CN101235499B - 采用适应性加工路径沉积方法进行的激光净成形生产 - Google Patents

采用适应性加工路径沉积方法进行的激光净成形生产 Download PDF

Info

Publication number
CN101235499B
CN101235499B CN200810009273.7A CN200810009273A CN101235499B CN 101235499 B CN101235499 B CN 101235499B CN 200810009273 A CN200810009273 A CN 200810009273A CN 101235499 B CN101235499 B CN 101235499B
Authority
CN
China
Prior art keywords
bead width
variable bead
machining path
laser
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200810009273.7A
Other languages
English (en)
Other versions
CN101235499A (zh
Inventor
齐欢
P·辛格
M·N·阿泽尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101235499A publication Critical patent/CN101235499A/zh
Application granted granted Critical
Publication of CN101235499B publication Critical patent/CN101235499B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3046Co as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/325Ti as the principal constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

披露了一种对衬底进行激光包覆的方法,所述方法包括以下步骤:提供衬底;在衬底上面沿加工路径沉积出具有第一确定的可变熔珠宽度的材料;沿着与具有第一确定的可变熔珠宽度的沉积材料相重叠的加工路径沉积出相邻的具有第二确定的可变熔珠宽度的材料;继续沉积多层重叠的相邻的具有确定的可变熔珠宽度的材料,直至形成第一材料层;通过在第一材料层的顶部上面沉积出多层重叠的具有确定的可变熔珠宽度的材料从而成形出第二材料层,且在沉积材料层的顶部上面继续沉积材料层,直至完成包覆;其中所述沉积材料的可变熔珠宽度由具有多个输入参数的计算机进行控制,从而保持大致恒定百分比的熔珠宽度重合度。

