CN101246987B - 天线、耳机天线和具有耳机天线的广播接收装置 - Google Patents

天线、耳机天线和具有耳机天线的广播接收装置 Download PDF

Info

Publication number
CN101246987B
CN101246987B CN2008100058346A CN200810005834A CN101246987B CN 101246987 B CN101246987 B CN 101246987B CN 2008100058346 A CN2008100058346 A CN 2008100058346A CN 200810005834 A CN200810005834 A CN 200810005834A CN 101246987 B CN101246987 B CN 101246987B
Authority
CN
China
Prior art keywords
mentioned
antenna
frequency
cable
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008100058346A
Other languages
English (en)
Other versions
CN101246987A (zh
Inventor
山口伦史
末松英治
铃木治夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN101246987A publication Critical patent/CN101246987A/zh
Application granted granted Critical
Publication of CN101246987B publication Critical patent/CN101246987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Headphones And Earphones (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Structure Of Receivers (AREA)

Abstract

本发明提供一种天线、耳机天线和具有耳机天线的广播接收装置。所述天线(1)包括同轴电缆(4)、天线元件(3a)和(3b)、不平衡/平衡转换器(2);不平衡/平衡转换器(2)在输入端(P1)和输出端(P2)之间具有高通电路(11),并且,在输入端(P1)和输出端(P3)之间具有低通电路(12)。高通电路(11)以VHF频带为阻带,另外,高通电路(11)和低通电路(12)均以UHF频带为通带;当UHF频带的信号被输入到输入端时,高通电路(11)和低通电路(12)输出相位相反且振幅相等的信号。因此,天线(1)在VHF频带和UHF频带的较大频率范围内具有高收发灵敏度。由此,能够提供一种在较大频率范围内具有高收发灵敏度的天线。

Description

天线、耳机天线和具有耳机天线的广播接收装置
技术领域
本发明涉及一种收发电波的天线。
背景技术
在现有技术的电视广播中,模拟广播利用VHF频带(88MHz~222MHz)进行广播。目前,由于模拟广播要向数字广播过渡,因此,电视广播所使用的频带将发生较大的变化。
即,地面数字广播利用UHF频带(470MHz~710MHz)进行广播。在结束模拟广播后,将利用VHF频带(88MHz~222MHz)开始新的广播服务。
另一方面,在便携式电话等的小型便携式终端领域中,制造出了能够接收数字无线广播、数字电视广播等数字广播的终端,并且被不断普及。另外,面向诸如单段(one-segment)移动终端等的便携式终端的广播内容也日渐丰富。因此,要求便携式终端能够完全对应FM无线广播频带(75MHz及附近的频带)、VHF、UHF等较大的频率范围。
在现有的便携式终端中,一般使用耳机和天线一体化的耳机天线作为接收上述各种广播的天线。耳机天线具有输出音频的耳机功能和接收广播电波的天线功能。
一般的耳机天线构成为:耳机电缆连接在由相互绝缘的中心导体和外导体构成的同轴电缆上,该耳机电缆是兼作为辐射元件的音频传输配线。另外,一般来说,同轴电缆和耳机电缆的长度相当于FM、VHF频带的四分之一谐振波长。
通过向上述同轴电缆和耳机电缆实施不平衡馈电,同轴电缆的外导体和耳机电缆将作为适于接收FM、VHF频带的套筒天线进行动作。
但是,在耳机电缆和同轴电缆的长度相当于VHF频带的四分之一谐振波长的情况下,在接收UHF频带的广播电波时,耳机电缆和同轴电缆将相对于UHF频带的广播电波的谐振有效波长显得过长。因此,现有的耳机天线对地面数字广播等使用的UHF频带的电波的接收灵敏度较低。
在下述专利文献1(日本国专利申请公开特开2005-64742号公报,公开日2005年3月10日)中,使耳机天线具有的两条耳机电缆中的一条耳机电缆的长度相当于UHF频带的电波的四分之一谐振波长,由此提高对UHF频带的接收灵敏度。
但是,即使在其中一条耳机电缆的长度相当于UHF频带的电波的四分之一谐振波长的情况下,也还是难以得到充分的接收灵敏度。
作为其理由,可以举出,与耳机电缆相比较,一般的同轴电缆的外导体具有较大的表面积。即,激励具有较大表面积的同轴电缆的外导体的泄漏电流(不平衡电流)相对于耳机电缆中的通过电流起主导作用。
因此,长度相当于VHF频带的电波的四分之一谐振波长的同轴电缆的外导体中的通过电流的影响要大于长度相当于UHF频带的电波的四分之一谐振波长的耳机电缆中的通过电流的影响。
因此,即使在其中一条耳机电缆的长度相当于UHF频带的电波的四分之一谐振波长的情况下,由于同轴电缆的外导体中的通过电流的影响,其效果被抵消,在接收广播时也难以得到充分的灵敏度。
另一方面,为了提高UHF频带的接收灵敏度,使耳机电缆和同轴电缆的长度均相当于UHF频带的电波的四分之一谐振波长,在这种情况下,同轴电缆的外导体和耳机电缆作为适于接收UHF频带的套筒天线进行动作,所以,能够提高对UHF频带的接收灵敏度。
但是,在耳机电缆和同轴电缆的长度均相当于UHF频带的四分之一谐振波长的情况下,耳机电缆的长度缩短至FM或VHF频带的四分之一谐振波长的二十分之一左右,所以,FM和UHF频带的接收性能将显著恶化。
如上所述,现有技术的问题在于,无法实现对VHF频带和UHF频带均具有高灵敏度的天线。
发明内容
本发明是鉴于上述问题进行开发的,目的在于提供一种在较大的频率范围内具有高灵敏度的天线、耳机天线和具有该耳机天线的便携式终端。
为了解决上述问题,本发明的天线包括不平衡馈线、第1天线元件及第2天线元件、以及具有输入端和第1输出端及第2输出端的不平衡/平衡转换器,发送或接收第1及第2频带的电波,其特征在于,上述不平衡馈线连接上述输入端,并且,第1天线元件和第2天线元件分别连接第1输出端和第2输出端;上述不平衡/平衡转换器在输入端和第1输出端之间具有第1滤波器电路,并且在输入端和第2输出端之间具有第2滤波器电路;上述第1滤波器电路以上述第1频带为阻带;上述第1滤波器电路和第2滤波器电路均以上述第2频带为通带;当第2频带的信号被输入上述输入端时,上述第1滤波器电路和上述第2滤波器电路输出相位相反且振幅相等的信号。
根据上述结构,从不平衡馈线提供的天线输入信号被传送至不平衡/平衡转换器的输入端。在此,如果天线输入信号的频率在第1频带内,由于第1频带的信号被上述第1滤波器电路阻止,所以,上述天线输入信号仅从第2输出端输出。
因此,通过对第2天线元件和不平衡馈线实施不平衡馈电,使得第2天线元件和不平衡馈线作为套筒天线进行动作,其中,上述第2天线元件连接第2输出端。
也就是说,在本发明的天线中,在收发第1频带的电波时,第2天线元件和不平衡馈线作为套筒天线进行动作,所以能够有效地收发第1频带的电波。
另一方面,在天线输入信号的频率在第2频带时,由于上述第1滤波器电路和第2滤波器电路均以第2频带为通带,所以该天线输入信号从第1输出端和第2输出端输出。然后,从第1输出端和第2输出端输出的天线输入信号分别输入第1天线元件和第2天线元件。
在此,上述从不平衡/平衡转换器的第1滤波器电路和第2滤波器电路输出的信号相位相反,并且振幅相等。即,在天线输入信号的频率在第2频带时,第1天线元件和第2天线元件被平衡馈电。
因此,第1天线元件的通过电流和第2天线元件的通过电流之间发生谐振,其结果,第1天线元件和第2天线元件作为偶极天线进行动作。
也就是说,本发明的天线在收发第2频带的电波时,第1天线元件和第2天线元件作为偶极天线进行动作,因此,能够有效地收发第2频带的电波。
如上所述,本发明的天线在收发第1频带的电波时作为套筒天线进行动作,在收发第2频带的电波时作为偶极天线进行动作。其结果,本发明的天线在第1频带和第2频带都能获得较高的收发灵敏度。
另外,上述不平衡馈线和上述第2天线元件的有效长度优选在上述第1频带的最低频率的四分之一波长的长度至最高频率的四分之一波长的长度的范围内。
如上所述,在收发第1频带的电波时,上述不平衡馈线和上述第2天线元件作为套筒天线进行动作。因此,通过将上述不平衡馈线和上述第2天线元件的有效长度设定在上述第1频带的最低频率的四分之一波长的长度至最高频率的四分之一波长的长度的范围内,能够有效地收发第1频带的电波。
另外,上述第1天线元件和第2天线元件的有效长度优选在上述第2频带的最低频率的四分之一波长的长度至最高频率的四分之一波长的长度的范围内。
如上所述,在收发第2频带的电波时,第1天线元件和第2天线元件作为偶极天线进行动作。因此,通过将上述第1天线元件和第2天线元件的有效长度设定在上述第2频带的最低频率的四分之一波长的长度至最高频率的四分之一波长的长度的范围内,能够有效地收发第2频带的电波。
另外,优选的是,上述不平衡馈线和上述第2天线元件中的一者的有效长度为上述第1频带的最低频率的四分之一波长的长度,另一者的有效长度为上述第1频带的最高频率的四分之一波长的长度。
根据上述结构,借助于不平衡馈线和第2天线元件,能够有效地收发第1频带中从最低频率到最高频率的所有电波。
另外,优选的是,上述第1天线元件和上述第2天线元件中的一者的有效长度为上述第2频带的最高频率的四分之一波长的长度,另一者的有效长度为上述第2频带的最低频率的四分之一波长的长度。
根据上述结构,借助于第1天线元件和第2天线元件,能够有效地收发第2频带中从最低频率到最高频率的所有电波。
另外,为了解决上述课题,本发明的耳机天线包括对第1耳机提供音频信号的第1耳机电缆、对第2耳机提供音频信号的第2耳机电缆、对上述第1耳机电缆和第2耳机电缆提供天线输入信号和音频信号的馈线,发送或接收第1频带和第2频带的电波,其特征在于,包括不平衡/平衡转换器,该不平衡-平衡器具有输入端和第1输出端、第2输出端,在输入端和第1输出端之间具有第1滤波器电路,并且在输入端和第2输出端之间具有第2滤波器电路,上述第1滤波器电路以上述第1频带为阻带,上述第1滤波器电路和第2滤波器电路均以上述第2频带为通带,当第2频带的信号被输入上述输入端时,上述第1滤波器电路和第2滤波器电路输出相位相反且振幅相等的信号;上述馈线连接上述输入端,第1耳机电缆连接上述第1输出端,第2耳机电缆连接上述第2输出端。
根据上述结构,从馈线提供的天线输入信号被传送至不平衡/平衡转换器的输入端。在天线输入信号的频率在第1频率范围时,由于上述第1滤波器电路以第1频带为阻带,所以,上述天线输入信号仅从第2输出端输出。
因此,第2耳机电缆和馈线被不平衡馈电,其中,上述第2耳机电缆连接第2输出端。其结果,第2耳机电缆和馈线作为套筒天线进行动作。
也就是说,在本发明的耳机天线中,在收发第1频带的电波时,第2耳机电缆和馈线作为套筒天线进行动作,所以能够有效地收发第1频带的电波。
另一方面,在天线输入信号的频率在第2频率范围时,由于上述第1滤波器电路和第2滤波器电路均以第2频带为通带,所以,上述天线输入信号从第1输出端和第2输出端输出。然后,从第1输出端和第2输出端输出的天线输入信号分别输入第1耳机电缆和第2耳机电缆。
在此,上述从不平衡/平衡转换器的第1滤波器电路和第2滤波器电路输出的信号相位相反且振幅相等。即,在天线输入信号的频率在第2频带时,第1耳机电缆和第2耳机电缆被平衡馈电。
因此,第1耳机电缆的通过电流和第2耳机电缆的通过电流之间发生谐振,其结果,第1耳机电缆和第2耳机电缆作为偶极天线进行动作。
也就是说,本发明的耳机天线在收发第2频带的电波时,第1耳机电缆和第2耳机电缆作为偶极天线进行动作。所以,本发明的耳机天线能够有效地收发第2频带的电波。
像这样,本发明的耳机天线在收发第1频带的电波时作为套筒天线进行动作,在收发第2频带的电波时作为偶极天线进行动作。因此,本发明的耳机天线在第1频带和第2频带都能获得较高的收发灵敏度。
另外,本发明的耳机天线优选的是,上述第1耳机电缆具有对第1耳机提供音频信号的正信号线和负信号线,并且,上述第2耳机电缆具有对第2耳机提供音频信号的正信号线和负信号线,用第1电容器连接上述第1耳机电缆所具有的正信号线和负信号线,并且,用第2电容器连接上述第2耳机电缆所具有的正信号线和负信号线,上述用第1电容器和上述用第2电容器是可使高频信号通过而不使音频信号通过的电容器。
根据上述结构,音频信号不能通过上述第1电容器和第2电容器。因此,被传输至第1耳机电缆或第2耳机电缆的正的音频信号被传送至正信号线,负的音频信号被传送至负信号线。
另外,由于高频信号能够通过上述第1电容器和第2电容器,所以被传输至第1耳机电缆或第2耳机电缆的高频信号被传送至正信号线和负信号线。
因此,用于提供音频信号的正信号线和负信号线作为套筒天线或偶极天线进行动作,所以能够实现更高灵敏度的耳机天线。
另外,优选的是,上述第1耳机电缆和第2耳机电缆由同轴电缆构成。
由于同轴电缆的外导体的导电面积大于通常的电缆,所以,在由同轴电缆构成第1耳机电缆和第2耳机电缆时,通过第1耳机电缆和第2耳机电缆的高频电流的电流密度降低。
因此,根据上述结构,能够减小第1耳机电缆和第2耳机电缆的导体损失,改善辐射效率,从而能够提高耳机天线的收发灵敏度。
另外,优选的是,在上述馈线中包括用于对第1耳机电缆提供音频信号的正信号线和负信号线和用于对第2耳机电缆提供音频信号的正信号线和负信号线,用第3电容器连接用于对第1耳机电缆提供音频信号的正信号线和负信号线,并且,用第4电容器连接用于对第2耳机电缆提供音频信号的正信号线和负信号线,其中,第3电容器和用第4电容器是可使上述高频信号通过而不使音频信号通过的电容器。
根据上述结构,音频信号不能通过第3电容器和第4电容器。因此,在被传送至馈线的音频信号中,要提供给第1耳机电缆的正的音频信号被传送至正信号线,负的音频信号被传送至负信号线。同样地,要提供给第2耳机电缆的正的音频信号被传送至正信号线,负的音频信号被传送至负信号线。
因此,根据上述结构,能够对应差动音频信号,从而能够对以差动音频信号形式传送的高品质音频信号进行音频输出。
另外,高频信号能够通过上述第3电容器和第4电容器。因此,要传送给馈线的高频信号被发送至用于对第1耳机电缆提供音频信号的正信号线和负信号线以及用于对第2耳机电缆提供音频信号的正信号线和负信号线。
因此,用于对第1耳机电缆提供音频信号的正信号线和负信号线以及用于对第2耳机电缆提供音频信号的正信号线和负信号线作为套筒天线进行动作,所以,能够进一步提高对第1频带的收发灵敏度。
另外,上述第1频带优选约88MHz~222MHz的频带;上述第2频带优选约470MHz~710MHz的频带。
根据上述结构,能够以高灵敏度收发主要的广播频带,即,VHF频带(88MHz~222MHz)和UHF频带(470MHz~710MHz)的电波。
另外,第1耳机电缆和第2耳机电缆作为偶极天线进行动作。耳机天线的用户在佩戴第1耳机和第2耳机时,在用户的颈部附近,形成在与地面平行的方向上延伸的偶极天线。
由此,能够有效地接收地面数字广播等UHF频带的水平极化波。另外,在用户佩戴耳机天线时,较之于形成在用户的身体附近的套筒天线,能够在距离地面更高的位置上进行信号接收,所以能够得到更高的增益。
另外,具有上述耳机天线的广播接收装置能够以高灵敏度接收较宽的频率范围的广播电波。
本发明的其他目的、特征和优点在以下的描述中会变得十分明了。此外,以下参照附图来明确本发明的优点。
附图说明
图1是表示本发明的实施方式的天线的概略结构的图。
图2(a)是表示上述天线中的不平衡/平衡转换器的一例的图,是表示不平衡/平衡转换器的电路结构的概要图。
图2(b)是表示上述不平衡/平衡转换器的带通特性的图表。
图2(c)是表示上述不平衡/平衡转换器的输出端2和输出端3的输出信号之间的相位差的图表。
图3是表示在使用上述不平衡/平衡转换器的情况下,天线的最大增益的频率特性的图表。
图4(a)是表示上述天线中不平衡/平衡转换器的其它例的图,是表示上述不平衡/平衡转换器的电路的概略结构的图。
图4(b)是表示上述不平衡/平衡转换器的带通特性的图表。
图4(c)是表示上述不平衡/平衡转换器的输出端2和输出端3的输出信号之间的相位差的图表。
图5(a)是表示UHF频带的信号在上述不平衡/平衡转换器中传送的图。
图5(b)是表示VHF频带的信号在上述不平衡/平衡转换器传送的图。
图6是表示在使用上述不平衡/平衡转换器的情况下,天线的最大增益的频率特性的图。
图7是表示本发明的实施方式的耳机天线的概略结构的图。
图8是表示本发明的实施方式的上述耳机天线的变形例的图。
图9是表示本发明的实施方式的上述耳机天线的另一变形例的图。
图10是表示本发明的实施方式的上述耳机天线的另一变形例的图。
图11是表示本发明的实施方式的便携式终端的外观的图。
图12是表示利用与上述耳机天线连接的便携式终端接收UHF频带的广播电波(来波)的情况的图。
图13是表示距离地面的高度和接收灵敏度之间的关系的图。
图14是表示现有的耳机天线的概略结构的图。
具体实施方式
[实施方式1]
以下,根据图1至图6来说明本发明的一实施方式。
(天线的概要结构)
图1是表示本实施方式的天线1的概略结构的图。如图所示,天线1的结构为:在不平衡/平衡转换器2上连接有天线元件3a(第1天线元件)、天线元件3b(第2天线元件)以及同轴电缆(不平衡馈线)4。
在不平衡/平衡转换器2中,输入端接受不平衡电流的输入,多个输出端分别输出相互平衡的电流。不平衡/平衡转换器2包括输入端P1、输出端P2(第1输出端)和输出端P3(第2输出端)。
即,在不平衡/平衡转换器2中,在P1被不平衡馈电时,从P2和P3输出的电流相互平衡(振幅相等,相位相反)。关于不平衡/平衡转换器2,详见后述。
另外,上述相位相反是指相位差大致为180°,在本说明书中,相位差大致为180°是指相位差为180°或接近180°。另外,振幅相等是指,振幅完全相同或振幅差较小。
天线元件3a和3b由导体构成。在图1中,天线元件3a和3b的长度各自为L1和L2。天线元件3a连接不平衡/平衡转换器2的P2,天线元件3b连接不平衡/平衡转换器2的P3。
同轴电缆4是在中心导体4a的周围形成绝缘层并在绝缘层的周围形成外导体4b的电缆。在图1中,同轴电缆4的长度为L3。中心导体4a的一端连接不平衡/平衡转换器2的P1,另一端连接天线输入端(ANT(+))。外导体4b的一端(外导体4b的靠近不平衡/平衡转换器2的一端)连接有两个套筒元件(sleeve element)5,另一端连接有天线接地端(ANT(G))。套筒元件5的长度与同轴电缆4相同,为L3。
通过连接套筒元件5,能够抑制外导体4b的通过电流中与天线元件逆向流动的成分,提高天线1的灵敏度。关于天线1中的电流传送方向,详见后述。
另外,即使省略套筒元件5也能够收发电波。但是,为了提高天线1的收发灵敏度,优选连接套筒元件5。另外,在外导体4b未连接套筒元件5的情况下,也可以从同轴电缆4中引出外导体4b并折叠所引出的外导体4b,将其作为套筒元件。
在天线1中,在收发VHF频带(约88MHz~222MHz)的电波时,天线元件3b和套筒元件5作为套筒天线进行动作;在收发UHF频带(约470MHz~710MHz)的电波时,天线元件3a和天线元件3b作为偶极天线进行动作。
另外,上述约88MHz~222MHz的频带是指,88MHz~222MHz的频带及其附近的频带;约470MHz~710MHz的频带是指,470MHz~710MHz的频带及其附近的频带。
即,天线1在收发VHF频带的电波和UHF频带的电波时分别采取不同的收发模式。由此,天线1在VHF频带和UHF频带都可实现较高的收发灵敏度。
(天线元件和同轴电缆的长度)
如上所述,在收发VHF频带的电波时,天线元件3b和同轴电缆4的外导体4b作为套筒天线进行动作以收发VHF频带的电波。因此,天线元件3b和同轴电缆4的长度优选设定为适于收发VHF频带的电波的长度。
另外,当天线的有效长度、即,实际作为天线进行动作的部分的长度为收发电波的约四分之一波长(最低次谐振)时,该天线的收发效率最高。上述的约四分之一波长是指,与四分之一波长相当的长度,或者,与四分之一波长接近的长度。
因此,在收发某频带的电波时,优选的是,由长度在该频带的最低频率的电波的四分之一波长至最高频率的电波的四分之一波长的长度范围内的导体构成天线。另外,在本实施方式的示例中,导体是天线元件3a、天线元件3b和同轴电缆4。
另外,为了有效地收发某频带内的所有频率的电波,由长度相当于该频带中最低频率的电波的四分之一波长的导体和长度相当于该频带中最高频率的电波的四分之一波长的导体形成天线1即可。
例如,100MHz电波的四分之一波长约为75cm,180MHz电波的四分之一波长约为45cm。因此,在用天线1收发100MHz~180MHz频带的电波时,同轴电缆4的长度L3设定约为75cm,天线元件3b的长度L2约为45cm即可。由此,能够有效地收发100MHz~180MHz频带的电波。
当然,同轴电缆4的长度L3设定约为45cm,天线元件3b的长度L2设定约为75cm,也能够有效地收发100MHz~180MHz频带的电波。
另外,例如,在接收FM无线电(约75MHz)的情况下,75MHz的电波的四分之一波长约为100cm,所以,将同轴电缆4的长度L3或天线元件3b的长度L2设定成约100cm即可。
另一方面,如上所述,在收发UHF频带的电波时,天线元件3a和天线元件3b作为偶极天线进行动作。因此,天线元件3a和天线元件3b的长度优选设定为适于收发UHF频带的电波的长度。
特别是,通过将天线元件3b的长度设定成约为天线元件3a的3倍的长度,能够有效地接收UHF频带的从最低频率至最高频率的波长的电波。
例如,500MHz的电波的四分之一波长约为15cm,如上所述,180MHz的电波的四分之一波长约为45cm。因此,将天线元件3a的长度L1设定为约15cm,天线元件3b的长度L2设定为约45cm,由此,能够有效地收发180MHz~500MHz的频带的电波。
(不平衡/平衡转换器)
以下用图2和图3详细说明不平衡/平衡转换器。图2(a)是表示不平衡/平衡转换器2的电路结构的一例的图。如图所示,输入端P1在不平衡/平衡转换器2内形成两个分支。其中一个分支经由三级T型高通电路(梯型高通电路)11(第1滤波器电路)连接输出端P2,另一个分支经由三级T型低通电路(梯型低通电路)12(第2滤波器电路)连接输出端P3。
即,P1分别连接高通电路11和低通电路12,高通电路11和低通电路12彼此并联连接,高通电路11的输出端为P2,低通电路12的输出端为P3。
如图所示,高通电路11由电感器14和两个串联连接的电容器13构成,其中,电感器14连接在两个电容器13之间。另外,低通电路12由两个串联连接的电感器14和电容器13构成,其中,电容器13连接在两个电感器14之间。另外,在图2所示的示例中,设定电容器13的电容为4pF(法拉),电感器14的电感量为22nH(亨利)。
(在收发VHF频带的电波时作为套筒天线进行动作的理由)
图2(b)是表示图2(a)所示的不平衡/平衡转换器2的带通特性的图表。图2(b)的图表是以横轴表示频率(GHz)、在纵轴上标绘将散射矩阵(Sij)换算成dB(分贝)后的值(20log|Sij|)所得到的图表。在该图中,实线表示低通电路12的带通特性,虚线表示高通电路11的带通特性。
如图所示,高通电路11阻止约0.3GHz以下的频率范围的频率成分通过,低通电路12阻止约0.8GHz以上的频率范围的频率成分通过。因此,约0.3GHz以下的频率范围的信号能够通过低通电路12,但是,不能通过高通电路11。
即,在图2(a)中,在对P1输入0.3GHz以下频率的信号时,由于该信号无法通过高通电路11,所以该信号仅从低通电路12的输出端P3输出。
例如,假设在天线1中使用了图2(a)所示的不平衡/平衡转换器2的情况下,0.3GHz以下频率的高频信号被输入天线输入端(ANT(+))和天线接地端(ANT(G))。
被输入天线输入端的高频信号通过中心导体4a被传输至不平衡/平衡转换器2的P1。在此,由于该高频信号的频率为0.3GHz以下,所以无法通过高通电路11。
因此,高频信号无法被传输至P2,而仅被传输至P3。并且,由于P3连接天线元件3b,所以上述高频信号被传输至天线元件3b。
另一方面,被输入天线接地端的高频信号通过外导体4b被传输至套筒元件5。因此,天线元件3b的通过电流的方向与套筒元件5的通过电流的方向相同,其结果,天线元件3b和套筒元件5作为套筒天线进行动作。
也就是说,在图2(a)所示的不平衡/平衡转换器2用于天线1的情况下,天线1在收发0.3GHz以下频率的高频信号时,天线元件3b和套筒元件5作为套筒天线进行动作。
(收发UHF频带的电波时作为偶极天线进行动作的理由)
另一方面,如图2(b)所示,高通电路11和低通电路12均使约0.45~0.55GHz及约0.75~0.9GHz的频率范围的频率成分通过。因此,约0.45~0.55GHz及约0.75~0.9GHz的频率范围的信号既能够通过高通电路11也能够通过低通电路12。
即,在图2(a)中,在向P1输入约0.45~0.55GHz频带或约0.75~0.9GHz频带的信号时,该信号通过高通电路11和低通电路12输出到P2和P3。
另外,图2(c)是表示图2(a)所示的不平衡/平衡转换器2的输出端P2和P3的输出信号之间的相位差的图表。在图2(c)中,横轴表示频率(GHz),纵轴表示相位(deg)。
如图所示,在约0.45GHz~约0.65GHz的频率范围内,输出端P2和P3的输出信号之间的相位差约180°,即,成为相反相位。
因此,在将图2(a)所示的不平衡-平衡转换2使用于天线1的情况下,在向P1输入约0.45GHz~约0.65GHz的频带的信号时,P2输出的信号和P3输出的信号相位相反。
另外,在信号通过高通电路11和低通电路12时,由于信号的振幅不发生变化,所以P2输出的信号和P3输出的信号的振幅相等。
在此,例如,假设在将图2(a)所示的不平衡/平衡转换器使用于天线的情况下,约0.45GHz~约0.6GHz的频率范围内的高频信号被输入天线输入端(ANT(+))和天线接地端(ANT(G))。
在该情况下,被输入P1的高频信号的频率在约0.45GHz~0.6GHz的频率范围内,所以能够通过高通电路11和低通电路12(参照图2(b))。因此,被输入P1的高频信号被输出至P2和P3,并被传输给天线元件3a和天线元件3b。
另外,如图2(c)所示,在向P1输入约0.45GHz~0.6GHz的频率范围内的高频信号时,天线元件3a的通过电流和天线元件3b的通过电流的相位差为180°,其中,天线元件3a连接P2,天线元件3b连接P3。天线元件3a的通过电流和天线元件3b的通过电流的振幅大致相等。
其结果,天线元件3a和天线元件3b作为偶极天线进行动作。也就是说,在将图2(a)所示的不平衡/平衡转换器2使用于天线1的情况下,天线1在收发0.45GHz~0.6GHz的频率范围内的高频信号时,天线元件3a和天线元件3b作为偶极天线进行动作。
(本发明的天线的增益)
图3是表示天线1的最大增益(Maximum Gain)的频率特性的图表,在天线1中,天线元件3a的长度L1为15cm,天线元件3b的长度L2为45cm,同轴电缆4的长度L3位75cm(参照图1),天线1使用了图2所示特性的不平衡/平衡转换器2。
另外,在图3的图表中,横轴表示频率(MHz),纵轴表示最大增益(dBi)。在图3中,实线表示天线1的最大增益的频率特性,并且,为了进行比较,同时表示了现有天线的最大增益的频率特性(虚线部分)。
另外,上述的现有天线采用了以下结构,即,从图1所示的天线1中除去不平衡/平衡转换器2,天线元件3a和天线元件3b直接连接同轴电缆4的中心导体4a。
如图所示,较之于现有的天线,天线1在VHF频带(88MHz~222MHz)和UHF频带(470MHz~710MHz)的最大增益都变大。
作为天线1在VHF频带的最大增益大于现有天线的理由,可以举出:在天线1收发VHF频带的电波时,电流不流过天线元件3a。也就是说,在收发VHF频带的电波时,由于电流不流过天线元件3a,天线元件3b和套筒元件5作为套筒天线进行动作,所以VHF频带的最大增益变大。
而在现有的天线中,电流分布于天线元件3a和天线元件3b。在电流分布于天线元件3a和天线元件3b的情况下,根据天线元件3a和天线元件3b的配置,可能存在天线元件3a的通过电流和天线元件3b的通过电流的方向相反的情况。
在这种情况下,天线元件3a的通过电流和天线元件3b的通过电流相互干扰,导致作为套筒天线的收发灵敏度的降低。
也就是说,本发明的天线1由于不存在天线元件3a的通过电流干扰的影响,因此,与现有的天线相比,其对VHF频带的电波的收发灵敏度提高,最大增益也变大。
另外,作为天线1在UHF频带的最大增益大于现有天线的理由,可以举出:在收发UHF频带的电波时,天线元件3a和天线元件3b作为偶极天线进行动作。
即,天线1在收发UHF频带的电波时,天线元件3a和天线元件3b发生谐振,所以,同轴电缆4的外导体4b难以被行波所激励。
一般来说,同轴电缆的外导体的表面积大于天线元件的表面积,导体损失少。因此,同轴电缆的外导体的通过电流成分将给天线元件的通过电流频带来较大的影响,同轴电缆的外导体的通过电流将决定天线的灵敏度(行波激励)。
即,在现有的天线中,经比较激励同轴电缆4的外导体4b的泄漏电流分布和激励天线元件3a及天线元件3b的电流分布可知:作为天线的电流源,泄漏电流起着主导作用。
另一方面,在本发明的天线1中,天线元件3a和天线元件3b发生谐振,所以,相比同轴电缆4的外导体4b,天线元件3a和天线元件3b作为天线1的电流源而起着主导作用。
因此,本发明的天线1能够通过天线元件3a和天线元件3b收发UHF频带的电波,其中,该天线元件3a和天线元件3b的长度设定为适于收发UHF频带电波的长度。由此,较之于现有的天线,天线1对UHF频带电波的收发灵敏度提高,最大增益也变大。
(不平衡/平衡转换器的变形例)
图4(a)是表示通过进一步增加图1所示的不平衡/平衡转换器2的带宽后得到的不平衡/平衡转换器2′的电路结构的图。另外,图4(b)是表示不平衡/平衡转换器2′的带通特性的图表,图4(c)是表示上述不平衡/平衡转换器2′的P2和P3的输出信号之间的相位差的图表。
与图2(a)所示的不平衡/平衡转换器2同样地,在图4(a)所示的不平衡/平衡转换器2’中,高通电路11’和低通电路12’并联连接P1。
如图4(b)所示,高通电路11’阻止约0.3GHz以下的频率范围内的频率成分通过,低通电路12’使0~1GHz的频率范围内的所有频率成分通过。另外,高通电路11’对图2(a)所示的高通电路11的带通特性较低的频率范围(约0.6GHz~0.8GHz)也能够获得较高的带通特性。
如图4(b)所示,低通电路12’使1GHz以下的频率范围的所有频率成分通过。即,低通电路12’对图2(b)所示的低通电路12的带通特性较低的频率范围(约0.3GHz~0.5GHz、约0.8GHz以上)也能够获得较高的带通特性。
另外,如图4(b)所示,高通电路11’和低通电路12’在约0.5GHz以上的频率范围的带通特性大致相同。
图4(c)表示不平衡/平衡转换器2’的P2和P3的输出信号之间的相位差特性,其中,不平衡/平衡转换器2’由具有上述特性的高通电路11’和低通电路12’构成。如该图所示,在约0.5GHz~1GHz的较大的频率范围内,P2和P3的输出信号之间的相位差约为180°。
以下,用图5说明在不平衡/平衡转换器2’中的信号传输。图5(a)表示UHF频带的信号传输,图5(b)表示VHF频带的信号传输。
(UHF频带的信号传输)
在收发UHF频带的电波时,P1被UHF频带的信号所激励。如图4(b)所示,约0.4GHz以上的频带既是高通电路11’的通带也是低通电路12’的通带。因此,如图5(a)所示,激励P1的UHF频带的信号被传输给P2及P3。
如图4(c)所示,在约0.5GHz~1GHz的较大的频率范围内,P2和P3的输出信号之间的相位差约为180°。
因此,在将不平衡/平衡转换器2’用于图1所示的天线1的情况下,在将UHF频带的信号输入P1时,P2输出的信号和P3输出的信号之间将产生约180°的相位差。
另外,信号在通过高通电路11’和低通电路12’时,信号的振幅不变,所以,输出端P2输出的信号和输出端P3输出的信号具有相同的振幅。因此,与使用了图2(a)所示的不平衡/平衡转换器2的情况同样地,天线元件3a和天线元件3b作为偶极天线进行动作。
(VHF频带的信号传输)
在收发VHF频带的电波时,P1被VHF频带的信号激励。如图4(b)所示,VHF频带是低通电路12’的通带,0.3GHz以下的频带是高通电路11’的阻带。由此,如图5(b)所示,激励P1的VHF频带的信号仅被传输给P3。
因此,在将不平衡/平衡转换器2’用于图1所示的天线1的情况下,在将VHF频带的信号输入P1时,所输入的信号将被传输给与P3连接的天线元件3b,但是,不会被传输给与P2连接的天线元件3a。
其结果,与使用了图2(a)所示的不平衡/平衡转换器2的情况同样地,天线元件3a和套筒元件5作为套筒天线进行动作。
(与图2所示的不平衡/平衡转换器的比较)
如上所述,天线1使用不平衡/平衡转换器2’的情况与使用图2所示的不平衡/平衡转换器2的情况同样地,在收发VHF频带的信号时作为套筒天线进行动作,在收发UHF频带的信号时作为偶极天线进行动作。
由于不平衡/平衡转换器2’和图2所示的不平衡/平衡转换器2的电路结构不同(参照图2和图4),所以接收灵敏度也不同。即,较之于使用图2所示的不平衡/平衡转换器2,在使用不平衡/平衡转换器2时,能够在更大的频率范围实现高灵敏度天线。
这是因为,在使用不平衡/平衡转换器2’的情况下,在收发UHF频带的信号时,天线1作为偶极天线进行动作的频率范围进一步变宽。也就是说,如图4(c)所示,在不平衡/平衡转换器2’中,在约0.5GHz~1GHz的频率范围内,P2输出的信号和P3的输出信号之间的相位差约为180°。
另一方面,如图2(c)所示,在图2(a)所示的不平衡/平衡转换器2中,在约0.45GHz~0.65GHz的频率范围内,P2输出的信号和P3的输出信号之间的相位差约为180°。
也就是说,较之于使用图2(a)所示的不平衡/平衡转换器2的情况,在使用图4(a)所示的不平衡/平衡转换器2’时,能够在更大的频率范围内使得P2输出的信号和P3输出的信号之间的相位差约为180°。
因此,在用不平衡/平衡转换器2’构成天线1的情况下,天线1在UHF频带的更大的频率范围内作为偶极天线进行动作。其结果,较之于使用图2(a)所示的不平衡/平衡转换器2的情况,能够在更大的频率范围内实现高灵敏度的天线。
图6是表示天线1的最大增益的频率特性的图表,在该天线1中,天线元件3a的长度L1为15cm、天线元件3b的长度L2为45cm、同轴电缆4的长度L3为75cm(参照图1),并使用了具有图5所示的频率特性的不平衡/平衡转换器2’。
与图3的图表同样地,在图6所示的图表中,横轴表示频率(MHz),纵轴表示最大增益(dBi)。另外,实线表示天线1的最大增益的频率特性,并且,为了进行比较,同时表示了现有天线的最大增益的频率特性(如虚线所示)。此外,该现有天线与图3所示的现有天线相同。
如图所示,较之于现有的天线,用不平衡/平衡转换器2’构成的天线1在约200MHz~900MHz的频带内最大增益变大。另外,较之于使用了图2所示的不平衡/平衡转换器2的情况(参照图3),在约600MHz~900MHz的频带中最大增益变大。
这是由于,如上所述,在使用图2(a)所示的不平衡/平衡转换器2的情况下,天线1在约0.45GHz~0.65GHz的频带中作为偶极天线进行动作,另一方面,在使用不平衡/平衡转换器2’的情况下,天线1在约0.5GHz~1GHz的频带中作为偶极天线进行动作。
像这样,在输出端P2和P3输出的信号的相位差约180°时,天线1作为偶极天线进行动作。因此,在需要确保高度增益的频带中,使用输出端P2和P3输出的信号的相位差约180°的带通特性的高通电路和低通电路即可。
另外,关于在不平衡/平衡转换器中使用的低通电路和高通电路,可以如图2(a)所示那样组合电容器和感电器等构成具有所期望的带通特性的电路,也可以使用市场销售的电路。
[实施方式2]
在本实施方式中,根据图7~图10,说明将上述天线1应用于耳机天线的示例。本发明的耳机天线21适用于通过便携式终端接收FM、VHF、UHF频带的电波的情况。首先,根据图7说明通过组合本发明的天线1和三极天线形成的耳机天线的示例。另外,对具有和上述实施方式所述的构件相同的功能的构件赋予相同的标号,并省略其说明。
(现有的耳机天线的结构)
为了与本发明进行比较,首先,根据图14说明现有的耳机天线。图14是表示现有的耳机天线101的概略结构的图。如图所示,耳机天线101包括:馈线102、耳机电缆103L、耳机电缆103R、耳机104L和耳机104R。
馈线102由同轴电缆105、第1音频电缆106L和第1音频电缆106R构成。同轴电缆105包括中心导体105a和外导体105b。
耳机电缆103L由第2音频电缆107LP和第2音频电缆107LN构成,耳机电缆103R由第2音频电缆107RP和第2音频电缆107RN构成。
同轴电缆105的中心导体105a的一端连接天线输入端(ANT(+)),另一端连接第2音频电缆107LN和第2音频电缆107RN。
同轴电缆105的外导体105b的一端(天线输入端侧的端部)连接天线接地端(ANT(G))。此外,外导体105b的另一端经由扼流圈108连接第2音频电缆107LN,并且连接两个高通电容器109。
与外导体105b连接的两个高通电容器109中的一个连接第1音频电缆106L,而且,经由扼流圈108连接第2音频电缆107LP;同样地,上述高通电容器109中的另一个连接第1音频电缆106R,而且,经由扼流圈108连接第2音频电缆107RP。
扼流圈108具有在高频时为高阻抗、在低频时为低阻抗的电感值。另外,高通电容器109具有在高频时为低阻抗、在音频信号等低频信号时为高阻抗的特性。
也就是说,扼流圈108不使高频信号通过,而使音频信号通过。相反地,高通电容器109不使音频信号通过,而使高频信号通过。
以下,说明耳机天线101的动作。在天线输入端和天线接地端被高频信号激励的情况下,激励天线输入端的高频信号通过中心导体105a,并经由第2音频电缆107LN传送给耳机104L,而且,经由第2音频电缆107RN传送给耳机104R。
同时,激励天线接地端的高频信号通过外导体105b,并经由高通电容器109传送给第1音频电缆106L和第1音频电缆106R。
因此,在耳机天线101中,第1音频电缆106L与第1音频电缆106R的通过电流和第2音频电缆107LN与第2音频电缆107RN的通过电流的方向相同。其结果,在耳机天线101中,第1音频电缆106L及第1音频电缆106R和第2音频电缆107LN及第2音频电缆107RN作为套筒天线进行动作。
因此,在耳机天线101接收VHF频带(88MHz~222MHz)时,将耳机电缆103L、耳机电缆103R、馈线102的长度设定适于接收88MHz~222MHz的长度(例如45cm~75cm左右)即可。
在上述情况下,在由耳机天线101形成的套筒天线接收500MHz(UHF频带)的电波时,由于500MHz的电波的四分之一波长约为15cm,所以耳机电缆103等的适当长度为15cm左右。
但是,在耳机电缆103的长度为15cm的情况下,相对于人的面部尺寸,耳机电缆103过短,所以,将影响耳机天线101的使用。
对此,在一般的耳机天线中,耳机电缆、同轴电缆和音频电缆的长度分别被设定为37.5cm左右,该长度相当于VHF-H频带(200MHz)的电波的四分之一波长。
因此,在用一般的耳机天线接收UHF频带时,由于要利用接收电波的高次谐振,所以,较之于利用最低次谐振(长度相当于接收电波的四分之一波长的导线的谐振)的情况,接收灵敏度将降低。
另外,在耳机天线101中,耳机电缆103L和耳机电缆103R所形成的角度θ越接近180°,耳机电缆103L的通过电流的流向和耳机电缆103R的通过电流的流向之间形成的角度就越接近180°,即,二者的通过电流的流向就越倾向于互为相反方向。
并且,随着耳机电缆103L的通过电流的流向和耳机电缆103R的通过电流的流向之间形成的角度接近180°,耳机天线101的灵敏度将会降低。
(本发明的耳机天线的结构)
以下,根据图7说明本发明的耳机天线21的结构。图7是表示耳机天线21的概略结构的图。如图所示,耳机天线21包括:馈线22、不平衡/平衡转换器2’(参照图4~图6)、耳机电缆23L(第1耳机电缆)、耳机电缆23R(第2耳机电缆)、耳机24L(第1耳机)和耳机24R(第2耳机)。
馈线22包括第1音频电缆25L、第1音频电缆25R和同轴电缆26。在本发明中,用乙烯绝缘线等的绝缘体包覆第1音频电缆25R和同轴电缆26从而形成馈线22(未图示)。
耳机电缆23L由第2音频电缆27LP和第2音频电缆27LN构成,耳机电缆23R也同样由第2音频电缆27RP和第2音频电缆27RN构成。与馈线22同样地,也由未图示的乙烯绝缘线等的绝缘体包覆电缆从而形成耳机电缆23L和耳机电缆23R。
同轴电缆26的中心导体26a的一端连接天线输入端(ANT(+)),另一端连接不平衡/平衡转换器2’的P1。不平衡/平衡转换器2’的P2连接第2音频电缆27LN,并且经由电感器28b连接外导体26b。同样地,不平衡/平衡转换器2’的P3连接第2音频电缆27RN,并且经由电感器28c连接外导体26b。
同轴电缆26的外导体26b的一端(天线输入端一侧的端部)连接天线接地端(ANT(G)),外导体26b的另一端经由电容器29a连接第1音频电缆25L,并且经由电容器29b连接第1音频电缆25R。另外,外导体26b的另一端经由电感器28b连接不平衡/平衡转换器2’的P2,并且经由电感器28c连接不平衡/平衡转换器2’的P3。
不平衡/平衡转换器2’的P2经由电感器28a连接外导体26b,并且,连接第2音频电缆27LN。第2音频电缆27RN连接耳机24R的负端(-)。
同样地,不平衡/平衡转换器2’的P3经由电感器28c连接外导体26b,并且,连接第2音频电缆27RN。第2音频电缆27RN连接耳机24R的负端(-)。
第1音频电缆25L的一端连接音频输入端L(L(+)),第1音频电缆25L的另一端经由电容器29a连接同轴电缆26的外导体26b,并且,经由电感器28a连接第2音频电缆27LP。另外,第2音频电缆27LP连接耳机24L的正端(+)。
同样地,第1音频电缆25R的一端连接音频输入端R(R(+)),另一端经由电容器29b连接同轴电缆26的外导体26b,并且,经由电感器28d连接第2音频电缆27RP。另外,第2音频电缆27RP连接耳机24R的正端(+)。
另外,电感器28具有在低频(音频信号等)时为低阻抗、在高频时为高阻抗的特性。电容器29具有在高频时为低阻抗、在低频(音频信号等)时为高阻抗的特性。
也就是说,电感器28使音频信号通过,而不使VHF、UHF等的高频信号通过。相反地,电容器29使VHF、UHF等的高频信号通过,而不使音频信号通过。
(本发明的耳机天线的动作说明)
以下,说明耳机天线21的动作示例。首先,说明耳机天线21的音频信号输入/输出动作。VHF频带的电波接收和UHF频带的电波接收均进行相同的音频信号输入/输出动作。
(音频信号输入/输出动作)
立体声音频信号(+)被输入音频输入端L(L(+))和音频输入端R(R(+))。然后,被输入音频输入端L的立体声音频信号(+)被传送给第1音频电缆25L,被输入音频输入端R的立体声音频信号(+)被传送给第1音频电缆25R。
第1音频电缆25L的端部(第1音频电缆25L的未连接音频输入端的端部)连接有电感器28a和电容器29a,所以,音频信号能够通过电感器28a而不能通过电容器29a。
因此,被传送给第1音频电缆25L的立体声音频信号(+)通过电感器28a,经由第2音频电缆27LP被提供给耳机24L的输出端(+),并从耳机24L进行音频输出。同样地,被传送给第1音频电缆25R的立体声音频信号(+)通过电感器28d,经由第2音频电缆27RP被提供给耳机24R的正端(+),并从耳机24R进行音频输出。
另一方面,由于耳机天线21是三极耳机,立体声音频信号(-)被输入天线接地端(ANT(G))。即,耳机天线21具有音频信号接地端和天线接地端共用的高效的结构。
被输入天线接地端的立体声音频信号(-)通过外导体26b和电感器28b被传送给第2音频电缆27LN。然后,立体声音频信号(-)被传送给耳机24L的输出端(-)并从耳机24L进行音频输出。同样地,立体声音频信号(-)通过外导体26b和电感器28c被传送给第2音频电缆27RN。然后,立体声音频信号(-)被传送给耳机24R的负端(-)并从耳机24R进行音频输出。
(接收VHF频带电波时的动作示例)
以下,说明在接收VHF频带电波时耳机天线21的动作示例。在接收到VHF频带的电波时,天线输入端(ANT(+))被VHF频带的高频信号激励。该高频信号经由同轴电缆26的中心导体26a被传送给不平衡/平衡转换器2’的输入端P1。
如图5(b)所示,不平衡/平衡转换器2’的P1分别连接高通电路11’和低通电路12’,高通电路11’并联连接低通电路12’,VHF频带的信号仅能通过低通电路12’。因此,在这种情况下,被输入P1的高频信号仅被传输送给P3。
另外,P3连接第2音频电缆27RN,并且经由电感器28c连接外导体26b。但是,由于高频信号不能通过电感器28c,所以,被传送到P3的高频信号被发送给第2音频电缆27RN,并经由第2音频电缆27RN向耳机24R的负端(-)传送。
也就是说,在接收VHF频带的电波时,天线输入端(ANT(+))和耳机24R的负端(-)电连接,其结果,电流从天线输入端(ANT(+))向耳机24R的负端(-)流动。
另外,高频信号也激励天线接地端(ANT(G))。激励天线接地端的高频信号经由外导体26b进行传送。其中,外导体26b的端部(外导体26b的未与天线接地端连接的端部)连接有电感器28b、电感器28c、电容器29a和电容器29b。
由于高频信号不能通过电感器28b和电感器28c,所以,激励天线接地端的高频信号经由电容器29a被传送给第1音频电缆25L,并且经由电容器29b被传送给第1音频电缆25R。
也就是说,在接收VHF频带的电波时,天线接地端(ANT(G))和音频输入端(L(+)、R(+))电连接,其结果,电流从音频输入端(L(+)、R(+))向天线接地端(ANT(G))流动。
因此,在接收VHF频带的电波时,第1音频电缆25L及第1音频电缆25R的通过电流和第2音频电缆27RN的通过电流的方向相同。其结果,第1音频电缆25L及第1音频电缆25R和第2音频电缆27RN作为套筒天线进行动作。即,在耳机天线21中,第1音频电缆25L和第1音频电缆25R起着套筒元件的作用。
如上所述,在上述耳机天线21作为套筒天线进行动作时,在第2音频电缆27LN中没有电流通过。因此,不会出现像图14所示的现有的耳机天线101那样的问题,即:耳机电缆103L和耳机电缆103R所形成的角度θ越接近180°,天线的灵敏度就越低这样的问题。
(接收UHF频带电波时的动作示例)
以下,说明在接收UHF频带的电波时耳机天线21的动作示例。在接收到UHF频带的电波时,天线输入端(ANT(+))被UHF频带的高频信号激励。然后,该高频信号通过同轴电缆26的中心导体26a被传送给不平衡/平衡转换器2’的输入端P1。
如图5(a)所示,不平衡/平衡转换器2’的P1分别连接高通电路11’和低通电路12’,高通电路11’并联连接低通电路12’。UHF频带的信号能够通过高通电路11’,也能够通过低通电路12’。因此,在这种情况下,被输入P1的高频信号被传送给P2和P3。
然后,被传送到P3的高频信号经由第2音频电缆27RN向耳机24R的负端(-)传送。同样地,被传送到P2的高频信号经由第2音频电缆27LN向耳机24L的负端(-)传送。
如图4(c)所示,P2输出的信号和P3输出的信号之间的相位差在UHF频带约为180°,另外,P2输出的信号的振幅和P3输出的信号的振幅大致相等。
因此,在耳机天线21中,第2音频电缆27RN和第2音频电缆27LN作为偶极天线进行动作。
另外,由于耳机天线21作为不对称偶极天线进行动作,所以,可以延长耳机天线21的一条电缆。因此,即使在实际使用范围内延长其中一条电缆的情况下,耳机天线21对UHF频带电波的接收性能也优越于现有的耳机天线。
例如,在图7的示例中,将第2音频电缆27LN设定为适于接收UHF频带电波的长度,并且,第2音频电缆27RN的长度大于第2音频电缆27LN的长度。因此,第2音频电缆27RN的长度将被设定为大于适于接收UHF频带电波的长度。但是,由于耳机天线21作为不对称偶极天线进行动作,所以,对UHF频带的接收灵敏度不会降低。
如上所述,耳机天线21在接收VHF频带的电波时作为套筒天线进行动作。在该情况下,由第1音频电缆25L及第1音频电缆25R和第2音频电缆27RN形成套筒天线。另外,电流不通过第2音频电缆27LN。因此,在接收VHF频带的电波时,能够得到比现有耳机天线高的增益。
另外,耳机天线21在接收UHF频带的电波时作为偶极天线进行动作。因此,在接收UHF频带的电波时,也能够得到比现有耳机天线高的增益。
也就是说,较之于现有的耳机天线,耳机天线21在VHF频带和UHF频带均能得到较高的增益,是一种具有高灵敏度的耳机天线。
(耳机天线的变形例1)
以下,根据图8说明耳机天线21的变形例。图8是表示耳机天线31的概略结构的图。
较之于图7所示的耳机天线21,耳机天线31的不同之处在于:由电容器29c(第1电容器)连接第2音频电缆27LN的在不平衡/平衡转换器2’一侧的端部和第2音频电缆27LP的在不平衡/平衡转换器2’一侧的端部,并且,由电容器29d(第2电容器)连接第2音频电缆27RN的在不平衡/平衡转换器2’一侧的端部和第2音频电缆27RP的在不平衡/平衡转换器2’一侧的端部。
在耳机天线31中,由于具有电容器29c和电容器29d,所以,较之于图7所示的耳机天线21,耳机天线31为接收灵敏度更高的耳机天线。
耳机天线31在接收到VHF频带的高频信号时,与图7所示的耳机天线21同样地,高频信号被传送给不平衡/平衡转换器2’的P3。其中,P3连接第2音频电缆27RN,并且,经由电容器29d连接第2音频电缆27RP。
由此,高频信号在传送到不平衡/平衡转换器2’的P3后被传送给第2音频电缆27RN和第2音频电缆27RP。另外,第2音频电缆27RN的通过电流和第2音频电缆27RP的通过电流的方向相同。
因此,耳机天线31在接收VHF频带的电波时,第1音频电缆25L及第1音频电缆25R和第2音频电缆27RN及第2音频电缆27RP作为套筒天线进行动作。
另一方面,图7所示的耳机天线21在接收VHF频带的电波时,第1音频电缆25L及第1音频电缆25R和第2音频电缆27RN作为套筒天线进行动作。
即,在耳机天线31中,由于增加了第2音频电缆27RP作为套筒天线的结构要素,因此,对VHF频带的接收灵敏度要高于图7所示的耳机天线21。
与上述同样地,在接收UHF频带的电波时,高频信号在传送到P2后被传送给第2音频电缆27LP和第2音频电缆27RN。并且,高频信号在传送到P3后被传送给第2音频电缆27RP和第2音频电缆27RN。
如上所述,在耳机天线31中,增加了第2音频电缆27LP和第2音频电缆RP作为偶极天线的结构要素。结果,其对UHF频带的接收灵敏度更高于图7所示的耳机天线21。另外,音频信号输入/输出动作与图7所示的耳机天线21相同,所以省略其说明。
(耳机天线的变形例2)
以下,根据图9说明耳机天线的另一变形例。图9是表示耳机天线41的概略结构的图。将图7所示的耳机天线21的耳机电缆23L和耳机电缆23R分别置换为同轴耳机电缆42L和同轴耳机电缆42R,由此形成耳机天线41。
即,在耳机天线41中,同轴耳机电缆42L的外导体42Lb起着图7所示的耳机天线21中的第2音频电缆27LN的作用,同轴耳机电缆42L的中心导体42La起着第2音频电缆27LP的作用。同轴电缆42R也与此相同。
因此,与图7所示的耳机天线21同样地,在耳机天线41接收到VHF频带的电波时,激励同轴电缆26的中心导体26a的高频信号被传送给P3,并从P3经由同轴耳机电缆42R的外导体42Rb向耳机24R的负端(-)传送。另外,激励同轴电缆26的外导体26b的高频信号被传送给第1音频电缆25L和第1音频电缆25R。
由此,同轴耳机电缆42R的外导体42Rb、第1音频电缆25L和第1音频电缆25R作为套筒天线进行动作。
另外,与图7所示的耳机天线21同样地,在耳机天线41接收到UHF频带的电波时,激励同轴电缆26的中心导体26a的高频信号被传送给P2和P3。然后,上述高频信号从P2经由同轴耳机电缆42L的外导体42Lb向耳机24L的负端(-)传送,并且,从P3经由同轴耳机电缆42R的外导体42Rb向耳机24R的负端(-)传送。
由此,同轴耳机电缆42L的外导体42Lb和同轴耳机电缆42R的外导体42Rb作为偶极天线进行动作。
在此,在耳机天线41中,使用同轴电缆26作为耳机电缆,所以流经耳机电缆的高频电流的电流密度下降。因此,根据耳机天线41,能够减轻耳机电缆的导体损失,由此辐射效率得到改善。
因此,较之于图7所示的耳机天线21,图9所示的耳机天线41可进一步提高接收灵敏度。
另外,与图8所示的耳机天线31同样地,可以在同轴耳机电缆42L、42R的外导体和中心导体之间设置电容器29。由此,能够进一步提高耳机天线41的接收灵敏度。
(耳机天线的变形例3)
以下,根据图10说明耳机天线的另一变形例。图10是表示耳机天线51的概略结构的图。使图9所示的耳机天线41能够应对差动音频信号从而形成耳机天线51。
在耳机天线51中,如图所示,图9所示的耳机天线41的馈线被置换为馈线52,并且,与之相对应地,同轴耳机电缆42L及同轴耳机电缆42R与馈线之间的连接状态也发生了变化。
馈线52包括同轴电缆26、第1音频电缆53LP、第1音频电缆53LN、第1音频电缆53RP和第1音频电缆53RN。
如图所示,第1音频电缆53LP的一端连接音频输入的正端L(L(+))。另外,第1音频电缆53LP的另一端经由电感器54a连接同轴耳机电缆42L的中心导体42La,并且经由电容器55a(第3电容器)连接第1音频电缆53LN的端部。
另外,电感器54a~54d和电容器55a~55d具有与图7等所示的电感器28和电容器29相同的特性。即,电感器54a~54d具有使音频信号通过而不使高频信号通过的特性,电容器55a~55d具有使高频信号通过而不使音频信号通过的特性。
如上所述,第1音频电缆53LN的一端经由电容器55a连接第1音频电缆LP的端部。另外,上述第1音频电缆53LN的一端还经由电感器54b连接同轴耳机电缆42L的外导体42Lb,并且经由电容器55b连接同轴电缆26的外导体26b。第1音频电缆53LN的另一端连接音频输入的负端L(L(-))。
同样地,第1音频电缆53RP的一端连接音频输入的正端R(R(+));第1音频电缆53RP的另一端经由电感器54d连接同轴耳机电缆42R的中心导体42Ra,并且经由电容器55d(第4电容器)连接第1音频电缆53RN的端部。
另外,第1音频电缆53RN的一端经由电容器55d连接第1音频电缆53RP的端部,并且经由电感器54c连接同轴耳机电缆42R的外导体42Rb,还经由电容器55c连接同轴电缆26的外导体26b。第1音频电缆53RN的另一端连接音频输入的负端R(R(-))。
(音频信号输入/输出动作)
以下,说明具有上述结构的耳机天线51的音频信号输入/输出动作。立体声音频信号(+)被输入音频输入的正端L(L(+))和音频输入的正端R(R(+))。然后,输入音频输入的正端L(L(+))的立体声音频信号(+)被传送给第1音频电缆53LP。另一方面,输入音频输入的正端R(R(+))的立体声音频信号(+)被传送第1音频电缆53RP。
在第1音频电缆53LP的端部(第1音频电缆53LP的未与音频输入的正端L(L(+))连接的端部)上连接有电感器54a和电容器55a。音频信号能够通过电感器54a而不能通过电容器55a。
因此,立体声音频信号(+)在传送到第1音频电缆53LP后经由电感器54a和同轴耳机电缆42L的中心导体43La被提供给耳机24L的正输出端(+),并从耳机24L进行音频输出。
同样地,立体声音频信号(+)在传送到第1音频电缆53RP后经由电感器54d和同轴耳机电缆42R的中心导体42Ra被提供给耳机24R的正输出端(+),并耳机24R进行音频输出。
另一方面,立体声音频信号(-)被输入音频输入的负端L(L(-))和音频输入的负端R(R(-))。立体声音频信号(-)在输入音频输入的负端L(L(-))后被传送给第1音频电缆53LN。另外,立体声音频信号(-)在输入音频输入的负端R(R(-))后被传送给第1音频电缆53RN。
在第1音频电缆53LN的端部(第1音频电缆53LN的未与音频输入端L(-)连接的端部)上连接有电感器54b、电容器55a和电容器55b。音频信号能够通过电感器54a但不能通过电容器55a和55b。
因此,立体声音频信号(-)在传送到第1音频电缆53LN后经由电感器54b和同轴耳机电缆43L的外导体42Lb被传送给耳机24L的输出端(-),并从耳机24L进行音频输出。
同样地,立体声音频信号(-)在传送到第1音频电缆53RN后经由电感器54c和同轴耳机电缆43R的外导体42Rb被传送给耳机24R的输出端(-),并从耳机24R进行音频输出。
(接收VHF频带电波时的动作示例)
以下,说明在接收VHF频带的电波时的动作示例。在耳机天线51接收VHF频带的电波时,高频信号激励天线输入端(ANT(+)),并通过同轴电缆26的中心导体26a向不平衡/平衡转换器2’的P3传送。高频信号在传送到P3后经由同轴耳机电缆42R的外导体42Rb向耳机24R的负端(-)传送。即,激励天线输入端的高频信号的传送方式与图9所示的耳机天线41时相同。
另一方面,激励天线接地端(ANT(G))的高频信号经由电容器55a~电容器55d被传送给第1音频电缆53LP、第1音频电缆53LN、第1音频电缆53RP和第1音频电缆53RN。
因此,在耳机天线51中,第1音频电缆53LP、第1音频电缆53LN、第1音频电缆53RP及第1音频电缆53RN的通过电流和同轴耳机电缆42R的外导体42Rb的通过电流的方向相同。
其结果,同轴耳机电缆42R的外导体42Rb和第1音频电缆53LP、第1音频电缆53LN、第1音频电缆53RP及第1音频电缆53RN作为套筒天线进行动作。
经比较耳机天线51和图9所示的耳机天线41,可知:由于在耳机天线51中增加了第1音频电缆32LN和第1音频电缆53RN,所以,在耳机天线51中作为套筒天线进行动作的电缆数量较多。
即,在构成馈线的电缆中用于形成套筒天线的电缆数量增加,由此,能够进一步抑制在同轴电缆26中通过的不平衡电流。其结果,耳机天线51对VHF频带的接收灵敏度要高于图9所示的耳机天线41。
另外,耳机天线51接收UHF频带电波时的动作与图9所示的耳机天线41的动作相同,因此,省略其说明。
如上所述,图10所示的耳机天线51能够应对差动音频信号,能够对以差动音频信号形式传送的高品质的音频信号进行音频输出。另外,较之于图9所示的耳机天线41,耳机天线51能够进一步抑制在同轴电缆26中通过的不平衡电流,所以,在VHF频带具有更高的灵敏度。
[实施方式3]
在本实施方式中,根据图11~图13说明本发明的耳机天线适用于便携式终端的示例。另外,对具有和上述实施方式所述的构件相同的功能的构件赋予相同的标号,并省略其说明。
图11是表示便携式终端(广播接收装置)61的外观的图。如图所示,便携式终端61连接耳机天线21(参照图7)。另外,在便携式终端61设置有显示器62和鞭状天线63。
便携式终端61接收FM、VHF、UHF等频带的广播电波,并根据所接收的电波进行图像、动画、文字信息等的显示和音频输出。
显示器62显示便携式终端61所接收的图像、动画、文字信息等。具体来说,可由液晶面板等构成显示器62。
鞭状天线63主要用于接收UHF频带的电波。因此,鞭状天线63的长度优选为UHF频带的主波长的约四分之一波长的长度(例如,当频率为500MHz时,约15cm)。鞭状天线63可采用公知技术。
也就是说,便携式终端61具有耳机天线21和鞭状天线63这两种天线。如上所述,鞭状天线63用于接收UHF频带的电波。因此,在便携式终端61接收VHF频带的广播时,通过由耳机电缆23R中的第2音频电缆27RN和馈线中的第1音频电缆25L及第1音频电缆25R形成的套筒天线来接收电波。
另一方面,在接收UHF频带广播时,可以通过鞭状天线63进行接收,也可以通过由耳机电缆23L中的第2音频电缆27LN和耳机电缆23R中的第2音频电缆27RN形成的偶极天线进行接收。另外,也可以采用分集接收模式进行信号接收,即,根据灵敏度的优劣状况切换使用鞭状天线63或偶极天线。
另外,在本实施方式中,与便携式终端61连接的耳机天线为图7所示的耳机天线21,也可以为图8~图10所示的耳机天线。
(阴影效应:shadowing)
将耳机天线应用于便携式终端61,能够取得减小信号接收盲区的作用。以下,根据图12来说明这一点。图12表示利用连接有耳机天线的便携式终端61接收UHF频带的广播电波(来波)时的状态。
由于便携式终端61便于携带,所以,在移动的同时接收广播电波来收看收听广播节目的情况较多。因此,如图所示,广播电波有时会从用户的背后传播过来。在这种情况下,由于广播电波被用户遮挡而难以到达鞭状天线63(阴影效应)。
由于便携式终端61连接有耳机天线21,所以,在接收UHF频带的广播电波时,耳机电缆23R中的第2音频电缆27RN和耳机电缆23L中的第2音频电缆27LN作为偶极天线进行动作。
如图所示,耳机电缆23R和耳机电缆23L位于用户颈部的后侧。因此,可通过由耳机电缆23R和耳机电缆23L形成的偶极天线接收从用户背后传播过来的广播电波。
也就是说,在连接耳机天线21和便携式终端61进行使用时,能够防止发生由于阴影效应所导致的无法接收广播电波的现象。
另外,地面数字广播等的UHF频带的广播电波是水平极化波。因此,如图所示,在用户佩戴耳机天线21后,处在与地面平行的方向上的耳机电缆23R和耳机电缆23L能够进行有效的信号接收。
另一方面,例如,假设连接图14所示的现有的耳机天线101和便携式终端61来接收UHF频带的广播电波,在这种情况下,将通过由耳机电缆103L中的第2音频电缆107LN及耳机电缆103R中的第2音频电缆107RN和馈线中的第1音频电缆106L及第1音频电缆106R形成的套筒天线进行信号接收。
在该套筒天线中,来自馈线102的第1音频电缆106L和第1音频电缆106R的辐射起主导作用,所以,馈线102处于能够接收广播电波的位置是较为理想的。但是,如图12所示,馈线102处于用户的正面位置,所以,当广播电波从用户的背后到来时,广播电波会被用户遮挡。因此,广播电波将难以到达馈线。
另外,如上所述,在现有的耳机天线101中,耳机电缆103R、耳机电缆103L和馈线102的长度为适于接收VHF频带电波的长度。因此,在接收UHF频带电波时,由于要利用高次谐振,因此将导致天线的灵敏度降低。
进而,如图所示,耳机电缆103R、耳机电缆103L和馈线102所形成的套筒天线相对地面垂直地形成。所以,耳机天线101对垂直极化波的灵敏度高,但对成为水平极化波的地面数字广播等的UHF频带的接收灵敏度较低。
即,可以说现有的耳机天线101不适合接收UHF频带的电波。例如,比较图14所示的耳机天线101和现有一般的鞭状天线63,二者对UHF频带的接收灵敏度之差在5bB以上。
如上所述,以往,由于耳机天线101和鞭状天线63的接收灵敏度差异极其显著,所以,在利用与耳机天线101连接的便携式终端61收听收看地面数字广播等时,主要利用鞭状天线63进行接收。
因此,在利用与耳机天线101连接的便携式终端61接收UHF频带广播电波时,会产生以下的问题,即:当广播电波从用户的背后到来时,由于用户遮挡而导致鞭状天线63不能接收广播电波,所以接收灵敏度将显著下降。
(高度增益:Height Gain)
较之于现有的耳机天线,本发明的耳机天线能够得到更大的高度增益,这一点优越于现有的耳机天线。
以下,根据图13来说明这一点。图13是表示距离地面的高度和接收灵敏度的关系的图。另外,关于接收灵敏度和距离地面高度的关系,在乡村、市郊和城区都不一样。在图13中,实线表示在乡村接收灵敏度与距离地面高度的关系,虚线表示在市郊接收灵敏度与距离地面高度的关系,点划线表示在城区接收灵敏度与距离地面高度的关系。
如图所示,无论在乡村、市郊或在城区,距离地面越高,接收灵敏度就越高。即,在距离地面较高的位置上的天线,其接收灵敏度较高(高度增益)。
另外,如图所示,与乡村相比,在高层建筑较多的市郊和城区中接收灵敏度较低。因此,为了得到较高的接收灵敏度,尤其在市郊和城区需要通过位置更高的天线进行接收。
例如,如图所示,在市郊进行电波接收时,较之于距离地面高度约1m(成年男性的腰部附近的平均高度)的天线的接收灵敏度,距离地面高度约1.5m(成年男性的头部附近的平均高度)天线的接收灵敏度可提高5dB。
在本发明中,如图12所示,本发明的耳机天线能够通过由位于用户头部附近的耳机电缆23L中的第2音频电缆27LN和耳机电缆23R中的第2音频电缆27RN形成的偶极天线进行接收。
而在利用现有的耳机天线101的情况下,通过以位于用户身体~腰部附近的馈线中的第1音频电缆106L及第1音频电缆106R为主辐射源的套筒天线进行接收。
也就是说,较之于利用现有的耳机天线101的情况,如果利用本发明的耳机天线,就能够在更高的位置进行电波接收。其结果,能够取得比现有耳机天线101更大的高度增益。
本发明并不限于上述实施方式,能够根据权利要求所记述的范围作各种变更。即,通过适当组合由不同实施方式揭示的技术手段所得到的实施方式也被包含在本发明的技术范围之内。
如上所述,本发明的天线包括不平衡馈线、第1天线元件及第2天线元件、以及具有输入端和第1输出端及第2输出端的不平衡/平衡转换器,发送或接收第1及第2频带的电波,其特征在于,上述不平衡馈线连接上述输入端,并且,第1天线元件和第2天线元件分别连接第1输出端和第2输出端;上述不平衡/平衡转换器在输入端和第1输出端之间具有第1滤波器电路,并且,在输入端和第2输出端之间具有第2滤波器电路;上述第1滤波器电路以上述第1频带为阻带,上述第1滤波器电路和第2滤波器电路均以上述第2频带为通带;当第2频带信号被输入上述输入端时,上述第1滤波器电路和上述第2滤波器电路输出相位相反且振幅相等的信号。所以,本发明能够起到在较大频率范围内具有高收发灵敏度的效果。
如上所述,本发明的耳机天线包括对第1耳机提供音频信号的第1耳机电缆、对第2耳机提供音频信号的第2耳机电缆、对上述第1耳机电缆和第2耳机电缆提供天线输入信号和音频信号的馈线,发送或接收第1频带和第2频带的电波,其特征在于,包括不平衡/平衡转换器,该不平衡/平衡转换器具有输入端和第1输出端、第2输出端,在输入端和第1输出端之间具有第1滤波器电路,并且在输入端和第2输出端之间具有第2滤波器电路,上述第1滤波器电路以上述第1频带为阻带,上述第1滤波器电路和第2滤波器电路均以上述第2频带为通带,当第2频带信号被输入上述输入端时,上述第1滤波器电路和第2滤波器电路输出相位相反且振幅相等的信号;上述馈线连接上述输入端,第1耳机电缆连接上述第1输出端,第2耳机电缆连接上述第2输出端。所以,本发明能够起到在较大频率范围内具有高接发灵敏度的效果。
以上,对本发明进行了详细的说明,上述具体实施方式或实施例仅仅是揭示本发明的技术内容的示例,本发明并不限于上述具体示例,不应对本发明进行狭义的解释,可在本发明的精神和权利要求的范围内进行各种变更来实施之。
工业可利用性
本发明的天线能够以高灵敏度收发较大频率范围的电波,所以,可以广泛用作收发广播电波等的天线。另外,例如,通过将本发明的天线用作耳机天线,能够通过便携式TV接收机等装置以高灵敏度接收广播电波。

Claims (11)

1.一种天线,包括不平衡馈线、第1天线元件、第2天线元件以及具有输入端和第1输出端及第2输出端的不平衡/平衡转换器,发送或接收第1频带和第2频带的电波,其特征在于:
上述不平衡馈线连接上述输入端,并且,上述第1天线元件和上述第2天线元件分别连接上述第1输出端和上述第2输出端;
上述不平衡/平衡转换器在上述输入端和上述第1输出端之间具有第1滤波器电路,并且,在上述输入端和上述第2输出端之间具有第2滤波器电路;
上述第1滤波器电路以上述第1频带为阻带;
上述第1滤波器电路和上述第2滤波器电路均以上述第2频带为通带;
当上述第2频带的信号被输入上述输入端时,上述第1滤波器电路和上述第2滤波器电路输出相位相反且振幅相等的信号。
2.根据权利要求1所述的天线,其特征在于:
上述不平衡馈线和上述第2天线元件的有效长度在上述第1频带的最低频率的四分之一波长的长度至最高频率的四分之一波长的长度的范围内。
3.根据权利要求1或2所述的天线,其特征在于:
上述第1天线元件和上述第2天线元件的有效长度在上述第2频带的最低频率的四分之一波长的长度至最高频率的四分之一波长的长度的范围内。
4.根据权利要求1或2所述的天线,其特征在于:
上述不平衡馈线和上述第2天线元件中的一者的有效长度为上述第1频带的最低频率的四分之一波长的长度,另一者的有效长度为上述第1频带的最高频率的四分之一波长的长度。
5.根据权利要求1或2所述的天线,其特征在于:
上述第1天线元件和上述第2天线元件中的一者的有效长度为上述第2频带的最高频率的四分之一波长的长度,另一者的有效长度为上述第2频带的最低频率的四分之一波长的长度。
6.一种耳机天线,包括对第1耳机提供音频信号的第1耳机电缆、对第2耳机提供音频信号的第2耳机电缆、对上述第1耳机电缆和第2耳机电缆提供天线输入信号和音频信号的馈线,发送或接收第1频带和第2频带的电波,其特征在于:
包括不平衡/平衡转换器,该不平衡/平衡转换器具有输入端和第1输出端、第2输出端,在上述输入端和上述第1输出端之间具有第1滤波器电路,并且,在上述输入端和上述第2输出端之间具有第2滤波器电路,上述第1滤波器电路以上述第1频带为阻带,上述第1滤波器电路和上述第2滤波器电路均以上述第2频带为通带,当上述第2频带的信号被输入上述输入端时,上述第1滤波器电路和上述第2滤波器电路输出相位相反且振幅相等的信号;
上述馈线连接上述输入端;
上述第1耳机电缆连接上述第1输出端;
上述第2耳机电缆连接上述第2输出端。
7.根据权利要求6所述的耳机天线,其特征在于:
上述第1耳机电缆具有对上述第1耳机提供音频信号的正信号线和负信号线,并且,上述第2耳机电缆具有对上述第2耳机提供音频信号的正信号线和负信号线;
用第1电容器连接上述第1耳机电缆的正信号线和负信号线,并且,用第2电容器连接上述第2耳机电缆的正信号线和负信号线,其中,上述第1电容器和上述第2电容器是使高频信号通过而不使音频信号通过的电容器。
8.根据权利要求6或7所述的耳机天线,其特征在于:
上述第1耳机电缆和上述第2耳机电缆由同轴电缆构成。
9.根据权利要求6或7所述的耳机天线,其特征在于:
在上述馈线中包括用于对上述第1耳机电缆提供音频信号的正信号线和负信号线以及用于对上述第2耳机电缆提供音频信号的正信号线和负信号线;
用第3电容器连接用于对上述第1耳机电缆提供音频信号的正信号线和负信号线,并且,用第4电容器连接用于对上述第2耳机电缆提供音频信号的正信号线和负信号线,其中,上述第3电容器和上述第4电容器是使高频信号通过而不使音频信号通过的电容器。
10.根据权利要求6或7所述的耳机天线,其特征在于:
上述第1频带是约88MHz~222MHz的频带;上述第2频带是约470MHz~710MHz的频带。
11.一种广播接收装置,其特征在于:
具有权利要求6或7所述的耳机天线。
CN2008100058346A 2007-02-13 2008-02-04 天线、耳机天线和具有耳机天线的广播接收装置 Active CN101246987B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007032748 2007-02-13
JP2007-032748 2007-02-13
JP2007032748A JP2008199323A (ja) 2007-02-13 2007-02-13 アンテナ、イヤホンアンテナ、及びイヤホンアンテナを備えた放送受信装置。

Publications (2)

Publication Number Publication Date
CN101246987A CN101246987A (zh) 2008-08-20
CN101246987B true CN101246987B (zh) 2012-02-22

Family

ID=39706207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100058346A Active CN101246987B (zh) 2007-02-13 2008-02-04 天线、耳机天线和具有耳机天线的广播接收装置

Country Status (3)

Country Link
US (1) US7542007B2 (zh)
JP (1) JP2008199323A (zh)
CN (1) CN101246987B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8259029B2 (en) * 2008-04-09 2012-09-04 Newport Media, Inc. Implementation of diversity antennas in small portable media devices and cell phones
JP5347608B2 (ja) * 2009-03-17 2013-11-20 ソニー株式会社 受信装置
US20110228074A1 (en) * 2010-03-22 2011-09-22 Parulski Kenneth A Underwater camera with presssure sensor
US20110228075A1 (en) * 2010-03-22 2011-09-22 Madden Thomas E Digital camera with underwater capture mode
CN102544696B (zh) * 2010-11-08 2016-07-06 深圳富泰宏精密工业有限公司 耳机天线及应用该耳机天线的耳机装置和广播接收装置
WO2012083257A1 (en) 2010-12-17 2012-06-21 Telegent Systems, Inc. Multi-wired antenna for mobile apparatus
US9848158B2 (en) 2011-05-04 2017-12-19 Monument Peak Ventures, Llc Digital camera user interface for video trimming
US8780180B2 (en) 2011-05-13 2014-07-15 Apple Inc. Stereoscopic camera using anaglyphic display during capture
CN102801418B (zh) * 2011-05-26 2018-11-13 特克特朗尼克公司 避免交织图像和畸变产物的数据转换器系统
CN107889003B (zh) * 2016-09-30 2024-04-02 深圳市三诺声智联股份有限公司 一种无线耳机
US10141635B2 (en) * 2016-11-14 2018-11-27 Antwave Technology Limited Systems, apparatus, and methods to optimize antenna performance
MX2022016534A (es) * 2020-06-23 2023-01-30 Ppc Broadband Inc Dispositivos de transmision de se?al de red por cable de conversion de frecuencia.
CN113823902B (zh) * 2021-10-28 2022-07-12 西安电子科技大学 基于孔径融合的vhf/uhf频段天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758480A (zh) * 2004-08-03 2006-04-12 索尼株式会社 耳机天线
CN1762071A (zh) * 2003-02-28 2006-04-19 索尼株式会社 耳机天线、用于该耳机天线的复合线圈和同轴电缆以及配备有该耳机天线的无线电设备
CN1784812A (zh) * 2003-03-07 2006-06-07 索尼株式会社 耳机天线和包括耳机天线的无线装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068734U (ja) * 1983-10-18 1985-05-15 株式会社岩田エレクトリツク 送受話器
KR100608521B1 (ko) * 2002-02-22 2006-08-03 마츠시타 덴끼 산교 가부시키가이샤 헬리컬 안테나 장치 및 그것을 구비한 무선통신장치
JP3938118B2 (ja) 2003-08-08 2007-06-27 ソニー株式会社 イヤホンアンテナ及びこのイヤホンアンテナを備えた携帯型無線機
JP2006237660A (ja) * 2005-02-21 2006-09-07 Toyota Central Res & Dev Lab Inc アンテナ装置及びその利用方法
US7483727B2 (en) * 2005-04-04 2009-01-27 Research In Motion Limited Mobile wireless communications device having improved antenna impedance match and antenna gain from RF energy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762071A (zh) * 2003-02-28 2006-04-19 索尼株式会社 耳机天线、用于该耳机天线的复合线圈和同轴电缆以及配备有该耳机天线的无线电设备
CN1784812A (zh) * 2003-03-07 2006-06-07 索尼株式会社 耳机天线和包括耳机天线的无线装置
CN1758480A (zh) * 2004-08-03 2006-04-12 索尼株式会社 耳机天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2006-237660A 2006.09.07

Also Published As

Publication number Publication date
JP2008199323A (ja) 2008-08-28
US7542007B2 (en) 2009-06-02
US20080198090A1 (en) 2008-08-21
CN101246987A (zh) 2008-08-20

Similar Documents

Publication Publication Date Title
CN101246987B (zh) 天线、耳机天线和具有耳机天线的广播接收装置
CN101202372B (zh) 耳机天线装置和连接该装置的无线通信终端
US7840242B2 (en) Earphone antenna
US7907095B2 (en) Antenna device
US7911401B2 (en) Earphone antenna and wireless device including the same
CN107134639A (zh) 高异频隔离宽带双频基站天线阵列
CN103579755B (zh) 天线和用于形成天线的方法
CN101971492A (zh) 信号分波器和使用它的电子设备、天线装置及信号传输方法
US8270919B2 (en) Receiving apparatus
CN109301488A (zh) 一种应用于室内分布系统的全向双宽频双极化天线
CN106229635B (zh) 一种同侧馈电的全向双圆极化天线
CN106207410B (zh) 一种vhf/uhf双频段宽带复合天线
KR101056414B1 (ko) 지상파 텔레비젼 방송수신을 위한 휴대용 수신기의 안테나 장치
CN201219131Y (zh) 一种双扼流套筒天线
CN206451810U (zh) 全向双极化双通道美化天线
CN208272148U (zh) 一种小型双频双出线高增益全向天线
CN106252847A (zh) 双频壁挂天线
CN208157612U (zh) 一种耳机转接天线及数字电视
WO2021056776A1 (zh) 天线装置
CN201134508Y (zh) 双频天线
US20090237315A1 (en) Multi-input, multi-output antenna device
CN204179232U (zh) 复合超宽带天线装置
CN104241869B (zh) 天线
JPH03265202A (ja) 車両用のガラスアンテナ
CN203521614U (zh) 一种高隔离度的mimo天线

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant