CN101249279A - 采用激光快速成形制备HA/Ti梯度生物活性材料的方法 - Google Patents

采用激光快速成形制备HA/Ti梯度生物活性材料的方法 Download PDF

Info

Publication number
CN101249279A
CN101249279A CNA2008100177561A CN200810017756A CN101249279A CN 101249279 A CN101249279 A CN 101249279A CN A2008100177561 A CNA2008100177561 A CN A2008100177561A CN 200810017756 A CN200810017756 A CN 200810017756A CN 101249279 A CN101249279 A CN 101249279A
Authority
CN
China
Prior art keywords
powder
gradient
laser
biological activity
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100177561A
Other languages
English (en)
Other versions
CN101249279B (zh
Inventor
高勃
林鑫
胡江
关泰红
高阳
吕晓卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fourth Military Medical University FMMU
Original Assignee
Fourth Military Medical University FMMU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fourth Military Medical University FMMU filed Critical Fourth Military Medical University FMMU
Priority to CN2008100177561A priority Critical patent/CN101249279B/zh
Publication of CN101249279A publication Critical patent/CN101249279A/zh
Application granted granted Critical
Publication of CN101249279B publication Critical patent/CN101249279B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种采用激光快速成形制备HA/Ti梯度生物活性材料的方法,该方法引入梯度功能材料的概念,将CaHPO4·2H2O+CaCO3与钛粉末配比按梯度变化,利用激光快速成形技术将混合材料采取同步送粉方式直接熔覆于钛金属表面,期望获得具有良好两相结合强度的医用梯度生物活性材料,促进金属表面成骨细胞的增殖与分化、解决金属植入材料与骨早期结合的难题,为钛在临床的更好应用提供理论和实验基础。

Description

采用激光快速成形制备HA/Ti梯度生物活性材料的方法
技术领域
本发明属于医学领域,涉及金属功能材料制备方法或者金属植入体的表面改性处理方法,特别是一种采用激光快速成形制备HA/Ti梯度生物活性材料的方法,用该方法制备骨组织金属植入体。
背景技术
钛及钛合金作为生物惰性材料以其良好的力学特性和生物相容性在口腔科、骨科领域和毗邻学科中得到广泛应用,可以加工成为牙种植体、人工关节、接骨板、髓内钉等。随着人口老龄化趋势,牙种植体、人工关节等植入体的植入数量逐年增加,在牙种植体方面,国内需求总量就超过400万枚。目前全球每年约有150万人接受人工关节置换术,国内每年约有200万人接受内固定和人工关节置换手术。随着医疗条件的改善和患者对生活质量要求的提高,牙种植体、人工关节等植入体将形成一个巨大的需求市场。虽然近年来钛植入体在材质、置备工艺、外形设计和表面改性等方面进行了改进,获得了较好的力学性能和生物相容性,但仍然存在材料表面生物活性不理想问题。因此,有必要从材料表面生物活性方面对现有钛植入体进行改性,提高材料表面的生物活性,使植入体能够与周围的骨组织形成稳定的生物结合,保证植入体的近远期效果。
羟基磷灰石(hydroxyapatite,HA或HAp)是人体硬组织的主要成分,具有骨组织诱导再生作用,被公认是一种生物活性性材料。但是,对目前方法所加工出的钛基羟基磷灰石复合材料进行检测表明,二者的结合强度不足,植入体在体内承重时涂层易剥落。1984年,平井敏雄首先提出了梯度功能材料(Functionally Gradient Materials,FGM)的新概念,基本思想是根据具体要求,选择两种具有不同性能的材料,通过连续地改变两种材料的组成和结构,使其两相界面消失,从而得到功能相应于组成和结构变化而渐变的非均质材料,以减小和克服结合部位的性能不匹配问题。激光快速成形(Laser Rapid Forming,LRF)技术是将激光涂覆和快速原型技术相结合的先进制造技术,具有快速、经济、不受零件的复杂程度限制等优点,并可使零件具有优越的性能,还具有加工复合材料的潜能。
20世纪60-80年代在对工业化材料进行生物相容性研究的基础上,开发了生物医用硬组织植入材料及产品,并运用于临床,包括不锈钢、钛及其合金以及钴基合金等金属材料。其中,钛金属由于其良好的力学性能、化学稳定性、抗腐蚀性能和生物学性能,成为目前应用最广泛的医用植入材料。上世纪80年代,以医疗、保健和增进生活质量等为目的生物医用硬组织材料取得了快速的发展,如1980年仅美国被用作人体硬组织的植入材料就有40多种,多达二三百万人次接受了植入治疗,使他们的寿命延长了5-25年,而且至今仍在临床广泛使用。然而,这一类生物医用硬组织植入材料在临床中只能被动地适应机体的生理环境,并不能加速伤口愈合。另外,其与骨组织缺乏键合作用,使植入材料与生物主体之间的界面问题成为临床应用过程中普遍存在和难以避免的制约因素。
因此,从上世纪80-90年代开始,生物医用材料的研究重点逐渐从生物惰性转向生物活性及生物可降解性方向,国内外学者开始对钛金属表面进行生物活性改性研究,旨在赋予其生物活性性、提高其表面稳定性、耐腐蚀性和基于硬度和弹性模量的力学相容性。常用的表面处理技术主要有物理方法、化学方法和电化学方法。其中,等离子喷涂是用直流电弧产生的等离子流把HA粉末高温熔融后高速喷至金属基体表面形成HA涂层,成为目前最常用的表面改性方法,且已应用于临床。但是等离子涂层材料在体内多种生物学效应的作用下,涂层会出现分层、降解甚至剥脱,长期效果不佳。阳极氧化法是利用电化学原理,在特定电解液中经电场作用形成具有活性的钛羟基(TiOH),从而发挥钛羟基在生物体内或模拟体液中矿化形成磷灰石的作用。微弧氧化是在阳极氧化基础上建立起来的在有色金属表面原位生长陶瓷膜的技术,陶瓷膜的主要成分是具有晶态结构的TiO2,在动物实验中证实可促进骨整合过程。但是,目前最有利于磷灰石形成的氧化物结构并不清楚,只是形成了具有一定孔隙和一定厚度的氧化物。医用植入材料的表面改性方法虽然很多,但迄今为止应用于临床的还仅限于等离子涂层材料和微弧氧化材料,其它涂层材料的临床应用尚未见报导。
功能性梯度材料概念是日本科学家平井敏雄1984年为制作宇航工业用热障材料提出的,这种全新的材料设计概念的基本思想是:根据具体要求,选择使用两种具有不同性能的材料,通过连续地改变两种材料的组成和结构,使其两相界面消失,从而得到功能相应于组成和结构变化而渐变的非均质材料,以减小和克服结合部位的性能不匹配因素。其特点在于材料内部没有明显的界面,组成、形态、微结构连续呈梯度渐变,性质和功能也随之呈梯度变化。功能性梯度材料的两侧或不同层面由不同性能的材料组成,微观部分的结构形成原子、分子的连续渐变,从而消除了不同材料结合的性能不匹配因素。比如在陶瓷和金属之间通过连续地控制内部组成和微细结构的变化,使两种材料之间不出现界面,从而使整体材料具有耐热应力强度和机械强度均较好的新功能。与此同时,中国武汉大学学者袁润章等也提出功能性梯度材料的概念并展开研究。储成林等通过粉末冶金法热压烧结制备了20%HA/Ti和40%HA/Ti生物复合材料,探讨了工艺参数,并对复合材料的相组成和生物学性能进行了研究,其物相组成以HA陶瓷相和六方结构的α-Ti金属相为主,HA陶瓷相部分分解为α-Ca3(PO4)2、α-TCP相和Ca4O(PO4)2相,体内植入试验表明其具有良好的生物相容性和骨引导性,可以形成骨整合,植入3月后,复合材料与新骨的结合强度已达到4.73MPa。另外,通过热压方式成功制备了对称功能梯度HA-Ti/Ti/HA-Ti叠层复合材料,其抗弯强度能达到158.9MPa,明显高于人体骨的强度,剪切实验表明其界面结合强度甚至超过了新生骨组织本身,动物体内植入实验表明其与周围骨组织的结合强度可达6.49MPa,高于纯HA与新骨的结合强度(5.43MPa)。Fumio Watari等通过冷等静压冶金叠层法制备了Ti/HA FGM植入体,动物植入实验表明与纯钛植入体相比Ti/HA FGM具有优良的生物相容性,Afsaneh Rabiei等采用离子束辅助沉积法在硅基体上制备了成梯度的HA涂层,并进行了微观、机械性能和生物学性能研究,结果表明涂层结晶和生物活性较好,但机械性能有待改善。目前,粉末冶金和离子束辅助沉积上述两种研究最为广泛的方法制备梯度材料尚处于基础研究阶段,HA的热分解问题还需要进一步的研究,制得的梯度材料力学性能还有待改善,而这也是决定其应用于临床的关键。
国内学者刘其斌等尝试应用宽带激光采用手动预置粉末的方法在基材Ti-6Al-4V上熔覆梯度生物活性陶瓷,并对成形工艺、微观结构和相组成进行研究,结果在Ti合金表面成功地制得了含有生物活性的β-TCP+HA梯度生物陶瓷复合涂层,基材与合金化层以及合金化层与生物陶瓷涂层之间均实现了冶金结合。C.F.Koch等应用脉冲激光同样采用手动预置粉末的方法成功的于Ti-6Al-4V表面沉积了一层HA并分析了沉积层的组成物相和晶相。应用共聚焦(窄带)激光同样采用手动预置粉末的方法,Arias J.L采用脉冲激光沉积方法,该方法首先将HA蒸发,以水蒸气为材料载体,最终沉积与烧蚀对面基体。对涂层的组织结构研究表明涂层以CaTiO3为主相,外加TiP、Ti3P2、Al3PO7组成,这表明激光熔覆纯HA粉末在Ti-6Al-4V上没有获得含有HA物相的涂层;王勇在Ti-6Al-4V和不锈钢表面熔覆陶瓷涂层,预置涂层粉末分别为纯HA粉末和CaHPO4·2H2O+CaCO3混合粉末,结果表明激光熔覆纯HA粉末涂层的物相结构为Ca3(PO4)(SO4)(OH)2、Ca(PO3)2、β-Ca3(PO4)2等,激光熔覆CaHPO4·2H2O+CaCO3混合粉末涂层的相结构为HA、CaO·SiO2、Ca1.5HP2O7、β-Ca3(PO4)2等,说明激光熔覆制备HA/Ti功能梯度涂层是可行的。
目前,激光熔覆生物活性涂层材料存在的主要问题是:
(1)熔覆用混合粉末采用手动预置粉末的方式,熔覆一层再预置一层,这造成工艺流程不断间断,显得比较繁复;另外医用植入体表面多为几何形状复杂的自由曲面,手动预置粉末的方法只能在平面形状的基体材料上制备涂层,不具备在复杂形状材料表面制备涂层的潜力;
(2)温度不易精确控制,造成生成物相成分不易控制;
(3)骤冷骤热的温度变化易引起热应力的大量残余,造成成形材料存在裂纹;
(4)HA存在严重的热分解现象,最后生成物相中HA含量极低。
因此,寻找简单、可控、自动化程度高并能够在任何形状材料表面形成功能梯度涂层的方法成为进一步研究的目标。
发明内容
为了克服现有技术中存在的主要问题,本发明的目的在于,提供一种采用激光快速成形制备HA/Ti梯度生物活性材料的方法。
为了实现上述目的,本发明的技术解决方案是:
一种采用激光快速成形制备HA/Ti梯度生物活性材料的方法,其特征在于,该方法选用纯钛粉末、CaHPO4·2H2O与CaCO3粉末,采用激光加工设备在纯钛锻造板材上制备HA/Ti梯度生物活性材料,具体包括下列步骤:
步骤一,对纯钛锻造板材表面先用砂纸进行打磨后用丙酮清洗去污;
步骤二,将纯钛粉末、CaHPO4·2H2O与CaCO3混合粉末分别置入两路或三路自动送粉器,其中,CaHPO4·2H2O与CaCO3粉末按照70~80%比20~30%的质量比混合,同时在混合粉末中加入微量稀土Y2O3
步骤三,调整粉末的输出量,纯钛粉末按照100%、90%、80%、70%、60%、50%、40%、30%、20%、10%顺序递减,CaHPO4·2H2O和CaCO3混合粉末按照10%、20%、30%、40%、50%、60%、70%、80%、90%、100%顺序递增;
步骤四,控制激光功率密度为60w/mm2~80w/mm2,激光扫描速度850mm/min~950mm/min,送粉量范围1-10g/min,搭接率为35%,在纯钛锻造板材表面进行多层熔覆;
所述的多层熔覆的工艺过程是:
激光束在基材表面形成一定尺寸的熔池,在激光扫描的同时,送粉器按照各自的送粉比例向熔池中送入金属/陶瓷粉末,即进行同步送粉涂覆,冷凝后得到具备单层涂覆的钛基陶瓷材料;
然后将激光束和送粉器沿Z轴方向上升一个距离⊿Z,按照预先设定,调整各个送粉器的送粉比例,再重复前一个步骤,涂覆下一层材料;
循环往复,即可制得由钛基材向表面逐渐过渡、HA含量逐渐增多的功能梯度活性材料。
本发明将先进的激光快速成形技术应用于表面具有生物活性的金属基骨植入体的制造,引入梯度功能材料的概念,将CaHPO4·2H2O+CaCO3与钛粉末配比按梯度变化,利用激光快速成形技术将混合材料采取同步送粉方式直接熔覆于钛金属表面,期望获得具有良好两相结合强度的医用梯度生物活性材料,促进金属表面成骨细胞的增殖与分化、解决金属植入材料与骨早期结合的难题,为钛在临床的更好应用提供理论和实验基础;同时建立激光制备医用梯度生物活性材料的新方法,具有广阔的应用前景。
附图说明
图1激光快速成形实验系统示意图;
图2激光快速成形制备的钛基梯度功能材料的图片。
以下结合附图和发明人给出的实施例对本发明作进一步的详细描述。
具体实施方式
5.1激光加设备
参见图1,激光加工设备包括激光器、两路或三路送粉器、基材、熔池、数控工作台(CNC)、保护箱。
5.2实验材料
选用粒度100-300目的纯钛粉末,以及CaHPO4·2H2O与CaCO3粉末,所有粉末颗粒呈球形,流动性要好。送粉量范围1-10g/min,送粉精度控制在±3%。基材为纯钛,厚度4mm~8mm。
5.3实验方法
基材选用纯钛(TA2)锻造板材(140mm×60mm×6mm),实验前对板材表面先用200号砂纸进行打磨后用丙酮清洗去污。将粉末分别置入两路或三路自动送粉器。调整粉末的输出量,纯钛粉末按照100%、90%、80%、70%、60%、50%、40%、30%、20%、10%递减,CaHPO4·2H2O和CaCO3粉末按照80%比20%的比例混合,混合粉末按照纯钛粉末的相反比例递增,同时在混合粉末中分别加入微量稀土Y2O3
工艺参数为:控制激光功率密度在60w/mm2-80w/mm2范围,激光扫描速度850-950mm/min,送粉量范围1-10g/min,搭接率为35%。在钛基材表面进行多层熔覆。
多层熔覆工艺过程是:激光束在基材表面形成一定尺寸的熔池,在激光扫描的同时,送粉器按照送粉比例向熔池中送入金属/陶瓷粉末,即进行同步送粉涂覆,冷凝后得到具备单层涂覆的钛基陶瓷材料。激光束和送粉器沿Z轴方向上升一个距离⊿Z,按照预先设定,调整送粉比例,再重复前一个步骤涂覆下一层材料,循环往复,即可制得由钛基材向表面逐渐过渡、HA含量逐渐增多的功能梯度活性材料。
5.4实施例
材料:纯钛粉末(西北有色金属研究院)是由旋转电极法(PREP)制备的商业用球形纯钛粉末,粒度100~300目。粉末成分见表1。
纯钛板材(西北有色金属研究院)。
表1:纯钛粉末(旋转电极法PREP)成分
Figure S2008100177561D00081
表2:陶瓷粉末成分
  原料   CaCO3   CaHPO4·2H2O粉   Y2O3
  规格   化学纯   化学纯   化学纯
  颗粒形状   球形   球形   球形
  粒度   50-100目   50-100目   50-100目
  纯度   99.9%   99.9%   97.99%
将纯钛粉末、CaHPO4·2H2O与CaCO3混合粉末分别置入两路或三路自动送粉器,其中,CaHPO4·2H2O与CaCO3粉末按照70~80%比20~30%的质量比混合,同时在混合粉末中加入微量的稀土Y2O3,该稀土的加入量为混合粉末质量的0.5%~1%;
按照5.3的实验方法制得钛基梯度功能材料如图2所示。
本发明采用原位合成自动同步送粉熔覆方法,即在钛基底材料表面上由送粉器自动送进一定配比的CaHPO4·2H2O、CaCO3和纯Ti混合粉末,然后用激光器进行多层熔覆处理,可以在熔覆试件的同时合成HA,并在最终成形的试件中保留HA相的存在。

Claims (2)

1.一种采用激光快速成形制备HA/Ti梯度生物活性材料的方法,其特征在于,该方法选用纯钛粉末、CaHPO4·2H2O与CaCO3粉末,采用激光加工设备在纯钛锻造板材上制备HA/Ti梯度生物活性材料,具体包括下列步骤:
步骤一,对纯钛锻造板材表面先用砂纸进行打磨后用丙酮清洗去污;
步骤二,将纯钛粉末、CaHPO4·2H2O与CaCO3混合粉末分别置入两路或三路自动送粉器,其中,CaHPO4·2H2O与CaCO3粉末按照70~80%比20~30%的质量比混合,同时在混合粉末中加入微量稀土Y2O3
步骤三,调整粉末的输出量,纯钛粉末按照100%、90%、80%、70%、60%、50%、40%、30%、20%、10%顺序递减,CaHPO4·2H2O和CaCO3混合粉末按照10%、20%、30%、40%、50%、60%、70%、80%、90%、100%顺序递增;
步骤四,控制激光功率密度为60w/mm2~80w/mm2,激光扫描速度850mm/min~950mm/min,自动送粉器送粉量范围1-10g/min,搭接率为35%,在纯钛锻造板材表面进行多层熔覆;
所述的多层熔覆的工艺过程是:
激光束在基材表面形成一定尺寸的熔池,在激光扫描的同时,送粉器按照各自的送粉比例向熔池中送入金属/陶瓷粉末,即进行同步送粉涂覆,冷凝后得到具备单层涂覆的钛基陶瓷材料;
然后将激光束和送粉器沿Z轴方向上升一个距离⊿Z,按照预先设定,调整各个送粉器的送粉比例,再重复前一个步骤,涂覆下一层材料;
循环往复,即可制得在钛基材表面逐渐过渡、HA含量逐渐增多的功能梯度活性材料。
2.如权利要求1所述的方法,其特征在于,所述的微量稀土Y2O3的加入量为混合粉末质量的0.5%~1%。
CN2008100177561A 2008-03-19 2008-03-19 采用激光快速成形制备HA/Ti梯度生物活性材料的方法 Expired - Fee Related CN101249279B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100177561A CN101249279B (zh) 2008-03-19 2008-03-19 采用激光快速成形制备HA/Ti梯度生物活性材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100177561A CN101249279B (zh) 2008-03-19 2008-03-19 采用激光快速成形制备HA/Ti梯度生物活性材料的方法

Publications (2)

Publication Number Publication Date
CN101249279A true CN101249279A (zh) 2008-08-27
CN101249279B CN101249279B (zh) 2011-04-20

Family

ID=39952987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100177561A Expired - Fee Related CN101249279B (zh) 2008-03-19 2008-03-19 采用激光快速成形制备HA/Ti梯度生物活性材料的方法

Country Status (1)

Country Link
CN (1) CN101249279B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102248164A (zh) * 2011-05-23 2011-11-23 丹阳惠达模具材料科技有限公司 一种激光微区再制造梯度功能模具的方法
CN102335742A (zh) * 2011-11-04 2012-02-01 北京科技大学 一种复杂形状生物医用多孔钛钼合金植入体的制备方法
CN102350566A (zh) * 2011-09-06 2012-02-15 华中科技大学 一种制备梯度功能材料的方法
CN102701734A (zh) * 2012-06-02 2012-10-03 大连理工大学 一种自预热激光成形ZrO2-Al2O3复合陶瓷薄壁件的制备方法
CN101507839B (zh) * 2009-03-27 2012-10-10 陕西科技大学 一种仿生人骨生物材料的制备方法
CN103121103A (zh) * 2013-03-01 2013-05-29 大连理工大学 金属-陶瓷多维度功能梯度结构件的激光近净成形方法
CN103418030A (zh) * 2013-07-23 2013-12-04 河南工业大学 涂层厚度可调的类骨结构生物陶瓷复合材料
CN103981519A (zh) * 2014-05-30 2014-08-13 山东大学 钛合金表面激光熔覆硅灰石基生物活性陶瓷涂层的方法
CN104028725A (zh) * 2014-05-15 2014-09-10 泰州市万达轮业制造有限公司 一种三维堆积成型梯度结构的压铸模制造技术
CN105817629A (zh) * 2016-04-18 2016-08-03 青岛三帝生物科技有限公司 金属复合材料及其骨植入体的熔融沉积3d打印方法
CN108452372A (zh) * 2018-05-22 2018-08-28 哈尔滨工业大学 丝粉同步激光沉积制备表面生物活性的钛合金骨植入体的方法
CN108568523A (zh) * 2017-03-10 2018-09-25 中南大学 一种密度梯度材料及其制备方法
CN113397738A (zh) * 2021-06-28 2021-09-17 东莞理工学院 一种新型陶瓷牙科种植体以及制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193486B (zh) * 2013-03-18 2014-06-11 大连理工大学 一种激光近净成形Al2O3-ZrO2共晶陶瓷结构件的方法
CN110920072A (zh) * 2019-12-05 2020-03-27 中国航发北京航空材料研究院 一种梯度材料构件的制备方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507839B (zh) * 2009-03-27 2012-10-10 陕西科技大学 一种仿生人骨生物材料的制备方法
CN102248164A (zh) * 2011-05-23 2011-11-23 丹阳惠达模具材料科技有限公司 一种激光微区再制造梯度功能模具的方法
CN102350566A (zh) * 2011-09-06 2012-02-15 华中科技大学 一种制备梯度功能材料的方法
CN102350566B (zh) * 2011-09-06 2015-04-15 华中科技大学 一种制备梯度功能材料的方法
CN102335742A (zh) * 2011-11-04 2012-02-01 北京科技大学 一种复杂形状生物医用多孔钛钼合金植入体的制备方法
CN102335742B (zh) * 2011-11-04 2013-01-30 北京科技大学 一种复杂形状生物医用多孔钛钼合金植入体的制备方法
CN102701734A (zh) * 2012-06-02 2012-10-03 大连理工大学 一种自预热激光成形ZrO2-Al2O3复合陶瓷薄壁件的制备方法
CN103121103B (zh) * 2013-03-01 2015-04-08 大连理工大学 金属-陶瓷多维度功能梯度结构件的激光近净成形方法
CN103121103A (zh) * 2013-03-01 2013-05-29 大连理工大学 金属-陶瓷多维度功能梯度结构件的激光近净成形方法
CN103418030A (zh) * 2013-07-23 2013-12-04 河南工业大学 涂层厚度可调的类骨结构生物陶瓷复合材料
CN104028725B (zh) * 2014-05-15 2016-04-13 泰州市万达轮业制造有限公司 一种三维堆积成型梯度结构的压铸模制造技术
CN104028725A (zh) * 2014-05-15 2014-09-10 泰州市万达轮业制造有限公司 一种三维堆积成型梯度结构的压铸模制造技术
CN103981519A (zh) * 2014-05-30 2014-08-13 山东大学 钛合金表面激光熔覆硅灰石基生物活性陶瓷涂层的方法
CN105817629A (zh) * 2016-04-18 2016-08-03 青岛三帝生物科技有限公司 金属复合材料及其骨植入体的熔融沉积3d打印方法
CN105817629B (zh) * 2016-04-18 2018-04-24 青岛三帝生物科技有限公司 金属复合材料及其骨组织植入物的3d打印方法
CN108568523A (zh) * 2017-03-10 2018-09-25 中南大学 一种密度梯度材料及其制备方法
CN108568523B (zh) * 2017-03-10 2020-04-28 中南大学 一种密度梯度材料及其制备方法
CN108452372A (zh) * 2018-05-22 2018-08-28 哈尔滨工业大学 丝粉同步激光沉积制备表面生物活性的钛合金骨植入体的方法
CN113397738A (zh) * 2021-06-28 2021-09-17 东莞理工学院 一种新型陶瓷牙科种植体以及制备方法

Also Published As

Publication number Publication date
CN101249279B (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
CN101249279B (zh) 采用激光快速成形制备HA/Ti梯度生物活性材料的方法
US10661390B2 (en) Bone replacement materials
Aliyu et al. A review of additive mixed-electric discharge machining: current status and future perspectives for surface modification of biomedical implants
Montazerian et al. Bioceramic coatings on metallic implants: An overview
Roy et al. Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants
Roy et al. Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma
Bansiddhi et al. Porous NiTi for bone implants: a review
Qaid et al. Micro-arc oxidation of bioceramic coatings containing eggshell-derived hydroxyapatite on titanium substrate
CN106676604B (zh) 具有点阵结构多孔的钛或钛合金表面抑菌生物活性陶瓷膜的制备方法及其应用
US8057657B2 (en) Treatment of an osteointegrative interface
Roy Functionally graded coatings on biomaterials: a critical review
Nasar Hydroxyapatite and its coatings in dental implants
Rotaru et al. In vivo behavior of surface modified Ti6Al7Nb alloys used in selective laser melting for custom-made implants. A preliminary study
Liu et al. Bio-activation of Ni-free Zr-based bulk metallic glass by surface modification
Prashar et al. Thermal sprayed composite coatings for biomedical implants: A brief review
Pogrebjak et al. Research of the relief and element composition of the surface coatings based on hydroxyapatite implants from titanium alloys
Suntharavel Muthaiah et al. Electrophoretic deposition of nanocrystalline calcium phosphate coating for augmenting bioactivity of additively manufactured Ti-6Al-4V
CN105497990B (zh) 一种三维多孔钛基镁掺杂涂层及其制备方法
de Almeida Filho et al. Bioactive coating on titanium implants modified by Nd: YVO4 laser
EP1515759B1 (en) An osteointegrative interface for implantable prostheses and method for its manufacture
Deevil et al. International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications
Su et al. In-situ synthesis and characterization of calcium phosphate coatings on rapidly solidified zirconia toughened alumina eutectic bioceramics by laser cladding
Voinarovych et al. Fabrication and characterization of Zr microplasma sprayed coatings for medical applications
Wang et al. Characterization of microstructure and mechanical properties of titanium-based bioactive ceramics laser-deposited on titanium alloy
CN103201237B (zh) 具有混合氧化物边缘区和金属性表面的整体陶瓷体、其制造方法及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110420

Termination date: 20130319