Description

采用适应性加工路径沉积方法进行的激光净成形生产
技术领域
本发明涉及零件,例如涡轮部件如叶盘(BLISK)、压缩机叶片或者涡轮叶片的生产和修补工序。
背景技术
飞行器燃气涡轮发动机或喷气式发动机利用轴流式压缩机吸入空气并对空气进行压缩,使压缩空气与燃料相混合,燃烧所述混合物,并且将燃烧气体通过轴流式涡轮排出从而为压缩机提供功率。该压缩机包括具有叶片从其外周伸出的盘。该盘在轴上面快速旋转,并且所述弯曲的叶片吸入空气并对空气进行压缩。
在当前的生产实践中,通过将压缩机盘锻造成周边带有槽的单一部件而制成压缩机。所述压缩机叶片被独立铸造或锻造成具有配合在盘中形成的槽中的被称作燕尾榫的根部部段的形状。通过使叶片的燕尾榫部段滑动进入到盘中的槽中而完成组装过程。如果叶片未适当装配,在运行过程中失效或者受到损伤,那么通过反向进行所述组装工序从而除去叶片且提供新的叶片,进而可以容易地进行更换。
叶片还可与盘一体成形,前述二者的组合体被称作叶盘或者BLISK。该组合体也被公知为一体地带有叶片的转子。采用BLISK手段进行生产通过减轻重量从而提供了提高性能的潜在可能。这样一种制品可被铸造或者被锻造成周边处具有过量金属的较大的盘。然后,所述叶片由一体地被附接到盘上面的过量金属机加工而成。由于最终产品需要进行大量的高精度机加工作业,因此制造最终产品的成本较高。对其中一个叶片进行机加工的误差可能会导致整个BLISK被废弃或报废或者导致修补比较昂贵和耗时。
对BLISK或者涡轮叶片上面的受损的叶片部分进行的更换或修补对铸造机和锻造机或机加工手段提出了难题。如果例如叶片的全部或者一部分在工作过程中由于外来物体的影响作用而折断,那么BLISK就会失去平衡。可通过将过量金属焊接到受损区域中并且对金属进行机加工以形成合适的形状或者通过切除受损区域并且借助将新部件扩散结合到受损区域中而更换切除的材料,从而对受损BLISK进行修补。然而,这种方式昂贵,且有可能会导致性能和耐久性降低。
一种不同的用于生产和修补BLISK的手段已在美国专利5,038,014中被披露,所述专利在此作为参考而被引用。该手段利用将粉末供应到要进行修补的表面上的熔融材料中的激光包覆或者焊接技术,所述技术产生一层新材料。通过以一层一层的方式重复进行该工艺方法,这些层彼此积聚在一起从而成形出新零件或者对受损零件进行修补。
后激光包覆技术已导致由于在连续层之间缺少完全熔合或沉积层中广泛存在的多孔性所致在成形和修补零件中产生缺陷和夹杂物。这些缺陷和夹杂物常常与成形和修补零件的复杂的几何结构相关联。因此,需要提供一种能够解决与过去的生产和修补技术相关联的问题的分层制造技术。
激光净成形生产(LNSM)工艺方法提供了一种用于成形出且修复BLISK、压缩机叶片和涡轮部件的经济且高度灵活的方法。所述LNSM技术基于激光包覆,其中激光被用于通过将金属粉末薄层精确地包覆在基底材料上面而形成三维几何形状。
激光净成形生产(LNSM)工艺方法可被用于制造新零件且对受损零件进行修补。要进行制造的零件的计算机辅助设计(CAD)模型沿所需的材料积聚方向被均匀地切片。粉末沿加工路径进行施加且进行熔合,从而形成材料层,然后多个层叠合在彼此之上直至生产出所述零件。多条加工路径已被用于施加粉末,所述路径最普通地呈之字形图案或呈压合线图案,这取决于所述材料是形成所述零件的内部区域还是形成所述零件的表面区域。然而,现有的激光净成形生产(LNSM)工艺方法会导致在新生产的或经过修补的零件中加杂熔合缺陷和孔隙度,从而要求所述零件或是被废弃,或是受到进一步处理以对缺陷进行修补。另外,用于进行制造和修补的后激光沉积方法重点不在于生产出精确的形状和几何结构。
因此,需要开发出一种用于精确地进行加工的激光净成形生产(LNSM)工艺方法,所述工艺方法减少了允许生产和修补包括BLISK、压缩机叶片和涡轮叶片的涡轮部件的熔合缺陷和孔隙度。
发明内容
根据本发明的第一实施例,披露了一种制造制品的工艺,所述工艺包括以下步骤:提供衬底;在衬底上面沿加工路径沉积出具有第一确定的可变熔珠宽度的材料;沿着加工路径沉积出与具有第一确定的可变熔珠宽度的沉积材料相重叠的相邻的具有第二确定的可变熔珠宽度的材料;继续沉积多层重叠的相邻的具有预定的可变熔珠宽度的材料,直至形成第一材料层;通过在第一材料层的顶部上面沉积出多层重叠的具有预定的可变熔珠宽度的材料从而成形出第二材料层,且在沉积材料层的顶部上面继续沉积材料层,直至完成包覆。所述沉积材料的可变熔珠宽度由具有多个输入参数的计算机进行控制,从而保持大致恒定百分比的熔珠宽度重合度。
根据本发明的第二实施例,披露了一种激光净成形生产或修补方法,所述方法包括以下步骤:提供衬底;在衬底上面沿加工路径激光包覆具有第一确定的可变熔珠宽度的材料而进行成形;沿着加工路径激光包覆与具有第一确定的可变熔珠宽度的沉积材料相重叠的相邻的具有第二确定的可变熔珠宽度的材料而进行成形;继续沉积多层重叠的相邻的具有预定的可变熔珠宽度的材料,直至形成第一材料层;通过在第一材料层的顶部上面沉积出重叠的具有预定的可变熔珠宽度的材料从而激光包覆第二粉末层而进行成形,且在沉积材料层的顶部上面继续沉积材料层,直至完成包覆并且生产出或修补了净成形制品。所述沉积材料的可变熔珠宽度由具有多个输入参数的计算机进行控制,从而保持大致恒定百分比的熔珠宽度重合度。根据本发明的该第二实施例可以生产或修补BLISK、压缩机叶片、涡轮叶片或涡轮部件。
根据本发明的一个特定的实施例,披露了一种修补BLISK、压缩机叶片、涡轮叶片或涡轮部件的方法,所述方法包括以下步骤:提供受到损伤的BLISK、涡轮叶片或涡轮部件并且预备所述受到损伤的BLISK、涡轮叶片或涡轮部件以形成衬底表面,在衬底上面沿加工路径沉积出具有第一确定的可变熔珠宽度的材料;沿着加工路径沉积出与沉积出的具有第一确定的可变熔珠宽度的沉积材料相邻和相重叠的具有第二确定的可变熔珠宽度的材料;继续沉积相邻的多层重叠的具有预定的可变熔珠宽度的材料,直至形成第一材料层;通过在第一材料层的顶部上面沉积出重叠的具有预定的可变熔珠宽度的材料从而成形出第二材料层,且在沉积材料层的顶部上面继续沉积材料层,直至完成包覆。所述沉积材料的熔珠宽度由具有多个输入参数的计算机进行控制,从而保持材料的相邻可变熔珠宽度具有大致恒定百分比的可变熔珠宽度重合度且每一沉积出的可变熔珠宽度可发生变化。根据本发明的该特定实施例可以生产或修补BLISK、压缩机叶片、涡轮叶片或涡轮部件。
根据本发明的另一个实施例,披露了一种对衬底进行激光包覆的方法,所述方法包括以下步骤:提供衬底;在衬底上面沿加工路径沉积出至少一层具有第一确定的可变熔珠宽度的材料从而形成第一材料层;通过在第一材料层的顶部上面沉积出至少一层具有可变熔珠宽度的材料而成形出第二材料层;且通过在沉积材料层的顶部上面继续沉积由至少一层具有可变熔珠宽度的材料形成的材料层,直至完成包覆。
根据本发明的又一个实施例,披露了一种激光净成形生产或修补方法,所述方法包括以下步骤:提供衬底;在衬底上面沿加工路径激光包覆至少一层具有第一确定的可变熔珠宽度的粉末材料而进行成形从而形成第一材料层;通过在第一粉末层的顶部上面沉积出相重叠的具有预定的可变熔珠宽度的粉末材料从而对第二材料层进行激光包覆而进行成形;且在沉积粉末层的顶部上面继续沉积粉末层,直至完成包覆并且生产出或修补了净成形制品。
通过以下对本发明优选实施例的更详细地描述并结合通过实例示出本发明原理的附图,本发明的其它特征和优点变得显而易见。然而,本发明的范围不受这些优选实施例的限制。
附图说明
图1是一种普通的LNSM沉积系统的视图;
图2是一种示例性的BLISK的透视图;
图3是所述适应性加工路径沉积方法的一种实施方式的框图;
图4是一种示例性的受到损伤的BLISK叶片的视图;和
图5是在示例性的受到损伤的BLISK叶片上积聚的材料的视图。
具体实施方式
本发明提供了一种用于制造和修补制品例如BLISKS、压缩机叶片、涡轮叶片和压缩机部件的激光净成形生产(LNSM)方法,所述方法解决了与现有技术相关的问题。所述LNSM技术基于激光包覆金属粉末,其中激光被用于通过采用适应性加工路径沉积方法将粉末材料薄层精确地包覆在基底衬底上面而形成三维几何形状。所述适应性加工路径沉积方法包括在沉积层内设置预定的可变熔珠宽度。所述基底衬底可以是BLISK表面,例如BLISK压缩机盘、或者BLISK叶片边缘。虽然下文中所讨论的具体实施例是针对BLISKS的,但是本发明同样可应用于其它零件的LNSM,所述其它零件包括包含压缩机叶片和涡轮叶片的多种涡轮零件。
为了采用LNSM技术形成成形的沉积物,根据计算机辅助设计(CAD)程序的描述提供所述零件或修补部段的尺寸和总体几何结构。必须采用数学方式对修补部段的几何结构进行描述。通过使用CAD系统对所述形状进行建模,并且由这些表示法,生成加工路径以驱动LNSM工艺。
为了驱动LNSM计算机数字控制(CNC)系统,由包含CNC可理解的指令的商用计算机辅助生产(CAM)软件生成加工路径文件。所述指令被装载到内存中并被执行。典型的指令是告知CNC以给定速度移动至新的一点,接通/断开激光和粉末流的移动指令。这些指令在生成时全部都直接内置于部分程序中并且在程序中的特定点处受到触发。一些控制所述工艺的参数在对零件进行加工处理的过程中必须动态地进行变化,所述参数包括,但不限于,激光功率、加工行进速度、粉末供给速度和重合度。
作为彼此平行的多个部段或多个切片的组件可对许多制品进行分析。随后,通过规定每个部段的图案,也就是其形状和尺寸、每个部段的位置,即其与相邻部段之间的关系,从而对所述制品进行限定。按照这种方式,BLISK叶片可被成形在BLISK压缩机盘周边的周围。每个部段的图案可适于由沉积材料熔珠成形,其中熔珠为典型地通过相对于热源移动衬底而形成的细长的沉积物。在这种情况下,通过按照上文中所列出的发明方式沉积出具有可变宽度的熔珠或者多个具有可变宽度的并排熔珠,可以将所述制品成形为部段图案的形状,然后使沉积设备向上增量达到熔珠高度,此后沉积具有下一个部段的图案且具有相对于之前沉积的熔珠的所需位置的另一熔珠。在每一道次操作过程中,激光焊接沉积装置在第一道次中使之前沉积的熔珠的上部或者衬底熔化;并且通过其粉末供给加入更多材料从而形成上覆重叠的熔珠。所述新加入的材料和之前沉积的熔珠部分地相互混合并且固化在一起,从而确保穿过熔珠的基本上没有缺陷的连续坚固的结构。必要时多次重复进行所述工艺从而成形出制品。
采用这种手段可制成多种形状和部段构造。通过在彼此之上敷设多个具有可变宽度的熔珠可形成立体外形。根据本发明如上文所述通过在每一层中以并排方式敷设多个具有可变宽度的熔珠,然后在该层上面加入更多熔珠从而实现厚度的增加。通过改变在所述层中的具有可变宽度的重叠熔珠的数量从而制成具有变化的厚度的零件。通过将熔珠沉积成外壁的形状,然后在另一熔珠的顶部上面沉积附加的重叠熔珠,从而成形出中空翼面或其它中空形状。除外壁以外,通过为每一部段加上内部加强筋等而制成具有内部结构如冷却通道的中空部段。几乎任何形状可被定义为熔珠集合,并且当前的手段对于制造多种形状而言具有通用性。典型地,飞行器发动机应用中包括压缩机叶片、涡轮叶片、风扇叶片、管道和机箱,且后者具有正方形、矩形或不规则形状的横截面。
通过用数字特征定义制品例如附图中的叶片或者采用更常规的方法如机加工法制备出的零件,的形状,从而实现对沉积进行控制。一旦所述零件的形状用数字特征进行定义,例如通过计算机辅助设计(CAD)制品的实体模型,则采用现有的数控计算机程序对零件或等效的沉积熔头(deposition head)的移动进行编程,从而生成指令图,已被公知为作为随着在每一道次过程中零件的移动和各道次之间的横向位移的转移函数。这些被开发出的转移函数保持了确定的可变熔珠宽度和根据本发明的沉积材料的恒定重合度。所获得的制品非常精确地复制出了包括翼面复杂曲线的用数字特征定义的形状,达到净成形或近净成形规范。
用于按照这种方式对制品进行制造和修补的LNSM方法通过将粉末供给到已被激光束辐照过的熔融材料中而使粉末熔化。这种手段是可控的并且能够产生可复制的精确的效果。在采用这种方法制造制品的过程中,在制造整个制品的过程中粉末供给物的组分可保持恒定。另一种可选方式是,在任何熔珠内或者在连续熔珠之间可以有意地改变粉末供给物的组分,从而生产出遍布整个制品的可控组分变化。例如,在压缩机叶片中,可在基座附近使用更坚硬的合金成分,而在尖端附近可使用硬质耐磨或耐磨损的合金。
为了对包括BLISK、压缩机叶片、涡轮叶片和涡轮部件的制品进行修补,有必要仅重复进行之前所述方法中的沉积工序中的一部分。例如,如果压缩机叶片在中点附近发生破裂,那么仅仅在叶片上面研磨出与最靠近的剩余未受损部段相对应的平整表面,然后对叶片的剩余部分重复进行受计算机控制的沉积,是必要的。由于使用了相同的设备且采用了同样的形状控制图,因此修补好的叶片与原来制造成的叶片几乎是难以进行区分的。
通常,对BLISK、压缩机叶片、涡轮叶片或涡轮部件的损伤呈不平坦、形状不规则损伤的形式。为了准备用于进行修补的BLISK或涡轮叶片,可以通过在接近受损部位的区域中机加工去除材料以便成形出切口和/或平整受损表面从而制备受损区。优选在被编程以成形出接近受损区域处的预定切口的多轴数控铣床上自动地进行机加工去除受损部位的操作。然后,根据需要,使用含水清洁剂和/或溶剂对修补区域进行清洗,并且进行干燥,随后是对叶片的剩余部分重复进行受计算机控制的沉积。在对叶片的基底进行精加工或间断之后,该经过修补的部分没有宏观上能够检测到的粘合层,这是因为在生产叶片时上述二者采用相同的方式已被焊接在一起。
采用本发明的手段可沉积多种材料。例如,可沉积包括钛和钛合金、镍和镍合金、钴和钴合金以及铁和铁合金的金属和金属合金,包括镍基、钴基和铁基超级合金的超级合金,以及陶瓷、金属陶瓷和塑料。
对控制材料沉积和粘合的参数的选择以及这些参数是如何控制沉积的对于将制品修补达到净成形或近净成形且达到完全密度的工艺的能力而言是关键的。这些参数被转化为通过转移函数控制LNSM沉积的指令。
图1中示出了一种激光净成形生产(LNSM)系统。如图1所示,粉末供应物(图中未示出)供给粉末喷嘴2用于沉积在衬底3上面。激光4在馈送至衬底表面上时使粉末熔化并且同时也使衬底表面熔化从而在激光4打到粉末和衬底3表面上的位置处附近形成熔池5。系统1和衬底3相对进行移动,从而在熔池5冷却时形成固化沉积材料7层。
激光4沿衬底3前进的路径被称为加工路径(toolpath)。沉积材料7被称作材料熔珠。沉积材料7沿加工路径的宽度被称为熔珠宽度。当激光4沿衬底3进行移动时,所形成的熔池5冷却并且产生固化。一种以上的粉末供给物可被用于形成沉积材料7,并且在该图中,图中示出了有助于固化的沉积材料7的第二粉末喷嘴8。激光4通过熔化粉末供给物和衬底3的表面,从而形成了坚固粘合的沉积材料7。
在形成沉积材料7的第一熔珠时,喷嘴2和激光4被定位且相对于衬底3进行移动,从而使得相邻的沉积材料7的第二熔珠可沿第一熔珠的侧部进行沉积,所述第二熔珠的宽度与第一熔珠的宽度相重合。重合度可被选定在约10%-90%之间。重复进行该工艺直至形成一层沉积材料7。在该层上面,重复进行该工艺从而积聚多层沉积材料7直至形成或修补好零件。
根据本发明,开发出转移函数以与包括激光功率、加工行进速度、粉末供给速度、与熔珠宽度的基础沉积几何结构之间的散焦距离等的关键工艺参数相互关联。已经开发出转移函数从而允许通过在沿加工路径进行扫描时改变激光功率或者激光的行进速度而得到适应的加工路径。按照这种方式,可沿加工路径沉积出可变熔珠宽度的材料。所述材料沉积熔珠的宽度可在单次沉积过程中和在沉积材料的相邻熔珠的沉积过程中产生变化。
本发明提供的沉积材料的可变熔珠宽度在约0.2毫米与约5.0毫米之间,优选在约0.76毫米与约1.52毫米之间,最优选在约0.89毫米与约1.42毫米之间。层内沉积出的可变熔珠宽度的范围取决于包括沉积材料组成和成形制品几何结构等的沉积参数。
通过采用这种方法,可获得沉积材料的相邻熔珠之间的恒定的熔珠重合度,所述恒定的熔珠重合度有效地消除了熔合缺陷。本发明的发明人已经确定从约10%-约90%范围内选出的恒定的重合度会导致积聚性能得到改进。此外,本发明的发明人已经确定通过使用大小为约0.76毫米与约1.52毫米之间的层内可变熔珠宽度,可以实现得到改进的沉积质量,有效地消除了沉积材料中的间隙。
在施加到悬突区域上时具有恒定重合度的适应熔珠宽度的沉积积聚出没有表面波痕的多个层。悬突区域典型地被视为相对于垂直方向呈小于大致35度的倾角的区域。在这些区域中,更大的熔池需要具有更高的粉末捕获效率,从而使得所述沉积层中具有足够的材料以支撑下一层,而不会产生坍陷。
适应性加工路径沉积解决了与在冷衬底上沉积材料相关的现有技术问题。这种新方法使得能够降低积聚层上面的激光功率,从而确保在冷衬底上面沉积第一多个层时能够获得恒定的熔珠宽度。另外,在将最后多个层沉积在叶片的狭窄顶端附近的过程中所述功率可以降低。特别是,初始高激光功率被选定且在头2-100个沉积材料层上面被降低至恒定的激光功率,达到预定恒定的激光功率。该预定恒定的激光功率被用于沉积连续材料层直至要沉积最终材料层为止。在沉积最终材料层时,所述激光功率再次被降低。优选地,对于接近狭窄顶端处或者位于新制造或经过修补的零件或叶片表面处的最后3-100层而言降低激光功率。应该注意到:所述层数被提供用于示例性的目的,且不表示对本发明的限制。在其上面调节激光功率的所述多个层的范围取决于衬底的几何结构和衬底与粉末材料的热物理特性。
当设计用于修补BLISK的加工路径时,根据零件的实物模型计算出加工路径的重合度以及在每一插值点处的悬突角。然后根据转移函数在加工路径G代码的适当部段的位置处将该信息转化成激光功率或者速度指令。
该方法使得能够对BLISK叶片进行近净成形制造或修补,从而节省材料和用于进行后机加工的劳动力。由于LNSM工艺方法能够制造出和修复整个叶片,即便是严重受损的叶片也可进行修复。
图2中示出了BLISK 10的透视图。BLISK 10由BLI SK叶片20和BLISK压缩机盘30形成。在本发明的一个特定实施例中,可以通过更换BLISK叶片20上的受损材料从而对BLISK 10进行修补。另外,在本发明的第二特定实施例中,可通过在BLISK压缩机盘30上面成形出BLISK叶片20而生产出BLISK。
图3中示出了构成用于修补BLISK的方法的一个特定实施例的框图。所述方法包括以下步骤:确定要被输入到控制器中的初始工艺参数,所述控制器包括引导沉积区沿加工路径进行移动并且提供控制信号以调节设备功能例如激光功率和激光束的速度,如使沉积熔珠移动的激光束的速度、以及向沿加工路径移动的沉积区的粉末的速度的数字计算机。
如图3所示,所述初始参数包括,但不限于,激光功率、激光扫描速度、粉末供给速度和重合度。这些初始参数被提供给控制器,并且随后经过编程的转移函数确定与所需成形材料的几何结构内的所需位置相对应的熔珠宽度和高度的基本沉积特征。所述层的数据按照计算机数控(CNC)G代码被转化成加工路径数据。然后,这些代码被使用以驱动用于积聚沉积材料层的制造工具。
根据如图4所示的本发明的一个特定实施例,受损的压缩机叶片320得到修补。如图4所示,压缩机叶片320中包含受损材料340。从大致平整的表面350上除去受损材料340。虽然也可以采用其它材料去除方法,但是通过进行研磨去除受损材料340。如图中所示受损部件为压缩机叶片320,但是受损部件可以是BLISK上的受损叶片。
如图5所示,所述压缩机叶片420包括在受损材料已被去除以对压缩机叶片420进行修补之后积聚在平整衬底450上面的多层材料460。在该特定实施例中,所述材料460为已公知为IN718的镍基超级合金Inconel 718。所述材料460根据如图2所示出的且在下文中进一步得到披露的发明方法进行沉积。本发明的实践导致在修补后不需要附加进行机加工的条件下将压缩机叶片430修补达到净成形形式。应该理解:所述材料460不限于特定实施例,但是可在本发明领域中已公知的结构材料中进行选择。
通过沿加工路径以恒定的重合度沉积出可变的熔珠宽度,可以有效地减少固体沉积物中的欠熔合缺陷。在该特定实施例中,使用大小为约0.89毫米与约1.42毫米之间的可变熔珠宽度和大约50%的重合度以对压缩机叶片420进行修补,并且成形出基本上没有包括间隙缺陷和孔隙等缺陷的熔珠沉积物。
在悬突区域处进行的功率控制解决了现有技术中存在的积聚压缩机叶片表面上的表面波痕问题。通过使用略微更高的激光功率和与内部压合加工路径相比更慢的用于外部轮廓加工路径的速度,从而提高积聚压缩机叶片420的表面粗糙度。
当前的发明允许降低积聚层上面的激光功率,从而允许沉积出可变的熔珠宽度和压缩机叶片420的积聚材料中的散热速率。该被克服的问题例如为在冷表面450上进行沉积时在初始层出产生的欠熔合。另外,在接近压缩机叶片420的狭窄顶端时通过适应性地降低所述多个层上面的激光功率,可将由于过热而导致产生的较厚的熔珠宽度和表面氧化减至最小。
另外,单层具有可变熔珠宽度的沉积材料可形成层。按照这种方式,由多层具有可变熔珠宽度的沉积材料形成的多个层可被沉积在由多个相邻的材料熔珠形成的多个层上面。此外,通过在由具有单个熔珠宽度沉积材料形成的多个层上面成形出具有单个熔珠宽度的多个层以形成或修补零件,可以制造出零件。
根据本发明的第二特定实施例,生产出如图2所示的BLISK 10。虽然可采用其它方法例如锻造或机加工法成形出盘,但是根据该实施例,采用常规的铸造制造方法成形出BLISK压缩机盘30。BLISK压缩机盘30的外表面为衬底提供了在其上面形成的BLISK叶片20。
在本实例中,BLISK叶片的材料是已公知为IN718的镍基超级合金Inconel 718。所述BLISK叶片的材料被用以在BLISK压缩机盘30上面形成BLISK叶片20。所述IN718材料根据如图2所示出的且在下文中进一步得到披露的发明方法进行沉积。本发明的实践导致在制造后不需要附加进行机加工的条件下将压缩机叶片20制造达到净成形形式。
通过以恒定的重合度沿加工路径沉积出可变的熔珠宽度,可有效地减少在固体沉积物中存在的欠熔合缺陷的数量。在该特定实施例中,使用大小为约0.89毫米与约1.42毫米之间的层内可变熔珠宽度和大约50%的重合度以制造出基本上没有包括间隙缺陷等缺陷的BLISK叶片20。
在悬突区域处进行的功率控制解决了现有技术中存在的积聚BLISK叶片20表面上的表面波痕问题。通过使用略微更高的激光功率和与内部压合加工路径相比更慢的用于外部轮廓加工路径的速度,从而提高积聚BLISK叶片20的表面粗糙度。
当前的发明允许降低积聚层上面的激光功率,从而允许沉积出可变的熔珠宽度和积聚零件中的散热速率。该被克服的问题例如为在BLISK压缩机盘30表面的冷衬底上进行沉积时在初始层处产生的欠熔合缺陷。另外,在接近BLISK叶片20的狭窄顶端时通过适应性地降低所述多个层上面的激光功率,可将由于过热而导致产生的表面氧化减至最小程度。
根据本发明进行修补后,BLISK的性能并未下降。这种方法允许BLISK被修补多次,同时不会由于在没有进行修补的区域中其尺寸过度减小达到低于最小规定值而使BLISK的功能性受损。
该方法可适用于新的零件积聚以及修补。在新零件的积聚过程中,初始层被沉积在牺牲性衬底上面,或者,当成形出BLISK时,可以在零件的一体部段例如BLISK压缩机盘上面进行材料积聚。对初始层、悬突区域和边缘区域的加工路径的适应性控制与在修补应用中的控制是相同的。
本发明相对于现有技术的分层沉积方法而言具有许多优势。第一,通过以恒定的重合度沿加工路径沉积出可变的熔珠宽度,在固体沉积物中存在的欠熔合缺陷的数量可被减少。第二,在悬突区域处的功率控制可通过对这些区域的加热实施更加有效地控制从而解决所存在的积聚在刀片表面上的表面波痕问题。第三,通过使用更高的激光功率和与内部压合加工路径相比更慢的用于外部轮廓加工路径的速度,从而提高了积聚材料的表面粗糙度。第四,通过降低积聚层上面的激光功率,可在积聚零件中保持恒定的熔珠宽度和散热速率。通过适应性地降低所述沉积层上面的激光功率,所述被克服的问题例如在“冷”衬底上进行沉积时在初始层处产生的欠熔合缺陷和孔隙问题以及在接近狭窄的叶片顶端进行沉积时将由于过热而导致产生的表面氧化问题可得到解决。
虽然已经结合优选实施例对本发明进行了描述,但是本领域的技术人员应该理解:在不偏离本发明的范围的条件下可对本发明作出多种改变且可使用等效方式来替代本发明中的元素。另外,在不偏离本发明的实质范围的情况下已经作出多种改进从而使特定的情况或内容适应于本发明的教导。因此,本发明旨在不受在此作为最佳实施方式所披露的特定实施例的限制,本发明将包括落入由所附权利要求书限定出的范围内的所有实施例。

Claims (2)

1.一种对衬底进行激光包覆达到净成形或近净成形规范的方法,所述方法包括以下步骤:
在所述衬底上面沿加工路径沉积出第一确定的可变熔珠宽度的材料;
沿着加工路径沉积出与所述第一确定的可变熔珠宽度的沉积材料相重叠的相邻的第二确定的可变熔珠宽度的材料,其中沉积相邻的第二确定的可变熔珠宽度的材料的步骤包括沿着加工路径改变所述相邻的第二确定的可变熔珠宽度;
继续沉积多层重叠的相邻的具有预定的可变熔珠宽度的材料,直至形成第一材料层;
通过在第一材料层的顶部上面沉积出多层重叠的具有预定的可变熔珠宽度的材料从而成形出第二材料层;且
在沉积材料层的顶部上面继续沉积材料层,直至完成包覆;
其中所述沉积材料的可变熔珠宽度由具有多个输入参数的计算机进行控制,
其中与内部压合加工路径相比,对外部轮廓加工路径使用更高的激光功率和更慢的速度
2.根据权利要求1所述的方法,其中层中材料的每一沉积可变熔珠宽度在0.2毫米与5.0毫米之间变化。
3.根据权利要求1所述的方法,其中熔珠宽度重合度被保持在10%-90%之间。
4.根据权利要求1所述的方法,进一步包括:
向计算机中输入转移函数以对多个参数进行控制,从而获得大致恒定的熔珠宽度重合度,所述参数包括激光功率、激光速度、散焦距离和粉末供给速度。
5.根据权利要求1所述的方法,进一步包括:
在沉积最后3-100层的过程中降低激光功率。
6.根据权利要求1所述的方法,进一步包括:
起初为头2-100层沉积粉末层使用更高的激光功率,然后为剩余的粉末层降低功率水平。
7.一种激光净成形生产或修补方法,所述方法包括以下步骤:
在衬底上面沿加工路径成形出第一确定的可变熔珠宽度的材料;
通过激光包覆沿着加工路径成形出与第一确定的可变熔珠宽度的沉积材料相重叠的相邻的第二确定的可变熔珠宽度的材料,其中形成相邻的第二确定的可变熔珠宽度的材料的步骤包括沿着加工路径改变所述相邻的第二确定的可变熔珠宽度;
继续沉积重叠的相邻的具有确定的可变熔珠宽度的材料,直至形成第一粉末层;
通过在第一粉末层的顶部上面沉积出重叠的具有预定的可变熔珠宽度的材料从而通过激光包覆成形出第二粉末层;且
在沉积材料层的顶部上面继续沉积粉末层,直至完成包覆并且生产出净成形制品或者净成形制品得到修补,而不需要另外的机加工;
其中所述沉积材料的可变熔珠宽度由具有多个输入参数的计算机进行控制;
其中相对于内部压合加工路径,对外部轮廓加工路径使用更高的激光功率和更慢的速度。
8.根据权利要求7所述的激光净成形生产或修补方法,其中层中每一个成形的可变熔珠宽度在0.2毫米与5.0毫米之间变化。
9.根据权利要求7所述的激光净成形生产或修补方法,其中熔珠宽度重合度被保持在10%-90%之间。
10.根据权利要求7所述的激光净成形生产方法,进一步包括:
向计算机中输入转移函数以对多个参数进行控制,从而通过调节加工路径获得大致恒定的可变熔珠宽度重合度,所述参数包括激光功率、激光速度、散焦距离和粉末供给速度。
11.根据权利要求7所述的激光净成形生产方法,进一步包括:
在沉积最后3-100层的过程中降低激光功率。
12.根据权利要求7所述的激光净成形生产方法,进一步包括:
起初为头2-100层沉积粉末层使用更高的激光功率,然后为剩余的粉末层降低功率水平。
13.一种修补叶盘、压缩机叶片或者涡轮部件达到净成形或近净成形规范的方法,所述方法包括以下步骤:
提供受损的叶盘、压缩机叶片或者涡轮部件;
预备所述受损的叶盘、压缩机叶片或者涡轮部件以形成衬底表面;
在所述衬底上面沿加工路径沉积出第一确定的可变熔珠宽度的材料;
沿着加工路径沉积出与第一确定的可变熔珠宽度的沉积材料相邻且与第一确定的可变熔珠宽度的沉积材料层相重叠的第二确定的可变熔珠宽度的材料,其中沉积相邻的第二确定的可变熔珠宽度的材料的步骤包括沿着加工路径改变所述相邻的第二确定的可变熔珠宽度;
继续沉积重叠的相邻的具有预定的可变熔珠宽度的材料,直至形成第一材料层;
通过在第一材料层的顶部上面沉积出重叠的具有预定的可变熔珠宽度的材料从而成形出第二材料层;且
在沉积材料层的顶部上面继续沉积材料层,直至完成包覆;
其中所述沉积材料的熔珠宽度由具有多个输入参数的计算机进行控制;
层中每一个沉积的可变熔珠宽度在0.2毫米与5.0毫米之间变化;并且
相对于内部压合加工路径,对外部轮廓加工路径使用更高的激光功率和更慢的速度。
14.根据权利要求13所述的修补叶盘、压缩机叶片或者涡轮部件的方法,其中熔珠宽度重合度的范围在10%与90%之间。
15.根据权利要求13所述的修补叶盘、压缩机叶片或者涡轮部件的方法,进一步包括:
向计算机中输入转移函数以对多个参数进行控制,从而获得具有可变熔珠宽度的沉积材料,所述参数包括激光功率、激光速度、散焦距离和粉末供给速度。
16.根据权利要求13所述的修补叶盘、压缩机叶片或者涡轮部件的方法,进一步包括:
在沉积最后3-100层的过程中降低激光功率。
17.根据权利要求13所述的修补叶盘、压缩机叶片或者涡轮部件的方法,进一步包括:
起初为头2-100层沉积粉末层使用更高的激光功率,然后为剩余的材料层降低功率水平。
18.根据权利要求13-17中任一项所述的修补叶盘、压缩机叶片或者涡轮部件的方法,所述涡轮部件是涡轮叶片。
19.根据权利要求7所述的激光净成形生产方法,进一步包括:
向计算机中输入转移函数以对激光功率、激光速度、散焦距离和粉末供给速度进行控制,从而获得可变熔珠宽度的材料。
20.一种采用根据权利要求7所述的方法成形出的叶盘、压缩机叶片或者涡轮部件。
21.根据权利要求20所述的叶盘、压缩机叶片或者涡轮部件,其中涡轮部件是涡轮叶片。
22.一种采用根据权利要求13所述的方法成形出的得到修补的叶盘、压缩机叶片或者涡轮部件。
23.根据权利要求22所述的叶盘、压缩机叶片或者涡轮部件,其中涡轮部件是涡轮叶片。
24.一种对衬底进行激光包覆达到净成形或近净成形规范的方法,所述方法包括以下步骤:
在所述衬底上面沿加工路径沉积出至少一层具有第一可变熔珠宽度的材料从而成形出第一材料层;
通过在第一材料层的顶部上面沉积出至少一层具有可变熔珠宽度的材料而成形出第二材料层;且
在沉积材料层的顶部上面继续沉积由至少一层具有可变熔珠宽度的材料形成的材料层,直至完成包覆;
相对于内部压合加工路径,对外部轮廓加工路径使用更高的激光功率和更慢的速度。
25.一种激光净成形生产或修补方法,所述方法包括以下步骤:
在衬底上面沿加工路径成形出至少一层具有可变熔珠宽度的材料从而成形出第一材料层;
通过激光包覆在第一材料层的顶部上面沉积出至少一层具有可变熔珠宽度的材料而成形出第二材料层;且
在沉积材料层的顶部上面继续沉积材料层,直至完成包覆并且生产出净成形制品或者净成形制品得到修补,而不需要另外的机加工;
相对于内部压合加工路径,对外部轮廓加工路径使用更高的激光功率和更慢的速度
CN200810009273.7A 2007-01-31 2008-01-31 采用适应性加工路径沉积方法进行的激光净成形生产 Active CN101235499B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/669,518 US8691329B2 (en) 2007-01-31 2007-01-31 Laser net shape manufacturing using an adaptive toolpath deposition method
US11/669518 2007-01-31

Publications (2)

Publication Number Publication Date
CN101235499A CN101235499A (zh) 2008-08-06
CN101235499B true CN101235499B (zh) 2015-07-01

Family

ID=39313244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810009273.7A Active CN101235499B (zh) 2007-01-31 2008-01-31 采用适应性加工路径沉积方法进行的激光净成形生产

Country Status (7)

Country Link
US (2) US8691329B2 (zh)
EP (1) EP1952932B1 (zh)
JP (1) JP5372386B2 (zh)
CN (1) CN101235499B (zh)
BR (1) BRPI0800703B1 (zh)
CA (1) CA2618926C (zh)
SG (3) SG144853A1 (zh)

Families Citing this family (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006044555A1 (de) * 2006-09-21 2008-04-03 Mtu Aero Engines Gmbh Reparaturverfahren
EP2231352B1 (en) 2008-01-03 2013-10-16 Arcam Ab Method and apparatus for producing three-dimensional objects
US20090255118A1 (en) * 2008-04-11 2009-10-15 General Electric Company Method of manufacturing mixers
WO2009145587A2 (en) * 2008-05-29 2009-12-03 Lg Electronics Inc. Method of encrypting control signaling
KR20100008326A (ko) 2008-07-15 2010-01-25 엘지전자 주식회사 위치 비밀성 지원 방법
CN101642848B (zh) * 2008-08-04 2013-08-21 通用电气公司 激光加工系统及方法
US8582771B2 (en) * 2008-09-10 2013-11-12 Lg Electronics Inc. Method for selectively encrypting control signal
DE102009004661A1 (de) * 2009-01-12 2010-07-15 Rolls-Royce Deutschland Ltd & Co Kg Vorrichtung zur Reparatur der Schaufeln von BLISK-Trommeln mittels Laserstrahlauftragsschweißen
EP2454039B1 (en) 2009-07-15 2014-09-03 Arcam Ab Method for producing three-dimensional objects
EP2467504B1 (en) * 2009-08-21 2017-10-04 University of Sheffield A method and computer program for forming an object
US8186414B2 (en) 2009-08-21 2012-05-29 Loughborough University Method for forming an object
KR101097173B1 (ko) 2009-09-04 2011-12-22 신한다이아몬드공업 주식회사 절삭/연마 공구 및 그 제조방법
DE102009048665A1 (de) * 2009-09-28 2011-03-31 Siemens Aktiengesellschaft Turbinenschaufel und Verfahren zu deren Herstellung
EP2319641B1 (en) * 2009-10-30 2017-07-19 Ansaldo Energia IP UK Limited Method to apply multiple materials with selective laser melting on a 3D article
EP2317076B1 (en) * 2009-10-30 2018-02-14 Ansaldo Energia IP UK Limited A method for repairing a gas turbine component
ES2402257T3 (es) * 2009-10-30 2013-04-30 Alstom Technology Ltd Método para reparar un componente de una turbina de gas
EP2317079B1 (en) * 2009-10-30 2020-05-20 Ansaldo Energia Switzerland AG Abradable coating system
DE102009051551A1 (de) * 2009-10-31 2011-05-05 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine
US20110164981A1 (en) * 2010-01-04 2011-07-07 General Electric Company Patterned turbomachine component and method of forming a pattern on a turbomachine component
EP2361720B1 (de) * 2010-02-22 2012-12-12 Alstom Technology Ltd Verfahren zum Reparieren und/oder Überarbeiten eines Bauteils, insbesondere einer Gasturbine
EP2366476B1 (en) * 2010-03-10 2014-07-02 General Electric Company Method for Fabricating Turbine Airfoils and Tip Structures Therefor
US9168613B2 (en) * 2010-10-22 2015-10-27 Paul T. Colby Vertical laser cladding system
DE102011008809A1 (de) * 2011-01-19 2012-07-19 Mtu Aero Engines Gmbh Generativ hergestellte Turbinenschaufel sowie Vorrichtung und Verfahren zu ihrer Herstellung
CN103338880B (zh) * 2011-01-28 2015-04-22 阿卡姆股份有限公司 三维物体生产方法
EP2707172B1 (en) * 2011-05-10 2019-07-10 Sulzer Turbo Services Venlo B.V. Process for cladding a substrate
DE102011108957B4 (de) * 2011-07-29 2013-07-04 Mtu Aero Engines Gmbh Verfahren zum Herstellen, Reparieren und/oder Austauschen eines Gehäuses, insbesondere eines Triebwerkgehäuses, sowie ein entsprechendes Gehäuse
CN102373467B (zh) * 2011-10-26 2014-04-02 昆明理工大学 一种立体空间堆垛网状添加物的激光熔覆涂层制备方法
US10189086B2 (en) 2011-12-28 2019-01-29 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
WO2013098054A1 (en) 2011-12-28 2013-07-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
KR102182567B1 (ko) 2011-12-28 2020-11-24 아르켐 에이비 첨가적으로 제조되는 3차원 물품들의 레졸루션을 증가시키기 위한 방법 및 장치
ITFI20120035A1 (it) * 2012-02-23 2013-08-24 Nuovo Pignone Srl "produzione di giranti per turbo-macchine"
DE102012008371A1 (de) * 2012-04-25 2013-10-31 Airbus Operations Gmbh Verfahren zum Herstellen eines einen Überhang aufweisenden Bauteils durch schichtweisen Aufbau
US9126167B2 (en) 2012-05-11 2015-09-08 Arcam Ab Powder distribution in additive manufacturing
US20150093287A1 (en) * 2012-05-16 2015-04-02 Gkn Aerospace Sweden Ab Applying a titanium alloy on a substrate
DE102012107297A1 (de) * 2012-08-08 2014-06-18 Ralph Stelzer Arbeitsverfahren und Vorrichtung zum Auftragen, Aushärten und Oberflächenbearbeitung von pulverförmigen Werkstoffen auf Bauflächen
US9561542B2 (en) 2012-11-06 2017-02-07 Arcam Ab Powder pre-processing for additive manufacturing
WO2014095200A1 (en) 2012-12-17 2014-06-26 Arcam Ab Additive manufacturing method and apparatus
WO2014095208A1 (en) 2012-12-17 2014-06-26 Arcam Ab Method and apparatus for additive manufacturing
US9272363B2 (en) * 2013-01-31 2016-03-01 Siemens Energy, Inc. Hybrid laser plus submerged arc or electroslag cladding of superalloys
US20140230212A1 (en) * 2013-02-20 2014-08-21 Rolls-Royce Corporation Weld repair of a component
WO2014158282A1 (en) * 2013-03-13 2014-10-02 Daum Peter E Laser deposition using a protrusion technique
CA2896507A1 (en) * 2013-03-13 2014-09-18 Rolls-Royce Corporation Variable working distance for deposition
US20160032766A1 (en) * 2013-03-14 2016-02-04 General Electric Company Components with micro cooled laser deposited material layer and methods of manufacture
US9943933B2 (en) * 2013-03-15 2018-04-17 Rolls-Royce Corporation Repair of gas turbine engine components
US9103035B2 (en) * 2013-04-10 2015-08-11 General Electric Company Erosion resistant coating systems and processes therefor
US9550207B2 (en) 2013-04-18 2017-01-24 Arcam Ab Method and apparatus for additive manufacturing
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
US9415443B2 (en) 2013-05-23 2016-08-16 Arcam Ab Method and apparatus for additive manufacturing
US9468973B2 (en) 2013-06-28 2016-10-18 Arcam Ab Method and apparatus for additive manufacturing
CN103433487A (zh) * 2013-08-09 2013-12-11 沈阳工业大学 一种提高激光快速成形金属零件表面平整度的方法
US9505057B2 (en) 2013-09-06 2016-11-29 Arcam Ab Powder distribution in additive manufacturing of three-dimensional articles
JP6245906B2 (ja) * 2013-09-13 2017-12-13 公益財団法人鉄道総合技術研究所 ブレーキディスク及びその製造方法
US9676032B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
US20150096963A1 (en) * 2013-10-04 2015-04-09 Gerald J. Bruck Laser cladding with programmed beam size adjustment
WO2015122952A2 (en) 2013-11-27 2015-08-20 General Electric Company Fuel nozzle with fluid lock and purge apparatus
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
CA2933536C (en) 2013-12-23 2018-06-26 General Electric Company Fuel nozzle structure for air-assisted fuel injection
US10190774B2 (en) 2013-12-23 2019-01-29 General Electric Company Fuel nozzle with flexible support structures
CN103668188B (zh) * 2013-12-31 2016-03-30 无锡透平叶片有限公司 一种汽轮机叶片激光熔覆防水蚀方法
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
DE102014205062A1 (de) * 2014-03-19 2015-03-12 Voith Patent Gmbh Vorrichtung und Verfahren zur Herstellung eines Pelton-Laufrades
US20150283613A1 (en) 2014-04-02 2015-10-08 Arcam Ab Method for fusing a workpiece
US9914170B2 (en) * 2014-06-13 2018-03-13 Hamilton Sundstrand Corporation Method for making an integrally bladed rotor with hollow blades
US9310188B2 (en) 2014-08-20 2016-04-12 Arcam Ab Energy beam deflection speed verification
CA2965545C (en) * 2014-10-24 2023-01-03 Laserbond Limited Method and apparatus for cladding a surface of an article
KR102283654B1 (ko) 2014-11-14 2021-07-29 가부시키가이샤 니콘 조형 장치 및 조형 방법
JP6804298B2 (ja) 2014-11-14 2020-12-23 株式会社ニコン 造形装置
EP3026638B1 (en) 2014-11-25 2020-04-01 Airbus Operations GmbH Method and system for adapting a 3D printing model
US10786865B2 (en) 2014-12-15 2020-09-29 Arcam Ab Method for additive manufacturing
GB201500304D0 (en) 2015-01-09 2015-02-25 Rolls Royce Plc A method of surface-treating a cast intermetallic component
US9721755B2 (en) 2015-01-21 2017-08-01 Arcam Ab Method and device for characterizing an electron beam
US20160221122A1 (en) * 2015-02-03 2016-08-04 Hamilton Sundstrand Corporation Hybrid additive manufacturing method for rotor
US20160271732A1 (en) * 2015-03-19 2016-09-22 Dm3D Technology, Llc Method of high rate direct material deposition
JP5947941B1 (ja) 2015-03-26 2016-07-06 Dmg森精機株式会社 付加加工用ヘッドおよび加工機械
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
GB201508703D0 (en) * 2015-05-21 2015-07-01 Rolls Royce Plc Additive layer repair of a metallic component
JP2017025386A (ja) * 2015-07-24 2017-02-02 セイコーエプソン株式会社 3次元成形物および3次元成形方法
CN105002493B (zh) * 2015-07-29 2017-11-17 江苏大学 一种不等宽损伤件多道均匀搭接激光熔覆修复方法
US9957964B2 (en) 2015-09-04 2018-05-01 General Electric Company Airfoil shape for a compressor
US9732761B2 (en) 2015-09-04 2017-08-15 General Electric Company Airfoil shape for a compressor
US9777744B2 (en) 2015-09-04 2017-10-03 General Electric Company Airfoil shape for a compressor
US9759076B2 (en) 2015-09-04 2017-09-12 General Electric Company Airfoil shape for a compressor
US10041370B2 (en) 2015-09-04 2018-08-07 General Electric Company Airfoil shape for a compressor
US9771948B2 (en) 2015-09-04 2017-09-26 General Electric Company Airfoil shape for a compressor
US9745994B2 (en) 2015-09-04 2017-08-29 General Electric Company Airfoil shape for a compressor
US9938985B2 (en) 2015-09-04 2018-04-10 General Electric Company Airfoil shape for a compressor
US9759227B2 (en) 2015-09-04 2017-09-12 General Electric Company Airfoil shape for a compressor
US9746000B2 (en) 2015-09-04 2017-08-29 General Electric Company Airfoil shape for a compressor
US9951790B2 (en) 2015-09-04 2018-04-24 General Electric Company Airfoil shape for a compressor
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US11571748B2 (en) 2015-10-15 2023-02-07 Arcam Ab Method and apparatus for producing a three-dimensional article
CN105312563B (zh) * 2015-11-03 2017-10-03 中国航空工业集团公司北京航空材料研究院 一种镍基双合金整体叶盘的制造方法
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10065241B2 (en) * 2015-11-17 2018-09-04 General Electric Company Combined additive manufacturing and machining system
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
EP3181336A1 (de) * 2015-12-17 2017-06-21 Lilas GmbH 3d-druck-vorrichtung für die herstellung eines räumlich ausgedehnten produkts
US11554443B2 (en) 2016-01-14 2023-01-17 Howmet Aerospace Inc. Methods for producing forged products and other worked products
US20170203355A1 (en) * 2016-01-14 2017-07-20 Arconic Inc. Methods for producing forged products and other worked products
SG10201700339YA (en) 2016-02-29 2017-09-28 Rolls Royce Corp Directed energy deposition for processing gas turbine engine components
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
CN107685220B (zh) * 2016-08-04 2019-06-07 中国科学院金属研究所 一种复杂薄壁高温合金热端部件裂纹的修复方法
CA2977751A1 (en) * 2016-09-22 2018-03-22 Sulzer Management Ag Method for manufacturing or for repairing a component of a rotary machine as well as a component manufactured or repaired using such a method
CA2977757A1 (en) 2016-09-22 2018-03-22 Sulzer Management Ag Method for manufacturing or for repairing a component of a rotary machine as well as a component manufactured or repaired using such a method
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
US10583485B2 (en) 2017-01-12 2020-03-10 Honeywell Federal Manufacturing & Technologies, Llc System and method for controlling an energy beam of an additive manufacturing system
US11167454B2 (en) * 2017-01-13 2021-11-09 General Electric Company Method and apparatus for continuously refreshing a recoater blade for additive manufacturing
JP6729461B2 (ja) * 2017-03-22 2020-07-22 トヨタ自動車株式会社 肉盛層の製造方法及びその製造装置
GB2561228B (en) * 2017-04-06 2019-07-31 Gkn Aerospace Services Ltd Heater element and method of manufacture thereof
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
EP3431211B1 (en) * 2017-07-20 2022-03-16 General Electric Company Method for manufacturing a hybrid article
DE102017213378A1 (de) * 2017-08-02 2019-02-07 Siemens Aktiengesellschaft Verfahren zum Ausbilden einer definierten Oberflächenrauheit
EP3454148A1 (en) * 2017-09-06 2019-03-13 General Electric Company Process for preparing an additive toolpath for a hybrid article
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
US10800101B2 (en) 2018-02-27 2020-10-13 Arcam Ab Compact build tank for an additive manufacturing apparatus
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US10793943B2 (en) * 2018-03-15 2020-10-06 Raytheon Technologies Corporation Method of producing a gas turbine engine component
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
JP6886422B2 (ja) * 2018-03-30 2021-06-16 株式会社ニコン 造形装置及び造形方法
CN108441858B (zh) * 2018-06-05 2020-01-31 东北大学 零件加工中基于激光熔覆技术的变参数路径扫描算法
CN108889946B (zh) * 2018-07-25 2020-01-14 哈尔滨工业大学 一种铝合金薄壁零件激光立体成形方法
US20200248315A1 (en) * 2019-02-04 2020-08-06 Jtekt Corporation Laser clad layer forming method and laser cladding device
CN110653461A (zh) * 2019-09-09 2020-01-07 中国兵器科学研究院宁波分院 一种变密度Ti/TiAl梯度材料的快速近净成形方法
CN110484917B (zh) * 2019-09-26 2021-04-30 辽宁工业大学 一种高速钢车刀刃口激光熔覆修复方法
CN110846656B (zh) * 2019-11-29 2022-03-15 江苏徐工工程机械研究院有限公司 一种导向环、激光熔覆方法及铣槽机
CN111299854A (zh) * 2019-12-10 2020-06-19 合肥工业大学 一种采用激光拆解压缩机的装置及方法
US11980938B2 (en) 2020-11-24 2024-05-14 Rolls-Royce Corporation Bladed disk repair process with shield
US11629412B2 (en) 2020-12-16 2023-04-18 Rolls-Royce Corporation Cold spray deposited masking layer
CN113953758B (zh) * 2021-09-13 2023-05-26 斯图加特航空自动化(青岛)有限公司 原位增材修复设备的控制方法、装置、系统以及修复方法
US11828190B2 (en) 2021-11-18 2023-11-28 General Electric Company Airfoil joining apparatus and methods
CN114700599B (zh) * 2022-05-18 2023-02-28 中国航空制造技术研究院 基于放电等离子扩散焊的叶片
CN115354319B (zh) * 2022-08-29 2023-12-08 江苏徐工工程机械研究院有限公司 一种大型筒类零件表面高硬耐蚀涂层结构及其制备方法
US11814979B1 (en) * 2022-09-21 2023-11-14 Rtx Corporation Systems and methods of hybrid blade tip repair

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160822A (en) * 1991-05-14 1992-11-03 General Electric Company Method for depositing material on the tip of a gas turbine engine airfoil using linear translational welding
US5837960A (en) * 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders
US6172327B1 (en) * 1998-07-14 2001-01-09 General Electric Company Method for laser twist welding of compressor blisk airfoils

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183983A (ja) 1986-02-07 1987-08-12 Nippon Kokan Kk <Nkk> レ−ザ−クラツデイング法
US5038014A (en) 1989-02-08 1991-08-06 General Electric Company Fabrication of components by layered deposition
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding
US6154959A (en) * 1999-08-16 2000-12-05 Chromalloy Gas Turbine Corporation Laser cladding a turbine engine vane platform
US6568077B1 (en) * 2000-05-11 2003-05-27 General Electric Company Blisk weld repair

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160822A (en) * 1991-05-14 1992-11-03 General Electric Company Method for depositing material on the tip of a gas turbine engine airfoil using linear translational welding
US5837960A (en) * 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders
US6172327B1 (en) * 1998-07-14 2001-01-09 General Electric Company Method for laser twist welding of compressor blisk airfoils

Also Published As

Publication number Publication date
BRPI0800703B1 (pt) 2016-05-10
JP5372386B2 (ja) 2013-12-18
CA2618926C (en) 2015-06-09
EP1952932A2 (en) 2008-08-06
US9879535B2 (en) 2018-01-30
US20160076374A1 (en) 2016-03-17
SG10201606796RA (en) 2016-10-28
US8691329B2 (en) 2014-04-08
BRPI0800703A (pt) 2008-09-23
EP1952932A3 (en) 2010-05-26
CA2618926A1 (en) 2008-07-31
JP2008190038A (ja) 2008-08-21
US20080178994A1 (en) 2008-07-31
SG144853A1 (en) 2008-08-28
EP1952932B1 (en) 2019-04-24
CN101235499A (zh) 2008-08-06
SG194347A1 (en) 2013-11-29

Similar Documents

Publication Publication Date Title
CN101235499B (zh) 采用适应性加工路径沉积方法进行的激光净成形生产
US20080182017A1 (en) Laser net shape manufacturing and repair using a medial axis toolpath deposition method
EP3431211B1 (en) Method for manufacturing a hybrid article
JP2599804B2 (ja) 層堆積による部品の製造方法
US10585421B2 (en) Process for preparing an additive toolpath for a hybrid article
Gebisa et al. Additive manufacturing for the manufacture of gas turbine engine components: Literature review and future perspectives
EP2317075B1 (en) Method for repairing a gas turbine component
US5038014A (en) Fabrication of components by layered deposition
EP2772329A1 (en) Method for manufacturing a hybrid component
US20080260964A1 (en) Vision system and method for direct-metal-deposition (dmd) tool-path generation
CA2551249A1 (en) Niobium silicide-based turbine components, and related methods for laser deposition
WO2006137889A2 (en) Method to restore an airfoil leading edge
EP3417989B1 (en) Method of repairing a turbomachine component
CA2897012C (en) Laser deposition using a protrusion technique
EP3663878A1 (en) Method of designing an intermediate product, computer pro-gram product, method of additive manufacturing, method of manufacturing a component and a corresponding component
Balasubramanian et al. Introduction to additive manufacturing
EP4104951A1 (en) Turbomachine manufacture and repair method using additive manufactured braze preforms
EP4335566A1 (en) Additively manufacturing using ct scan data
Pilcher et al. Laser and Micro-Plasma Welding of Single Crystal Blades: Advantages of Total Process Control
KR20170061707A (ko) 터빈 블레이드의 크라운 베이스에 대한 구축 전략 및 터빈 블레이드

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant