilling fluid circulation system of a drilling rig
US9447681B2 (en) * 2011-09-26 2016-09-20 Saudi Arabian Oil Company Apparatus, program product, and methods of evaluating rock properties while drilling using downhole acoustic sensors and a downhole broadband transmitting system
CN102619484B (zh) * 2012-04-11 2014-09-10 中国石油集团川庆钻探工程有限公司钻采工程技术研究院 随钻井壁取心工具
US9359891B2 (en) 2012-11-14 2016-06-07 Baker Hughes Incorporated LWD in-situ sidewall rotary coring and analysis tool
US9512680B2 (en) 2012-12-13 2016-12-06 Smith International, Inc. Coring bit to whipstock systems and methods
EP3502411B1 (en) * 2014-08-21 2021-02-24 Agat Technology AS Anchoring module for well tools
US10472912B2 (en) 2014-08-25 2019-11-12 Schlumberger Technology Corporation Systems and methods for core recovery
US10047580B2 (en) 2015-03-20 2018-08-14 Baker Hughes, A Ge Company, Llc Transverse sidewall coring
AU2016366956A1 (en) * 2015-12-09 2018-06-07 Tyrfing Innovation As A downhole tubular verification and centralizing device, and method
CN105672924B (zh) * 2016-01-21 2019-09-13 中国海洋石油集团有限公司 一种电动机直驱式井壁取芯结构
CN106223885B (zh) * 2016-07-21 2018-09-11 中国海洋石油集团有限公司 电动减速机导线随动保护结构
CN106246124A (zh) * 2016-07-29 2016-12-21 中国石油天然气股份有限公司 井下检测系统及其方法
US20180058210A1 (en) * 2016-08-23 2018-03-01 Baker Hughes Incorporated Downhole robotic arm
CN106285663B (zh) * 2016-09-13 2022-04-12 中国石油天然气集团有限公司 投捞式井底取样工具
RU2652216C1 (ru) * 2017-03-14 2018-04-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Боковой сверлящий электрогидравлический керноотборник
CN108868676B (zh) * 2018-05-31 2020-08-25 中国石油集团长城钻探工程有限公司 一种过套管穿透井壁取芯工具
CN108756874B (zh) * 2018-06-11 2021-09-10 中国海洋石油集团有限公司 一种测井仪器及取心取样方法
CN111157701B (zh) 2020-01-03 2021-12-10 中国海洋石油集团有限公司 一种取心取样一体化测井仪器
CA3144649A1 (en) 2020-12-31 2022-06-30 Rus-Tec Engineering, Ltd. System and method of obtaining formation samples using coiled tubing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3677080A (en) * 1971-06-16 1972-07-18 Gearhart Owen Industries Sidewall well-formation fluid sampler
CN1042396A (zh) * 1988-10-31 1990-05-23 阿莫科公司 烃类勘探方法
US5183111A (en) * 1991-08-20 1993-02-02 Schellstede Herman J Extended reach penetrating tool and method of forming a radial hole in a well casing
US5411106A (en) * 1993-10-29 1995-05-02 Western Atlas International, Inc. Method and apparatus for acquiring and identifying multiple sidewall core samples
US6367565B1 (en) * 1998-03-27 2002-04-09 David R. Hall Means for detecting subterranean formations and monitoring the operation of a down-hole fluid driven percussive piston
US6540033B1 (en) * 1995-02-16 2003-04-01 Baker Hughes Incorporated Method and apparatus for monitoring and recording of the operating condition of a downhole drill bit during drilling operations

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2181512A (en) * 1937-01-18 1939-11-28 John H Kirby Sample taking device
US2181980A (en) * 1938-09-16 1939-12-05 Roy Q Seale Device for obtaining core samples
US2516421A (en) * 1945-08-06 1950-07-25 Jerry B Robertson Drilling tool
US4280569A (en) * 1979-06-25 1981-07-28 Standard Oil Company (Indiana) Fluid flow restrictor valve for a drill hole coring tool
US4354558A (en) * 1979-06-25 1982-10-19 Standard Oil Company (Indiana) Apparatus and method for drilling into the sidewall of a drill hole
US4396074A (en) * 1981-11-16 1983-08-02 Standard Oil Company (Indiana) Drill bit extension for sidewall corer
NO842127L (no) * 1983-06-01 1984-12-03 Trelleborg Ab Anordning ved haandtak for vibrerende maskiner
US4702168A (en) * 1983-12-01 1987-10-27 Halliburton Company Sidewall core gun
US4714119A (en) * 1985-10-25 1987-12-22 Schlumberger Technology Corporation Apparatus for hard rock sidewall coring a borehole
US4679636A (en) * 1986-10-16 1987-07-14 Ruhle James L Method and apparatus for coring rock
US4914591A (en) * 1988-03-25 1990-04-03 Amoco Corporation Method of determining rock compressive strength
US5310013A (en) * 1992-08-24 1994-05-10 Schlumberger Technology Corporation Core marking system for a sidewall coring tool
CA2126856A1 (en) * 1992-10-30 1994-05-11 Jacques Maissa Sidewall rotary coring tool
US5439065A (en) * 1994-09-28 1995-08-08 Western Atlas International, Inc. Rotary sidewall sponge coring apparatus
US5487433A (en) * 1995-01-17 1996-01-30 Westers Atlas International Inc. Core separator assembly
US5667025A (en) * 1995-09-29 1997-09-16 Schlumberger Technology Corporation Articulated bit-selector coring tool
US6186248B1 (en) * 1995-12-12 2001-02-13 Boart Longyear Company Closed loop control system for diamond core drilling
US6107772A (en) * 1997-09-26 2000-08-22 Dana Corporation Sensorless switched reluctance motor control
GB9810321D0 (en) * 1998-05-15 1998-07-15 Head Philip Method of downhole drilling and apparatus therefore
EA003822B1 (ru) * 2000-02-16 2003-10-30 Перформанс Рисерч Энд Дриллинг, Ллк Горизонтально направленное сверление в скважинах
NO312255B1 (no) * 2000-06-28 2002-04-15 Pgs Reservoir Consultants As Verktöy for gjennomhulling av et langsgående veggparti av et fôringsrör
US6371221B1 (en) * 2000-09-25 2002-04-16 Schlumberger Technology Corporation Coring bit motor and method for obtaining a material core sample
US6729416B2 (en) * 2001-04-11 2004-05-04 Schlumberger Technology Corporation Method and apparatus for retaining a core sample within a coring tool
US6672407B2 (en) * 2001-09-20 2004-01-06 Halliburton Energy Services, Inc. Method of drilling, analyzing and stabilizing a terrestrial or other planetary subsurface formation
US7188674B2 (en) * 2002-09-05 2007-03-13 Weatherford/Lamb, Inc. Downhole milling machine and method of use
US20050133267A1 (en) 2003-12-18 2005-06-23 Schlumberger Technology Corporation [coring tool with retention device]
US7191831B2 (en) * 2004-06-29 2007-03-20 Schlumberger Technology Corporation Downhole formation testing tool
US7404456B2 (en) * 2004-10-07 2008-07-29 Halliburton Energy Services, Inc. Apparatus and method of identifying rock properties while drilling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3677080A (en) * 1971-06-16 1972-07-18 Gearhart Owen Industries Sidewall well-formation fluid sampler
CN1042396A (zh) * 1988-10-31 1990-05-23 阿莫科公司 烃类勘探方法
US5183111A (en) * 1991-08-20 1993-02-02 Schellstede Herman J Extended reach penetrating tool and method of forming a radial hole in a well casing
US5411106A (en) * 1993-10-29 1995-05-02 Western Atlas International, Inc. Method and apparatus for acquiring and identifying multiple sidewall core samples
US6540033B1 (en) * 1995-02-16 2003-04-01 Baker Hughes Incorporated Method and apparatus for monitoring and recording of the operating condition of a downhole drill bit during drilling operations
US6367565B1 (en) * 1998-03-27 2002-04-09 David R. Hall Means for detecting subterranean formations and monitoring the operation of a down-hole fluid driven percussive piston

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104373120A (zh) * 2014-11-28 2015-02-25 中国石油天然气集团公司 一种测井钻进式井壁取心器的控制系统及控制方法
CN104373120B (zh) * 2014-11-28 2017-01-25 中国石油天然气集团公司 一种测井钻进式井壁取心器的控制系统及控制方法

Also Published As

Publication number Publication date
EA200800623A1 (ru) 2008-12-30
CN101253309A (zh) 2008-08-27
EP1920136B1 (en) 2013-04-10
EP1920136A2 (en) 2008-05-14
EA011911B1 (ru) 2009-06-30
CA2619976C (en) 2012-04-17
WO2007027683A2 (en) 2007-03-08
US7530407B2 (en) 2009-05-12
US20070045005A1 (en) 2007-03-01
CA2619976A1 (en) 2007-03-08
EP1920136A4 (en) 2011-05-11
WO2007027683A3 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
CN101253309B (zh) 用于从地层获得井壁芯的旋转取芯装置和方法
US7411388B2 (en) Rotary position sensor and method for determining a position of a rotating body
JP6316581B2 (ja) モータ及びそのセンシングマグネット
CA2098677A1 (en) Logging While Drilling Tools Utilizing Magnetic Positioner Assisted Phase Shifts
US9447641B2 (en) Rotary steerable drilling tool with a linear motor
US7755235B2 (en) Downhole generator for drillstring instruments
US9673739B2 (en) Machine type identification
CN109510422B (zh) 一种电磁驱动电机及旋转导向钻井工具
CN104682642B (zh) 一种两自由度电机
US20150368974A1 (en) Rotary steerable drilling tool with electromagnetic steering system
CN206595869U (zh) 一种交流感应伺服高速电机
CN111555474B (zh) 直线旋转钻进电机
EP3667329B1 (en) Wheel rotation detection component and robotic cleaner
CN110635650B (zh) 三定子无刷永磁电机
CN209016908U (zh) 一种用于高液压浸油直流无刷电机
JP2011177818A (ja) 磁気ボール盤
CN110581626B (zh) 一种连续矢量控制的高速同步磁阻电机系统
CN209326845U (zh) 一种永磁同步电机齿槽转矩测试平台
EP4075644B1 (en) Magnetic-geared electric rotary machine
WO2023190126A1 (ja) タップ加工装置及びタップ加工ユニット
CN210007566U (zh) 电机及电机控制系统
CN207897349U (zh) 一种园林植树打孔机
JPH01252339A (ja) 位置決めテーブル装置
CN117458920A (zh) 一种永磁同步电机转子零位辨识方法及辨识系统
JP2006304570A (ja) リニアモータ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120627

Termination date: 20130828