CN101222258A - MIMO multi-codeword communication method, device and system - Google Patents
MIMO multi-codeword communication method, device and system Download PDFInfo
- Publication number
- CN101222258A CN101222258A CNA2007101959858A CN200710195985A CN101222258A CN 101222258 A CN101222258 A CN 101222258A CN A2007101959858 A CNA2007101959858 A CN A2007101959858A CN 200710195985 A CN200710195985 A CN 200710195985A CN 101222258 A CN101222258 A CN 101222258A
- Authority
- CN
- China
- Prior art keywords
- data stream
- symbol
- antenna
- kinds
- tti
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明提供了一种用于MIMO系统的MIMO多码字通信方法、装置及系统,包括:MIMO系统发射端有M个发射天线,由其中的K个发射天线发射K路数据流;K路数据流的各路分别独立进行信道编码,在一个TTI的各个符号周期,K路数据流中的至少一路轮流使用K个发射天线的各个发射;MIMO系统接收端采用干扰消除的检测技术进行接收;以及其干扰没有通过干扰消除技术被消除从而仍然对一路数据流的符号形成干扰的一个或多个数据流的符号被发射所使用的一个或多个天线的组合,随着不同的符号周期而变化至少一次,以实现干扰分集,可以使得受到干扰分集效应影响的各路数据流的瞬时信道容量变化的方差变小,从而在CQI反馈擦除的概率较大的信道环境中,在CQI反馈擦除发生从而发射端根据接收端在先前的一个或者多个TTI反馈的CQI估计当前TTI的CQI进而确定当前TTI相应的一路或者多路数据流所用的MCS的时候,估计的误差较小,所以造成的损失也较小。
The present invention provides a MIMO multi-code word communication method, device and system for a MIMO system, comprising: the transmitting end of the MIMO system has M transmitting antennas, and K transmitting antennas transmit K channels of data streams; K channels of data Each channel of the stream is independently channel-coded, and in each symbol period of a TTI, at least one of the K data streams uses the transmissions of the K transmit antennas in turn; the receiving end of the MIMO system uses an interference cancellation detection technology for reception; and The combination of one or more antennas with which the symbols of one or more data streams are transmitted, whose interference has not been eliminated by interference cancellation techniques and thus still interferes with the symbols of one data stream, varies from symbol period to at least Once, in order to achieve interference diversity, the variance of the instantaneous channel capacity change of each data stream affected by the interference diversity effect can be reduced, so that in a channel environment with a high probability of CQI feedback erasure, when CQI feedback erasure occurs Therefore, when the transmitting end estimates the CQI of the current TTI based on the CQI fed back by the receiving end in one or more previous TTIs, and then determines the MCS used by one or more data streams corresponding to the current TTI, the estimation error is small, so the loss caused Also smaller.
Description
技术领域technical field
本发明涉及通信领域,更具体而言,涉及应用干扰分集改进MIMO(Multiple-InputMultiple-Output,多输入多输出)通信技术多码字(Multiple Code Word,缩写为MCW)方案。The present invention relates to the communication field, and more specifically, relates to the application of interference diversity to improve the MIMO (Multiple-Input Multiple-Output, Multiple Input Multiple Output) communication technology Multiple Code Word (Multiple Code Word, abbreviated as MCW) scheme.
背景技术Background technique
根据信息论,在通信系统的发射端和接收端或者这两端同时使用多天线阵列,可以显著地提高传输比特率。According to information theory, using multi-antenna arrays at the transmitting end and receiving end of a communication system or at both ends can significantly increase the transmission bit rate.
图1示出了在发射端和接收端同时使用多天线阵列的具有空-时架构的无线通信系统的示意图。该系统工作在瑞利散射环境,信道矩阵的各个元素可以近似看作是统计独立的。Fig. 1 shows a schematic diagram of a wireless communication system with a space-time architecture using multiple antenna arrays at both the transmitting end and the receiving end. The system works in a Rayleigh scattering environment, and each element of the channel matrix can be approximately regarded as statistically independent.
在图1所示的系统中,一个数据序列分成M个不相关的码元子序列,每个子序列由M个发射天线中的一个发射。M个子序列在经过一个信道矩阵为H的信道的影响后,在接收端由N个接收天线接收。发射信号s1,…,sM分别通过M个不同的天线单元a-1,…,a-M发射,相应的接收信号x1,…,xM分别从N个不同的天线单元b-1,…,b-N接收。In the system shown in Figure 1, a data sequence is divided into M uncorrelated symbol subsequences, and each subsequence is transmitted by one of the M transmit antennas. After the M subsequences are influenced by a channel with a channel matrix H, they are received by N receiving antennas at the receiving end. The transmitted signals s 1 ,...,s M are transmitted through M different antenna units a-1,...,aM respectively, and the corresponding received signals x 1 ,...,x M are transmitted from N different antenna units b-1,... , bN receives.
该系统中,发射天线单元数M最少是2,而接收天线单元数N最少是M。信道矩阵H是一个N×M的矩阵,矩阵中第i行j列的元素表示第i个接收天线和第j个发射天线通过传输信道的耦合。接收信号x1,…,xM在数字信号处理器中被处理以产生恢复的发射信号此图中也显示了求和成分c-1,c-2,…,c-N,它们代表无法避免必然包含的噪声信号w1,w2,…,wN,这些噪声信号分别加入到接收天线单元b-1,b-2,…,b-N接收到的信号中。In this system, the number M of transmitting antenna elements is at least 2, and the number N of receiving antenna elements is at least M. The channel matrix H is an N×M matrix, and the elements in the i-th row and j-column of the matrix represent the coupling between the i-th receiving antenna and the j-th transmitting antenna through the transmission channel. The received signals x 1 , ..., x M are processed in a digital signal processor to generate recovered transmitted signals Also shown in this figure are the summation components c-1, c-2, ..., cN, which represent the unavoidably contained noise signals w 1 , w 2 , ..., w N , which are respectively added to the receiving antenna elements Among the signals received by b-1, b-2, ..., bN.
一般的,信号发射和接收的数学表达式如下:Generally, the mathematical expressions of signal transmission and reception are as follows:
2006年7月31日的3GPP2AIE标准化组织的白皮书C30-20060731-040_HKLLMNQRSUZ_PP2Phase2_FDD_Proposal_v1.9(Joint Proposal for 3GPP2 PhysicalLayer for FDD Spectra)介绍了一种MIMO的多码字(MCW)通信方案。在MIMO的MCW通信方案中,有多路发射信号,各路都采用各自独立的Turbo编码方案。对于多码字模式,接收端使用干扰消除技术可以获得很大的增益,所以多码字模式通常使用干扰消除的非线性接收机。接收端根据接收信号,先Turbo解码一路发射信号,解码后,根据校验位判断这一路信号的解码是否正确,如果正确,则用解码的结果,从接收信号中消除这一路已经被正确解码的发射信号的影响,再根据所述消除了影响后的接收信号,Turbo解码另一路发射信号;就这样迭代地进行上述的步骤,直到解码所有的多路发射信号。The white paper C30-20060731-040_HKLLMNQRSUZ_PP2Phase2_FDD_Proposal_v1.9 (Joint Proposal for 3GPP2 PhysicalLayer for FDD Spectra) of the 3GPP2AIE standardization organization on July 31, 2006 introduced a MIMO multi-codeword (MCW) communication scheme. In the MIMO MCW communication scheme, there are multiple channels of transmitting signals, and each channel adopts its own independent Turbo coding scheme. For the multi-codeword mode, the receiving end can obtain a large gain by using the interference cancellation technology, so the multi-codeword mode usually uses a non-linear receiver for interference cancellation. According to the received signal, the receiving end first Turbo decodes a transmission signal. After decoding, it judges whether the decoding of this signal is correct according to the check digit. If it is correct, the decoding result is used to eliminate the correctly decoded signal from the received signal. The influence of the transmitted signal, and then according to the received signal after the influence is eliminated, Turbo decodes another transmitted signal; in this way, the above steps are iteratively performed until all the multiple transmitted signals are decoded.
AIE标准化组织的白皮书所述多码字模式通信方案中,发射端使用多个虚拟天线端口向接收端发射信号。上述的虚拟天线,是指发射信号组成的列向量的左边乘一个矩阵后,再送到各个物理天线上发射。相应的,每个发射信号,都与矩阵中的一列相乘,得到的各个结果分别送到各个物理天线,将这称为该发射信号通过一个虚拟天线进行发射,所述的一个虚拟天线,相当于一个空间的波束。In the multi-codeword mode communication solution described in the white paper of the AIE standardization organization, the transmitting end uses multiple virtual antenna ports to transmit signals to the receiving end. The aforementioned virtual antenna means that the left side of the column vector formed by the transmitted signal is multiplied by a matrix, and then sent to each physical antenna for transmission. Correspondingly, each transmitted signal is multiplied by a column in the matrix, and each result obtained is sent to each physical antenna, which is called that the transmitted signal is transmitted through a virtual antenna, and the virtual antenna is equivalent to Beams in a space.
多码字模式通信方案还可以与MIMO预编码技术同时使用。现有的一种MIMO预编码技术方案和预编码矩阵的设计方案中定义了多个预编码矩阵,接收端反馈其中最优的一个预编码矩阵的序号,发射端使用该预编码矩阵,对发射信号进行预编码之后再送到各个虚拟天线或者物理天线发射。假设对发射信号进行预编码之后再送到各个物理天线发射,则表达式(1)所表示的信号发射和接收的数学表达式变为:The multi-codeword mode communication scheme can also be used simultaneously with the MIMO precoding technique. Multiple precoding matrices are defined in the existing MIMO precoding technical scheme and precoding matrix design scheme, and the receiving end feeds back the serial number of the optimal precoding matrix, and the transmitting end uses this precoding matrix to transmit After the signal is precoded, it is sent to each virtual antenna or physical antenna for transmission. Assuming that the transmitted signal is precoded and then sent to each physical antenna for transmission, the mathematical expression of signal transmission and reception represented by expression (1) becomes:
上面的表达式中,t1,t2,…,tM是送到物理天线发射的信号,实际的发射信号s1,s2,…,sM组成的向量与预编码矩阵相乘,得到t1,t2,…,tM送到物理天线发射,相应数学表达式如下:In the above expression, t 1 , t 2 , ..., t M are the signals sent to the physical antenna for transmission, and the vector composed of the actual transmitted signal s 1 , s 2 , ..., s M is multiplied by the precoding matrix to obtain t 1 , t 2 ,..., t M are sent to the physical antenna for transmission, and the corresponding mathematical expressions are as follows:
这里,是预编码矩阵。here, is the precoding matrix.
在上述的MIMO预编码技术中,发射信号组成的列向量的左边乘一个矩阵后,再送到各个物理天线或者虚拟天线上发射。相应的,每个发射信号,都与矩阵中的一列相乘,得到的各个结果分别送到各个物理天线或者虚拟天线,将这称为该发射信号通过一层进行发射,所述的一层,相当于一个空间的波束。In the aforementioned MIMO precoding technology, the left side of the column vector formed by the transmitted signal is multiplied by a matrix, and then sent to each physical antenna or virtual antenna for transmission. Correspondingly, each transmit signal is multiplied by a column in the matrix, and each result obtained is sent to each physical antenna or virtual antenna, which is called the transmit signal is transmitted through one layer, and the one layer, Equivalent to a spatial beam.
如上所述,多码字模式通信方案的多路数据流,可以通过多个虚拟天线,或者多个物理天线,或者预编码技术中的多个层发射。As mentioned above, the multiple data streams in the multi-codeword mode communication scheme can be transmitted through multiple virtual antennas, or multiple physical antennas, or multiple layers in the precoding technology.
下面详细介绍3GPP2 AIE(即UMB)标准化组织的白皮书所述多码字模式通信方案的细节,该方案可以用在图1所示的MIMO系统中。在多码字模式下,发射端使用M个虚拟天线端口向接收端发射信号,所述的M大于等于2小于等于4。在多个虚拟发射天线上,每一个时刻传输K(K小于等于M)路编码后的数据流,K路数据流的各路再分到各个虚拟发射天线上发射。The details of the multi-codeword mode communication scheme described in the white paper of the 3GPP2 AIE (ie UMB) standardization organization are introduced in detail below, and the scheme can be used in the MIMO system shown in FIG. 1 . In the multi-codeword mode, the transmitting end uses M virtual antenna ports to transmit signals to the receiving end, where M is greater than or equal to 2 and less than or equal to 4. On multiple virtual transmitting antennas, K (K is less than or equal to M) coded data streams are transmitted at each moment, and each of the K data streams is divided into each virtual transmitting antenna for transmission.
在MIMO技术中,为了更有效地传输数据,需要对发射端的数据速率进行控制,并告诉发射端各路数据是否已经被接收端正确解码。在每一个TTI(Transition Time Interval,传输时间间隔),接收端反馈K个CQI(信道质量指示)信息和K个ACK/NACK信息,其中CQI信息告诉发射端在相应的一个TTI传输的K路中的每一路编码后的数据采用什么样的MCS(The modulation and channel coding scheme,调制与信道编码方案),而ACK/NACK信息告诉发射端在相应的一个TTI传输的K路中的每一路编码后的数据是否已经被接收端正确解码。In MIMO technology, in order to transmit data more efficiently, it is necessary to control the data rate of the transmitting end and tell the transmitting end whether each channel of data has been correctly decoded by the receiving end. In each TTI (Transition Time Interval, transmission time interval), the receiving end feeds back K pieces of CQI (channel quality indication) information and K pieces of ACK/NACK information, where the CQI information tells the transmitting end to transmit in the corresponding K channel of a TTI What kind of MCS (The modulation and channel coding scheme, modulation and channel coding scheme) is used for each coded data of each channel, and the ACK/NACK information tells the transmitter to encode each channel in the K channels corresponding to a TTI transmission Whether the data has been correctly decoded by the receiving end.
这里介绍上述的TTI的概念。为了对抗信道衰落,以及信道的干扰和噪声带来的传输错误,发射端把需要传输的数据分成多个数据包(Block),对同一个数据包中的信息比特进行信道编码和交织,再调制成多个符号通过信道传输,而传输这样一个数据包所需要的时间的长度决定了一个TTI的长度。接收端先接收同一个数据包内包含的所有符号,再进行解交织和解码。在本发明中,一个TTI就是指传输这样一个数据包的时间间隔。The above-mentioned concept of TTI is introduced here. In order to combat channel fading, as well as transmission errors caused by channel interference and noise, the transmitter divides the data to be transmitted into multiple data packets (Block), performs channel coding and interleaving on the information bits in the same data packet, and then modulates Multiple symbols are transmitted through the channel, and the length of time required to transmit such a data packet determines the length of a TTI. The receiving end first receives all the symbols contained in the same data packet, and then performs deinterleaving and decoding. In the present invention, a TTI refers to the time interval for transmitting such a data packet.
而一个TTI内所传输的一个数据包内的各个符号,可以分布在时域上的不同区间,或者分布在频域上的不同区间,或者分布在时域和频域的二维平面上的不同区间。下文所述的一个符号周期,就是指通过信道传输的一个符号在时域上占用的区间,或者在频域上占用的区间,或者在时域和频域的二维平面上占用的区间。例如,IEEE 802.20标准2006-01-06的文献“MBFDD and MBTDD:Proposed Draft Air Interface Specification”所描述的MIMO OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)通信方案中,一个数据包使用时域上连续的8个OFDM符号,每个OFDM符号占用频域上连续的16个子载波,那么一个符号周期,就是指时域和频域的二维平面上的一个区间,也就是时域上1个OFDM符号上的1个子载波,而这个数据包共有8×16=128个符号周期。Each symbol in a data packet transmitted in a TTI can be distributed in different intervals in the time domain, or in different intervals in the frequency domain, or in different intervals on the two-dimensional planes of the time domain and the frequency domain. interval. A symbol period described below refers to the interval occupied by a symbol transmitted through the channel in the time domain, or the interval occupied in the frequency domain, or the interval occupied in the two-dimensional plane of the time domain and the frequency domain. For example, in the MIMO OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) communication scheme described in the document "MBFDD and MBTDD: Proposed Draft Air Interface Specification" of the IEEE 802.20 standard 2006-01-06, when a data packet is used There are 8 consecutive OFDM symbols in the domain, each OFDM symbol occupies 16 consecutive subcarriers in the frequency domain, then a symbol period refers to an interval on the two-dimensional plane of the time domain and the frequency domain, that is, 1 in the
MCW模式中,接收端反馈K(K小于等于M)个CQI,分别指示K路编码后的数据流的MCS。MCW模式也有两种方案:In the MCW mode, the receiving end feeds back K (K is less than or equal to M) CQIs, which respectively indicate the MCSs of K coded data streams. MCW mode also has two options:
1、方案甲:K路编码后的数据流中的每一路,固定在某一个虚拟天线或者物理天线传输。1. Scheme A: Each of the encoded data streams of K channels is fixed to a certain virtual antenna or physical antenna for transmission.
2、方案乙:K路数据流中的每一路,都通过所有被选择使用的K个虚拟天线或者物理天线传输,即该路在某一个符号周期使用这个天线,下一个符号周期使用另一个天线,通过这种方法,每一路都遍历所有的天线。2. Scheme B: Each of the K data streams is transmitted through all selected K virtual antennas or physical antennas, that is, the channel uses this antenna in a certain symbol period, and uses another antenna in the next symbol period , in this way, each path traverses all antennas.
在某公司提交给3GPP2 AIE标准化组织的提案中,通过方案甲和方案乙的比较,说明了方案乙的优越性。在方案甲和方案乙中,若采用a、b、c、d分别表示K=4路各自独立编码的数据流,并且假设这4路数据依照a、b、c、d的先后顺序被检测。这就是说,接收端根据接收信号,先解码数据流a,如果解码正确,则用解码的结果,从接收信号中消除数据流a的发射信号对检测后续数据流的影响;其次,根据所述消除了影响后的接收信号,解码数据流b,如果解码正确,则用解码的结果,再从接收信号中消除数据流b的发射信号对检测后续数据流的影响;然后,根据所述消除了影响后的接收信号,解码数据流c,如果解码正确,则用解码的结果,再从接收信号中消除数据流c的发射信号对检测后续数据流的影响;最后,根据所述消除了影响后的接收信号,解码数据流d。在下面的示意图中,矩阵的每一行表示一个虚拟天线,或者一个物理天线,或者预编码技术中的一层。将矩阵的第1、2、3、4行分别记为天线1、2、3、4。矩阵的各列,表示各个不同的符号周期,而矩阵相邻的两列,所对应的两个符号周期通常是在频率域或者时间域相邻的,至少,矩阵相邻的两列所对应的两个符号周期的信道情况变化较小从而相似。下述矩阵的各列表示OFDM通信系统中各个不同的子载波,相邻的两列,对应两个相邻的子载波。In the proposal submitted by a company to the 3GPP2 AIE standardization organization, the superiority of scheme B is illustrated by comparing scheme A and scheme B. In Scheme A and Scheme B, if a, b, c, and d are used to represent K=4 independent coded data streams respectively, and it is assumed that these 4 streams of data are detected in the order of a, b, c, and d. That is to say, the receiving end first decodes the data stream a according to the received signal, and if the decoding is correct, the decoding result is used to eliminate the influence of the transmitted signal of the data stream a on the detection of the subsequent data stream from the received signal; secondly, according to the After eliminating the influence of the received signal, decode the data stream b, and if the decoding is correct, then use the decoded result to eliminate the impact of the transmitted signal of the data stream b on the detection of the subsequent data stream from the received signal; then, according to the eliminated After the affected received signal, decode the data stream c, if the decoding is correct, then use the decoded result to eliminate the impact of the transmitted signal of the data stream c on the detection of the subsequent data stream from the received signal; finally, after eliminating the impact according to the The received signal of , decodes the data stream d. In the diagram below, each row of the matrix represents a virtual antenna, or a physical antenna, or a layer in the precoding technique. Denote the 1st, 2nd, 3rd, and 4th rows of the matrix as
示意图表示如下:The schematic representation is as follows:
方案甲示意图:Scheme A schematic diagram:
如上图所示,在方案甲中,数据流a、b、c、d的每一个分别固定由一个发射天线发射。As shown in the figure above, in Scheme A, each of the data streams a, b, c, and d is fixedly transmitted by one transmit antenna.
方案乙示意图:Scheme B schematic diagram:
如上图所示,在方案乙中,数据流a、b、c、d的各个符号循环使用各个天线发射。即在某个子载波,数据流a、b、c、d的符号分别由天线1、2、3、4发射;在紧邻的下一个子载波,循环为数据流d、a、b、c的符号分别由天线1、2、3、4发射;在紧邻的下一个子载波,再循环为数据流c、d、a、b的符号分别由天线1、2、3、4发射;最后在紧邻的下一个子载波,循环为数据流b、c、d、a的符号分别由天线1、2、3、4发射,由此完成一个循环周期,从而在下一个子载波又从数据流a、b、c、d的符号分别由天线1、2、3、4发射的情况开始一个新的循环周期。从矩阵的对角线看,每一条对角线都由同一个数据流的各个符号所占据。As shown in the figure above, in scheme B, each symbol of data stream a, b, c, d is transmitted using each antenna in a cycle. That is, in a certain subcarrier, the symbols of data streams a, b, c, and d are transmitted by
可见,随着MIMO信道的变化,MCW模式中各个数据流在各个TTI的瞬时信道容量(即瞬时数据吞吐率)随时间变化,而与有循环的方案乙相比,没有循环的方案甲下各数据流的瞬时信道容量变化的方差较大。同时,在方案甲和方案乙下,各数据流的瞬时信道容量的均值相同。It can be seen that as the MIMO channel changes, the instantaneous channel capacity (i.e., the instantaneous data throughput rate) of each data stream in each TTI in the MCW mode changes with time. The variance of the instantaneous channel capacity change of the data stream is large. At the same time, under scheme A and scheme B, the average value of the instantaneous channel capacity of each data flow is the same.
在3GPP2AIE(即UMB)标准所定义的MCW模式中,接收端反馈K个CQI,而CQI反馈的擦除概率(the CQI feedback erasure rate)比较高,在典型的信道环境中CQI反馈的擦除概率达到50%。而所谓CQI反馈的擦除概率,就是指因为CQI反馈的信噪比(SNR)比较低,发射端判定接收端当前反馈的CQI不可靠,从而在当前的TTI,不根据当前反馈的CQI确定相应的一路数据流所采用的调制与信道编码方案,而是根据以前反馈的CQI推测当前的CQI以确定相应的一路数据流所采用的调制与信道编码方案。而所述当前最合适的调制与信道编码方案,由当前的瞬时信道容量决定。与方案甲相比,方案乙下各数据流的瞬时信道容量变化的方差较小,即瞬时的最优调制与信道编码方案和瞬时CQI变化的方差较小,从而在CQI反馈擦除的情况发生时,根据以前反馈的CQI推测当前的CQI的误差较小,造成的损失也较小,因此,不难看出方案乙的优势。方案甲和方案乙的瞬时信道容量的概率分布图的对比得到的仿真结果如图2所示。In the MCW mode defined by the 3GPP2AIE (UMB) standard, the receiver feeds back K CQIs, and the CQI feedback erasure rate (the CQI feedback erasure rate) is relatively high. In a typical channel environment, the CQI feedback erasure rate up to 50%. The so-called erasure probability of CQI feedback means that because the signal-to-noise ratio (SNR) of CQI feedback is relatively low, the transmitting end determines that the CQI currently fed back by the receiving end is unreliable, so that in the current TTI, the corresponding CQI is not determined according to the current feedback CQI. The modulation and channel coding scheme adopted by one data stream, but the current CQI is estimated according to the previously fed-back CQI to determine the modulation and channel coding scheme adopted by a corresponding data stream. The current most suitable modulation and channel coding scheme is determined by the current instantaneous channel capacity. Compared with Scheme A, the variance of the instantaneous channel capacity change of each data stream under Scheme B is smaller, that is, the variance of the instantaneous optimal modulation and channel coding scheme and the instantaneous CQI change is smaller, so that in the case of CQI feedback erasure When , the error of inferring the current CQI based on the previously fed-back CQI is small, and the loss caused is also small. Therefore, it is not difficult to see the advantages of scheme B. The simulation results obtained by comparing the probability distribution diagrams of the instantaneous channel capacity of Scheme A and Scheme B are shown in Fig. 2 .
在图2中,横坐标表示信道容量,而纵坐标表示概率密度函数。从图中可以看出,与Non Cycling的方案甲相比,Cycling的方案乙下瞬时信道容量具有更集中的分布。数据分析表明,Cycling的方案乙下瞬时信道容量的方差,比Non Cycling的方案甲下瞬时信道容量的方差的小76%。In FIG. 2, the abscissa represents the channel capacity, and the ordinate represents the probability density function. It can be seen from the figure that compared with Non Cycling scheme A, the instantaneous channel capacity under Cycling scheme B has a more concentrated distribution. Data analysis shows that the variance of instantaneous channel capacity under Cycling scheme B is 76% smaller than that under Non-cycling scheme A.
在实现本发明过程中,发明人发现:若通过采用干扰分集的方法,方案乙可以被进一步改进,从而某些数据流的瞬时信道容量的分布可以更加集中。In the process of implementing the present invention, the inventors found that: by adopting the method of interference diversity, scheme B can be further improved, so that the distribution of instantaneous channel capacity of certain data streams can be more concentrated.
发明内容Contents of the invention
本发明实施例提供了一种MIMO多码字通信方法、装置及系统,旨在通过采用干扰分集的方法,从而使某些数据流的瞬时信道容量的分布可以更加集中。Embodiments of the present invention provide a MIMO multi-codeword communication method, device and system, aiming to make the distribution of instantaneous channel capacity of certain data streams more concentrated by adopting the method of interference diversity.
一种用于MIMO系统的MIMO多码字通信方法,包括:A MIMO multi-codeword communication method for a MIMO system, comprising:
所述MIMO系统发射端有M个发射天线,由其中的K个发射天线发射K路数据流;The transmitting end of the MIMO system has M transmitting antennas, and K transmitting antennas transmit K data streams;
所述K路数据流的各路分别独立进行信道编码,在一个传输时间间隔TTI的各个符号周期,K路数据流中的至少一路轮流使用K个发射天线的各个发射;Each of the K data streams is independently channel-coded, and in each symbol period of a transmission time interval TTI, at least one of the K data streams uses each transmission of the K transmit antennas in turn;
所述MIMO系统接收端采用干扰消除的检测技术进行接收;以及The receiving end of the MIMO system adopts the detection technology of interference cancellation to receive; and
在发射端,对于其干扰没有被接收端通过干扰消除技术消除从而仍然对某一路数据流的符号形成干扰的一个或多个数据流的符号被发射所使用的一个或多个天线的组合,随着不同的符号周期而变化至少一次,以实现干扰分集。At the transmitting end, the combination of one or more antennas used for transmitting the symbols of one or more data streams whose interference has not been eliminated by the receiving end through interference cancellation technology and still interferes with the symbols of a certain data stream, varies at least once with different symbol periods to achieve interference diversity.
一种MIMO多码字通信系统,包括:A MIMO multi-codeword communication system, comprising:
发射端,包括M个发射天线,由其中的K个发射天线发射K路数据流,所述K路数据流的各路分别独立进行信道编码,在一个传输时间间隔TTI的各个符号周期,K路数据流中的至少一路轮流使用K个发射天线的各个发射;以及,对于在接收端无法通过干扰消除技术消除从而仍然对某一路数据流的符号形成干扰的一个或多个数据流的符号被发射所使用的一个或多个天线的组合,随着不同的符号周期而变化至少一次,以实现干扰分集;The transmitting end includes M transmitting antennas, and the K transmitting antennas transmit K data streams, each of the K data streams is independently channel coded, and in each symbol period of a transmission time interval TTI, the K channels At least one of the data streams uses each transmission of the K transmit antennas in turn; and the symbols of one or more data streams that cannot be eliminated by the interference cancellation technology at the receiving end and still interfere with the symbols of a certain data stream are transmitted The combination of one or more antennas used varies at least once with different symbol periods to achieve interference diversity;
接收端,所述MIMO系统接收端采用干扰消除的检测技术进行接收。At the receiving end, the receiving end of the MIMO system adopts an interference cancellation detection technology for receiving.
通过上述技术方案可以看出,本发明实施例实现了如下技术效果:It can be seen from the above technical solutions that the embodiments of the present invention achieve the following technical effects:
通过干扰分集技术的采用,使得数据流的瞬时信道容量的分布可以更加集中,从而能将提高MIMO多码字通信的性能。By adopting the interference diversity technology, the instantaneous channel capacity distribution of the data stream can be more concentrated, thereby improving the performance of MIMO multi-codeword communication.
本发明实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例而了解。本发明实施例的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。Additional features and advantages of the embodiments of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the embodiments of the invention. The objectives and other advantages of the embodiments of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
附图说明Description of drawings
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,本发明实施例的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The drawings described here are used to provide a further understanding of the embodiments of the present invention, and constitute a part of the application. The schematic embodiments and descriptions of the embodiments of the present invention are used to explain the present invention, and do not constitute improper limitations to the present invention. In the attached picture:
图1示出了在发射端和接收端同时使用多天线阵列的具有空-时架构的无线通信系统的示意图;Figure 1 shows a schematic diagram of a wireless communication system with a space-time architecture using multiple antenna arrays at both the transmitting end and the receiving end;
图2示出了方案甲和方案乙的瞬时信道容量的概率分布仿真结果的对比图;Fig. 2 shows the comparison diagram of the simulation results of the probability distribution of the instantaneous channel capacity of scheme A and scheme B;
图3示出了根据本发明实施例的MIMO多码字通信方法的流程图;FIG. 3 shows a flowchart of a MIMO multi-codeword communication method according to an embodiment of the present invention;
图4示出了本发明实施例和方案乙的瞬时信道容量的概率分布仿真结果的对比图;Fig. 4 shows the comparison diagram of the simulation results of the probability distribution of the instantaneous channel capacity of the embodiment of the present invention and the scheme B;
图5为本发明实施例提供的系统结构示意图一;FIG. 5 is a schematic diagram of a system structure provided by an embodiment of the present invention;
图6为本发明实施例提供的系统结构示意图二。FIG. 6 is a second schematic diagram of the system structure provided by the embodiment of the present invention.
具体实施方式Detailed ways
本发明实施例提供了一种用于MIMO系统的MIMO多码字通信方法,包括以下步骤:MIMO系统发射端有M个发射天线,选择其中的K个发射天线发射K路数据流;K路数据流的各路分别独立进行信道编码,在一个TTI的各个符号周期,K路数据流的每一路都轮流使用K个发射天线的各个发射;MIMO系统接收端采用干扰消除的检测技术进行接收;The embodiment of the present invention provides a MIMO multi-codeword communication method for a MIMO system, comprising the following steps: the transmitting end of the MIMO system has M transmit antennas, and K transmit antennas are selected to transmit K data streams; K data streams Each channel of the stream is independently channel coded. In each symbol period of a TTI, each channel of the K data streams uses the transmission of the K transmit antennas in turn; the receiving end of the MIMO system adopts interference cancellation detection technology for reception;
其中,在一个TTI的各个符号周期,K路数据流的每一路轮流使用K个发射天线的各个发射的模式满足以下的条件:Wherein, in each symbol period of a TTI, each of the K data streams uses the transmission modes of the K transmit antennas in turn to meet the following conditions:
在由K个发射天线中任意确定的一个(设为天线i)发射K路数据流中任意确定的一路数据流(设为数据流x)的符号的各个符号周期内,在接收端采用干扰消除的检测技术消除了一路或多路已经被检测的数据流的符号的干扰以后,其干扰没有通过干扰消除技术被消除从而仍然对该路数据流x的符号形成干扰的一个或多个数据流的符号被发射所使用的一个或多个天线的组合可以随着不同的符号周期而变化,且至少变化一次,从而可以达到干扰分集的效果;具体可以采用以下两种方式实现所述变化:In each symbol period when a symbol of any one of the K data streams (set as data stream x) is transmitted by any one of the K transmit antennas (set as antenna i), the interference cancellation is adopted at the receiving end After the detection technology has eliminated the interference of one or more symbols of the data stream that has been detected, the interference has not been eliminated by the interference cancellation technology, so the one or more data streams that still interfere with the symbols of the data stream x The combination of one or more antennas used for symbol transmission can change with different symbol periods, and change at least once, so as to achieve the effect of interference diversity; specifically, the following two ways can be used to achieve the change:
(1)方式一:在上述的MIMO多码字通信方法中,在由K个发射天线中任意确定的一个(设为天线m)发射K路数据流中任意确定的一路数据流(设为数据流x)的符号的各个符号周期内,其干扰没有通过干扰消除技术被消除从而仍然对该路数据流x的符号形成干扰的一个或多个数据流的符号被发射所使用的一个或多个天线的组合,遍历所有可能的组合,并且每个组合被使用的次数尽可能相同,以达到最优干扰分集的效果。(1) Mode 1: In the above-mentioned MIMO multi-codeword communication method, one (set as antenna m) arbitrarily determined in the K transmit antennas transmits an arbitrarily determined one-way data stream (set as data stream) in K data streams In each symbol period of the symbol of stream x), one or more symbols of one or more data streams whose interference has not been eliminated by the interference cancellation technology and still form interference to the symbols of the data stream x are transmitted and used Combination of antennas, all possible combinations are traversed, and each combination is used as much as possible to achieve the effect of optimal interference diversity.
在上述的MIMO多码字通信方法中,达到上述最优干扰分集的效果的一种方法可以包括:在一个TTI内,遍历数据流D1,D2,…Dk与天线1,2,…k对应关系的所有可能排列(即多个天线的排列)。In the above-mentioned MIMO multi-codeword communication method, a method to achieve the effect of the above-mentioned optimal interference diversity may include: within one TTI, traversing the corresponding relationship between data streams D1, D2, ... Dk and
在上述的MIMO多码字通信方法中,天线数量M=5,遍历的排列为120种;天线数量M=4,遍历的排列为24种;天线数量M=3,遍历的排列为6种。In the above MIMO multi-codeword communication method, the number of antennas M=5, and 120 permutations to traverse; the number of antennas M=4, 24 permutations to traverse; the number of antennas M=3, 6 permutations to traverse.
在上述的MIMO多码字通信方法中,达到上述最优干扰分集的效果的一种方法还可以包括:在一个TTI内的各个符号周期内,使用每一种排列的次数尽可能相等。In the above-mentioned MIMO multi-codeword communication method, a method for achieving the above-mentioned effect of optimal interference diversity may further include: using each permutation as equal as possible as possible in each symbol period within a TTI.
(2)方式二:本发明实施例提供的方法也可以不遍历所有可能排列而达到上述最优干扰分集的效果,而是遍历较少的排列(即部分排列)以达到相应的最优干扰分集的效果。在上述的MIMO多码字通信方法中,天线数量M=5,遍历的排列为60种即可;天线数量M=4,遍历的排列为12种即可,在后续描述中将给出具体的选择部分排列的具体实现方式。这样做可以使得实现过程更加简单,同时,在一个TTI内的各个符号周期内,还可以令使用每一种排列的次数相等的程度更高。(2) Mode 2: The method provided by the embodiment of the present invention may not traverse all possible permutations to achieve the above-mentioned optimal interference diversity effect, but traverse fewer permutations (ie, partial permutations) to achieve the corresponding optimal interference diversity Effect. In the above-mentioned MIMO multi-codeword communication method, the number of antennas is M=5, and the number of traversal arrangements is only 60; the number of antennas is M=4, and the number of traversal arrangements is only 12, and specific details will be given in the subsequent description Select the specific implementation of partial permutation. Doing so can make the implementation process simpler, and at the same time, in each symbol period within a TTI, the number of times each permutation is used can be equalized to a higher degree.
可见,采用本发明实施例的MIMO系统,M=3时,在接收端第2个被检测的数据流b的瞬时信道容量的概率分布比现有技术中的方案乙更集中;M=4时,在接收端第2个被检测的数据流b和第3个被检测的数据流c的瞬时信道容量的概率分布比现有技术中的方案乙更集中;M=5时,在接收端第2个被检测的数据流b、第3个被检测的数据流c和第4个被检测的数据流d的瞬时信道容量的概率分布比现有技术中的方案乙更集中。注意,所述提案中,只给出了M=4时方案乙的实施例,而M=3与M=5时的实施例没有给出,但是容易类推得到。It can be seen that when using the MIMO system of the embodiment of the present invention, when M=3, the probability distribution of the instantaneous channel capacity of the second detected data stream b at the receiving end is more concentrated than that of the scheme B in the prior art; when M=4 , the probability distribution of the instantaneous channel capacity of the second detected data flow b and the third detected data flow c at the receiving end is more concentrated than the scheme B in the prior art; when M=5, at the receiving end The probability distribution of the instantaneous channel capacity of the 2 detected data streams b, the 3rd detected data stream c and the 4th detected data stream d is more concentrated than the solution B in the prior art. Note that in the proposal, only the embodiment of scheme B when M=4 is given, and the embodiments when M=3 and M=5 are not given, but it can be easily obtained by analogy.
本发明实施例中,接收端还可以向发射端反馈K个CQI(信道质量指示)的信息,所述K个CQI与所述K路数据流一一对应,用于指示所述K路数据流的各路在当前TTI所经历的信道质量。其中,接收端发射的K个CQI的信息经过一个有噪声的信道后到达发射端。In the embodiment of the present invention, the receiving end may also feed back K CQI (Channel Quality Indication) information to the transmitting end, and the K CQIs correspond to the K data streams one by one, and are used to indicate the K data streams The channel quality experienced by each channel in the current TTI. Wherein, the information of K CQIs transmitted by the receiving end reaches the transmitting end after passing through a noisy channel.
发射端在接收由接收端反馈的K个CQI后,便可以根据所接收到的K个CQI值,决定相应的发射端所发射的K路数据流的各路在当前TTI的MCS(调制与信道编码方案);具体可以采用以下方案进行当前TTI的MCS的估计:After the transmitting end receives the K CQIs fed back by the receiving end, it can determine the MCS (modulation and channel encoding scheme); specifically, the following scheme can be used to estimate the MCS of the current TTI:
发射端接收由接收端反馈的K个CQI后,若判定所接收到的K个CQI值中的至少一个不可靠,则相应的发射端将不根据所述的不可靠的至少一个CQI值决定相应的至少一路数据流在当前TTI的MCS,而是根据发射端在此前的一个或者几个TTI的接收到的CQI值估计所述的至少一路数据流在当前TTI的MCS,或者,也可以根据所述至少一路数据流在此前的一个或者几个TTI的MCS估计所述的至少一路数据流在当前TTI的MCS。可选地,相应的判定所接收到的K个CQI值中的至少一个不可靠是指发射端判定所接收到的K个CQI值中的至少一个的信噪比低于一个给定的阀值。After the transmitting end receives the K CQIs fed back by the receiving end, if it determines that at least one of the K received CQI values is unreliable, the corresponding transmitting end will not determine the corresponding The MCS of at least one data stream in the current TTI, but estimate the MCS of the at least one data stream in the current TTI according to the received CQI value of the transmitting end in one or several TTIs before, or, it can also be based on the MCS of the current TTI Estimate the MCS of the at least one data stream in the current TTI for the MCS of the at least one data stream in the previous one or several TTIs. Optionally, correspondingly determining that at least one of the K received CQI values is unreliable means that the transmitting end determines that the signal-to-noise ratio of at least one of the K received CQI values is lower than a given threshold .
本发明实施例中,所述发射端判定所接收到的K个CQI值中的至少一个不可靠的事件发生的概率,大于一个给定的值;其中,该给定的值可以为:5%,或者,10%,或者,40%,或者,50%。In the embodiment of the present invention, the transmitting end determines that the probability of occurrence of at least one unreliable event among the received K CQI values is greater than a given value; wherein, the given value may be: 5% , or, 10%, or, 40%, or, 50%.
下面将参考附图并结合实施例,来详细说明本发明实施例。The embodiments of the present invention will be described in detail below with reference to the drawings and in combination with the embodiments.
图3示出了根据本发明实施例的MIMO多码字通信方法的流程图,其包括以下步骤:Fig. 3 shows the flowchart of the MIMO multi-codeword communication method according to the embodiment of the present invention, and it comprises the following steps:
步骤S10,MIMO系统发射端有M个发射天线,选择其中的K个发射天线发射K路数据流,而且,对于其干扰没有在接收端通过干扰消除技术消除从而仍然对一路数据流形成干扰的一个或多个数据流在被发射时所使用的一个或多个天线的组合需要随着不同的符号周期至少变化一次;Step S10, the transmitting end of the MIMO system has M transmitting antennas, select K transmitting antennas among them to transmit K data streams, and, for the one whose interference is not eliminated by the interference elimination technology at the receiving end, it still interferes with one data stream or the combination of one or more antennas used by multiple data streams to be transmitted needs to change at least once with different symbol periods;
在该步骤中,在发射K路数据流过程中需要满足的条件具体可以包括:In this step, the conditions that need to be met during the process of transmitting K data streams may specifically include:
由K个发射天线中任意确定的一个(设为天线i)发射K路数据流中任意确定的一路数据流(设为数据流x)的符号的各个符号周期内,在接收端采用干扰消除的检测技术消除了一路或多路已经被检测的数据流的符号的干扰以后,其干扰没有通过干扰消除技术被消除从而仍然对该路数据流x的符号形成干扰的一个或多个数据流的符号被发射所使用的一个或多个天线的组合,遍历所有或部分可能的组合;In each symbol period of a symbol of an arbitrarily determined one of the K data streams (set as data stream x) transmitted by any one of the K transmitting antennas (set as antenna i), the interference cancellation method is used at the receiving end After the detection technology eliminates the interference of one or more symbols of the data stream that has been detected, the interference is not eliminated by the interference cancellation technology, so that the symbols of one or more data streams that still interfere with the symbols of the data stream x Combinations of one or more antennas used for transmission, traversing all or some of the possible combinations;
可选地,在采用所述所有或部分可能的组合发送数据流的过程中,可以令每个组合被使用的次数尽可能相同,以达到最优干扰分集的效果。Optionally, in the process of using all or part of the possible combinations to send data streams, each combination may be used as much as possible to achieve the effect of optimal interference diversity.
在该步骤中,假定发射端有M个发射天线,选择其中的K个天线发射K路信号,其中K小于等于M(K不小于3)。所述K路信号的各路分别独立进行信道编码。在一个TTI的各个符号周期,K路发射信号的每一路都轮流使用被选择的K个发射天线的各个发射。In this step, it is assumed that the transmitting end has M transmitting antennas, and K antennas are selected to transmit K signals, wherein K is less than or equal to M (K is not less than 3). Channel coding is performed independently on each of the K channels of signals. In each symbol period of a TTI, each of the K transmission signals uses the transmission of the selected K transmission antennas in turn.
步骤S20,K路数据流的各路分别独立进行信道编码,在一个TTI的各个符号周期,K路数据流中的至少一路轮流使用K个发射天线的各个发射;In step S20, each channel of the K data streams is independently channel-coded, and at least one of the K data streams uses each of the K transmit antennas for transmission in each symbol period of a TTI;
步骤S30,MIMO系统接收端采用干扰消除的检测技术进行接收,由于在步骤S10中采用的发射方式使得在接收端可以达到较佳的干扰分集的效果。In step S30, the receiving end of the MIMO system adopts the detection technology of interference cancellation for receiving, and because of the transmission method adopted in step S10, a better effect of interference diversity can be achieved at the receiving end.
在现有技术的MIMO多码字通信方法中,接收端采用干扰消除的检测技术,依照约定的顺序,检测K路发射信号中还没有被检测的各路中的一路,对这路信号进行信道解码并且校验正确后,消除这一路发射信号对后续检测的干扰;重复本步骤,直到检测出所有的K路发射信号。这样,在接收端采用干扰消除的检测技术接收的情况下,K路信号的任意一路在某个特定符号周期使用某个天线发射时,如果对该路信号形成干扰的各路信号(实际上每一路都受到所有其它的K-1路的干扰,只有接收端采用干扰消除技术,干扰信号的路数才会依次减少)所使用的发射天线组合多于1种(首先被检测的1路信号,可能的干扰天线组合只有1种,最后被检测的1路信号,没有受到干扰),那么在一个TTI的各个符号周期内,在K路信号的任意确定的某路使用任意确定的某个天线发射的各个符号周期,对该路信号形成干扰的各路信号(实际上每一路都受到所有其它的K-1路的干扰,只有接收端干扰消除,干扰信号的路数才会依次减少)所使用的发射天线组合如果可以变化,则变化至少一次(即用到至少2种组合),从而可以达到干扰分集(多样性)的效果。In the MIMO multi-codeword communication method of the prior art, the receiving end adopts the detection technology of interference cancellation, and according to the agreed sequence, detects one of the channels that have not been detected in the transmitted signals of K channels, and channels the signals of this channel. After the decoding and verification are correct, eliminate the interference of this transmission signal to the subsequent detection; repeat this step until all K transmission signals are detected. In this way, when the receiving end adopts the detection technology of interference cancellation to receive, when any one of the K signals is transmitted using a certain antenna in a certain symbol period, if each signal that interferes with the signal (actually each One path is interfered by all other K-1 paths, and the number of paths of interfering signals will be reduced sequentially only if the receiving end adopts interference elimination technology) There are more than one combination of transmitting antennas used (the first detected 1-way signal, There is only one possible interfering antenna combination, and the last detected 1-channel signal is not interfered), then in each symbol period of a TTI, any certain channel of the K-channel signal is transmitted using an arbitrarily determined certain antenna For each symbol period of , each channel that interferes with the signal (in fact, each channel is interfered by all other K-1 channels, and the number of channels of interfering signals will decrease in turn only when the interference at the receiving end is eliminated) If the combination of transmitting antennas can be changed, it should be changed at least once (that is, at least two combinations are used), so that the effect of interference diversity (diversity) can be achieved.
在本发明实施例中,若遍历所有可能的组合,即达到变化最大次数,则可以达到较优干扰分集的效果。In the embodiment of the present invention, if all possible combinations are traversed, that is, the maximum number of changes is reached, the effect of better interference diversity can be achieved.
进一步地:1个TTI的各个符号周期内每个组合被使用的次数相同,或尽可能相同,也可以达到最优干扰分集的效果。Further: the number of times each combination is used in each symbol period of one TTI is the same, or as much as possible, and the effect of optimal interference diversity can also be achieved.
如前所述,方案乙示意图中所示的数据流a、b、c、d依照a、b、c、d的先后顺序被检测,下面针对这种情形描述本发明实施例的应用。As mentioned above, the data streams a, b, c, and d shown in the schematic diagram of solution B are detected in the order of a, b, c, and d. The following describes the application of the embodiment of the present invention for this situation.
在检测数据流a时,存在数据流b、c、d的干扰;在检测数据流b时,因为已经用数据流a的解码结果从接收信号中消除了数据流a的发射信号对检测后续数据流的影响,所以只存在数据流c、d的干扰;在检测数据流c时,因为已经依次用数据流a和b的解码结果从接收信号中消除了数据流a和b的发射信号对检测后续数据流的影响,所以只存在数据流d的干扰;而在检测数据流d时,因为已经依次用数据流a、b和c的解码结果从接收信号中消除了数据流a、b和c的发射信号对检测后续数据流的影响,所以不存在其它数据流的干扰。When detecting data stream a, there are interferences of data streams b, c, and d; when detecting data stream b, because the decoding result of data stream a has been used to eliminate the transmission signal of data stream a from the received signal to detect subsequent data The influence of flow, so there is only the interference of data stream c, d; when detecting data stream c, because the decoding results of data stream a and b have been used in turn to eliminate the transmission signal of data stream a and b from the received signal to detect The impact of subsequent data streams, so there is only the interference of data stream d; and when detecting data stream d, because the decoding results of data streams a, b and c have been used in turn to eliminate data streams a, b and c from the received signal The impact of the transmitted signal on the detection of subsequent data streams, so there is no interference from other data streams.
考察检测数据流b的情况,因为已经用数据流a的解码结果从接收信号中消除了数据流a的发射信号对检测后续数据流的影响,所以在示意图中,把数据流a的符号去掉,得到检测数据流b时方案乙的示意图如下,Consider the detection of data stream b, because the decoding result of data stream a has been used to eliminate the influence of the transmitted signal of data stream a on the detection of subsequent data streams from the received signal, so in the schematic diagram, the symbol of data stream a is removed, The schematic diagram of scheme B when the detection data stream b is obtained is as follows,
由上图可以看出,当数据流b的符号由天线2发射时,对它形成干扰的两个数据流的符号总是由天线3和4发射;当数据流b的符号由天线3发射时,对它形成干扰的两个数据流的符号总是由天线1和4发射;当数据流b的符号由天线4发射时,对它形成干扰的两个数据流的符号总是由天线1和2发射;当数据流b的符号由天线1发射时,对它形成干扰的两个数据流的符号总是由天线2和3发射。即,当数据流b的符号由某一个确定的天线发射时,对它形成干扰的两个数据流c和d的符号总是由固定不变的两个天线发射。如果当数据流b的符号由某一个确定的天线发射时,发射对它形成干扰的两个数据流的符号所使用的天线随着不同的符号周期而变化,那么就可以达到干扰分集的效果,从而让数据流b的瞬时信道容量具有更集中的分布。As can be seen from the above figure, when the symbols of data stream b are transmitted by
考察检测数据流c的情况,因为已经依次用数据流a和b的解码结果从接收信号中消除了数据流a和b的发射信号对检测后续数据流的影响,所以在示意图中,把数据流a和b的符号去掉,得到检测数据流c时方案乙的示意图如下,Consider the detection of data stream c, because the decoding results of data streams a and b have been used in turn to eliminate the influence of the transmitted signals of data streams a and b on the detection of subsequent data streams from the received signal, so in the schematic diagram, the data stream The symbols of a and b are removed, and the schematic diagram of scheme B when detecting data stream c is obtained is as follows,
容易看出,当数据流c的符号由某一个确定的天线发射时,对它形成干扰的一个数据流d的符号总是由固定不变的一个天线发射。如果当数据流c的符号由某一个确定的天线发射时,发射对它形成干扰的一个数据流d的符号所使用的天线随着不同的符号周期而变化,那么就可以达到干扰分集的效果,从而让数据流c的瞬时信道容量具有更集中的分布。It is easy to see that when the symbol of data stream c is transmitted by a certain antenna, the symbol of a data stream d that interferes with it is always transmitted by a fixed antenna. If when the symbol of data stream c is transmitted by a certain antenna, the antenna used to transmit the symbol of a data stream d that interferes with it changes with different symbol periods, then the effect of interference diversity can be achieved. Thus, the instantaneous channel capacity of the data stream c has a more concentrated distribution.
在检测数据流d时,不存在其它数据流的干扰,所以不应用上述的干扰分集技术;而在检测数据流a时,因为当发射数据流a的符号所用的天线确定以后,发射对它形成干扰的三个数据流b、c和d的符号所使用的天线必然是余下的三个天线,不可能变化,所以也不应用上述的干扰分集技术。When detecting data stream d, there is no interference from other data streams, so the above-mentioned interference diversity technology is not applied; and when detecting data stream a, because when the antenna used to transmit the symbol of data stream a is determined, the transmission has a negative impact on it. The antennas used by the symbols of the three interfering data streams b, c, and d must be the remaining three antennas, which cannot be changed, so the above-mentioned interference diversity technology is not applied.
针对AIE提案C30-20061030-070中所述的MCW方案,即上述的方案乙,本发明实施例中,可以通过采用干扰分集的方法进一步对其进行改进,从而使得某些数据流的瞬时信道容量的分布可以更加集中。For the MCW scheme described in the AIE proposal C30-20061030-070, that is, the above-mentioned scheme B, in the embodiment of the present invention, it can be further improved by adopting the method of interference diversity, so that the instantaneous channel capacity of some data streams The distribution can be more concentrated.
如上所述,在由K个发射天线中任意确定的一个(设为天线m)发射K路数据流中任意确定的一路数据流(设为数据流x)的符号的各个符号周期内,其干扰没有通过干扰消除技术被消除从而仍然对该路数据流x的符号形成干扰的一个或多个数据流的符号被发射所使用的一个或多个天线的组合,如果能够变化至少一次,则可以达到干扰分集的效果;若遍历所有可能的组合,并且每个组合被使用的次数尽可能相同,则可以达到最优干扰分集的效果。As mentioned above, in each symbol period when any one of the K transmitting antennas (set as antenna m) transmits the symbols of any one of the K data streams (set as data stream x) arbitrarily determined, the interference The combination of one or more antennas used to transmit the symbols of one or more data streams that are not eliminated by the interference cancellation technology and still interfere with the symbols of the data stream x, if it can be changed at least once, can achieve The effect of interference diversity; if all possible combinations are traversed, and the number of times each combination is used is the same as possible, the effect of optimal interference diversity can be achieved.
下面以前述的方案乙为例,说明本发明实施例的具体实施方式。The specific implementation manner of the embodiment of the present invention will be described below by taking the foregoing scheme B as an example.
前述的方案乙示意图如下:The schematic diagram of the aforementioned scheme B is as follows:
一种改进方案乙以达到最好干扰分集效果的方法,就是数据流a、b、c、d的符号分别使用各个天线1、2、3、4发射时,在一个TTI内,数据流a、b、c、d与天线1、2、3、4的对应关系,遍历所有可能的排列(4的排列有24种),而且,一个TTI内的各个符号周期,每一种排列被用到的次数尽可能相等。因为所有的排列都被用到,那么显然当某个数据流的符号由某一个确定的天线发射时,发射其干扰没有通过干扰消除技术被消除从而仍然对它形成干扰的一个或多个数据流的符号所使用的一个或多个天线,会遍历所有可能的组合。这种方案的示意图如下,图中,所有的24种排列都被列出:A method for improving scheme B to achieve the best interference diversity effect is that when the symbols of data streams a, b, c, and d are respectively transmitted using
可以看出,在该24种排列中,当数据流b采用天线2发送时,相应的数据流c、d不再固定由天线3、4发送,而是由其他各天线1、3、4构成的各种二天线组合进行发送。It can be seen that among the 24 arrangements, when the data stream b is transmitted by
上述的遍历所有可能的排列的方法,会使实现的复杂度较高,同时,一个TTI包括的符号周期数目必须是24的整数倍,才能使每种排列被使用的次数相等而达到最好的效果。实际上,不需要遍历所有可能的排列,而仅采用其中的部分排列,就可以保证当某个数据流的符号由某一个确定的天线发射时,发射其干扰没有通过干扰消除技术被消除从而仍然对它形成干扰的一个或多个数据流的符号所使用的一个或多个发射天线组合随着不同的符号周期而变化,并且遍历所有可能的组合,以实现较佳的干扰分集效果,下面将推导这种方法的具体实现过程:The above-mentioned method of traversing all possible permutations will make the implementation more complex. At the same time, the number of symbol periods included in a TTI must be an integer multiple of 24, so that the number of times each permutation is used is equal to achieve the best Effect. In fact, there is no need to traverse all possible permutations, but only some permutations can be used to ensure that when a symbol of a data stream is transmitted by a certain antenna, the interference of the transmission is not eliminated by the interference cancellation technology, thereby still The combination of one or more transmit antennas used by the symbols of one or more data streams that interfere with it changes with different symbol periods, and all possible combinations are traversed to achieve a better interference diversity effect. The following will Deriving the specific implementation process of this method:
考察检测数据流b的情况,由上所述,这时存在未检测的两个数据流c和d的符号的干扰。因为只需要b的符号由某一个确定的天线发射时,发射对它形成干扰的两个数据流的符号所使用的两个天线遍历所有可能的组合,这里用*表示作为干扰的数据流c和d的符号。从以下示意图的前三列可以看出,当b的符号由天线2发射时,发射对它形成干扰的两个数据流的符号所使用的两个天线遍历所有可能的组合(从余下的三个天线中取两个,有三种组合);容易看出当b的符号分别由天线3、4、1发射时,发射对它形成干扰的两个数据流的符号所使用的两个天线也遍历所有可能的组合。而作为干扰的数据流c和d的符号,可以随意放入每一列的两个*的位置。Considering the situation of detecting data stream b, as mentioned above, there is interference of undetected symbols of two data streams c and d. Because only the symbols of b are required to be transmitted by a certain antenna, the two antennas used to transmit the symbols of the two data streams that interfere with it traverse all possible combinations. Here * represents the data stream c and The sign of d. As can be seen from the first three columns of the following schematic diagram, when the symbol of b is transmitted by
对数据流b达到最好干扰分集效果的方案的示意图:Schematic diagram of the scheme to achieve the best interference diversity effect for data stream b:
上面示意图表示的方案,对检测数据流b的情况达到了最好干扰分集效果。在上述方案的基础上,通过把作为干扰的数据流c和d的符号,依照一定的规则放入每一列的两个*的位置,使得对检测数据流c的情况也达到最好干扰分集效果,具体的设计思路如下:The solution shown in the schematic diagram above achieves the best interference diversity effect for the detection data stream b. On the basis of the above scheme, by putting the symbols of the data streams c and d as interference into the two * positions of each column according to certain rules, the best interference diversity effect can be achieved for the detection data stream c , the specific design ideas are as follows:
需要做到c的符号由某一个确定的天线发射时,发射对它形成干扰的一个数据流d的符号所使用的一个天线遍历所有可能的组合。下表列出了所有可能的12种情况。由下表的前3列可以看出,当数据流c的符号由天线3发射时,发射对它形成干扰的一个数据流d的符号所使用的一个天线遍历所有可能的组合(从余下的三个天线中取一个,有三种组合);容易看出当c的符号分别由天线4、1、2发射时,发射对它形成干扰的1个数据流d的符号所使用的1个天线也遍历所有可能的组合。It is necessary to realize that when the symbol of c is transmitted by a certain antenna, the antenna used to transmit the symbol of a data stream d that interferes with it traverses all possible combinations. The table below lists all possible 12 situations. As can be seen from the first three columns of the table below, when the symbols of data stream c are transmitted by
对数据流c达到最好干扰分集效果的方案的示意表格:Schematic table of the scheme to achieve the best interference diversity effect for data stream c:
上表中的12种情况,正好可以全部填入前述的对数据流b达到最好干扰分集效果的方案的示意图的*中。填入的一种方法如下:The 12 situations in the above table can be all filled in * in the schematic diagram of the above-mentioned scheme for achieving the best interference diversity effect on the data stream b. One way to fill in is as follows:
把数据流c由天线m发射而数据流d由天线n发射的情况,与数据流c由天线n发射而数据流d由天线m发射的情况,称为一个匹配对,记为匹配对(m,n)。The case where data stream c is transmitted by antenna m and data stream d is transmitted by antenna n, and the case where data stream c is transmitted by antenna n and data stream d is transmitted by antenna m are called a matching pair, denoted as a matching pair (m , n).
一个匹配对的例子如下表格所示:An example of a matching pair is shown in the table below:
对数据流c达到最好干扰分集效果的方案的示意表格中的12种情况,正好组成了6个匹配对。可以把每个匹配对用以下的方法填入,在对数据流b达到最好干扰分集效果的方案的示意图中找两个*占位相同的列,依次填入和这样的操作进行6次后,刚好填满。注意匹配对(m,n)所包含的和与对数据流b达到最好干扰分集效果的方案的示意图中的两个*占位相同的列的对应关系可以是任意的。详细的过程如下:The 12 cases in the schematic table of the scheme for achieving the best interference diversity effect on the data stream c form exactly 6 matching pairs. Each matching pair can be filled in by the following method. In the schematic diagram of the scheme that achieves the best interference diversity effect on data stream b, find two columns with the same *occupancy, and fill in them in turn and After such an operation is carried out 6 times, it is just filled. Note that the matching pair (m, n) contains and The corresponding relationship between the columns with the same occupancy of the two * in the schematic diagram of the scheme for achieving the best interference diversity effect on the data stream b can be arbitrary. The detailed process is as follows:
(1)把匹配对(3,4)填入示意图(1) Fill the matching pair (3, 4) into the schematic diagram
本发明实施例使用上面这个方案。如前所述,匹配对(m,n)所包含的和与对数据流b达到最好干扰分集效果的方案的示意图中的两个*占位相同的列的对应关系可以是任意的,所以把匹配对(3,4)填入示意图的方式也可以是:The embodiment of the present invention uses the above solution. As mentioned earlier, a match pair (m, n) consists of and The corresponding relationship between the two columns with the same occupancy in the schematic diagram of the scheme that achieves the best interference diversity effect on data stream b can be arbitrary, so the way to fill the matching pair (3, 4) into the schematic diagram can also be :
(2)再把匹配对(1,4)填入示意图(2) Then fill the matching pair (1, 4) into the schematic diagram
本发明实施例使用上面这个方案。如前所述原理,把匹配对(1,4)填入示意图的方式也可以是The embodiment of the present invention uses the above solution. As mentioned above, the way to fill the matching pair (1, 4) into the schematic diagram can also be
(3)再把匹配对(1,3)填入示意图(3) Then fill the matching pair (1, 3) into the schematic diagram
本发明的实施例使用上面这个方案。如前所述原理,把匹配对(1,3)填入示意图的方式也可以是另一种,如将第3列的数据流c、d使用的天线修改天线3和天线1,并将第8列的数据流c、d使用的天线修改天线1和天线3,对于本领域的专业人士来说很容易得到这一种,就不再赘述。Embodiments of the present invention use the above scheme. According to the principle mentioned above, the way of filling the matching pair (1, 3) into the schematic diagram can also be another way, such as modifying the antennas used by the data streams c and d in the third column to
(4)再把匹配对(2,4)填入示意图(4) Then fill the matching pair (2, 4) into the schematic diagram
本发明的实施例使用上面这个方案。如前所述原理,把匹配对(2,4)填入示意图的方式也可以是另一种,如将第4列的数据流c、d使用的天线修改天线4和天线2,并将第11列的数据流c、d使用的天线修改天线2和天线4,对于本领域的专业人士来说很容易得到这一种,就不再赘述。Embodiments of the present invention use the above scheme. As mentioned above, the way of filling the matching pair (2, 4) into the schematic diagram can also be another way, such as modifying the antennas used by the data streams c and d in the fourth column to
(5)再把匹配对(1,2)填入示意图(5) Then fill the matching pair (1, 2) into the schematic diagram
本发明的实施例使用上面这个方案。如前所述原理,把匹配对(1,2)填入示意图的方式也可以是另一种,如将第6列的数据流c、d使用的天线修改天线2和天线1,并将第9列的数据流c、d使用的天线修改天线1和天线2,对于本领域的专业人士来说很容易得到这一种,就不再赘述。Embodiments of the present invention use the above scheme. As mentioned above, the way to fill the matching pair (1, 2) into the schematic diagram can also be another way, such as modifying the antennas used by the data streams c and d in
(6)再把匹配对(2,3)填入示意图(6) Then fill the matching pair (2, 3) into the schematic diagram
本发明的实施例使用上面这个方案。如前所述原理,把匹配对(2,3)填入示意图的方式也可以是另一种,如将第7列的数据流c、d使用的天线修改天线3和天线2,并将第12列的数据流c、d使用的天线修改天线2和天线3,对于本领域的专业人士来说很容易得到这一种,就不再赘述。Embodiments of the present invention use the above scheme. According to the principle mentioned above, the way of filling the matching pair (2, 3) into the schematic diagram can also be another way, such as modifying the antennas used by the data streams c and d in the seventh column to
这样得到了最后的实施例的方案,从该方案的构造过程可以知道,它既对数据流b达到最好干扰分集效果,也对数据流c达到最好干扰分集效果。表达上述方案的矩阵中的空白位置由数据流a的符号占据。为了表达得清楚,把数据流a的符号填入,得到达到最好干扰分集效果的方案的示意图如下:In this way, the scheme of the last embodiment is obtained. From the construction process of this scheme, it can be known that it not only achieves the best interference diversity effect for data stream b, but also achieves the best interference diversity effect for data stream c. The empty positions in the matrix expressing the above scheme are occupied by the symbols of data stream a. In order to express clearly, the symbols of the data stream a are filled in, and the schematic diagram of the solution to achieve the best interference diversity effect is obtained as follows:
上述的方案只需要遍历12种不同的排列,实现的复杂度较低,同时,一个TTI包括的符号周期数目只需要是12的整数倍,就可以使每种排列被使用的次数相等而达到最好的效果。The above scheme only needs to traverse 12 different permutations, and the implementation complexity is low. At the same time, the number of symbol periods included in a TTI only needs to be an integer multiple of 12, so that the number of times each permutation is used is equal to achieve the maximum Good results.
从上述最后的实施例的方案的构造过程可以知道,把每一个匹配对(m,n)所包含的和填入对数据流b达到最好干扰分集效果的方案的示意图时,都有两种可能的实现。所以把上述的6个匹配对(m,n)所包含的和填入对数据流b达到最好干扰分集效果的方案的示意图时,可能的实现方案有2×2×2×2×2×2=64种,这64种方案都是使用本发明实施例的原理得到,从而都在本发明的保护范围之内。It can be known from the construction process of the scheme of the above-mentioned last embodiment that each matching pair (m, n) contains and When filling in the schematic diagram of the scheme for achieving the best interference diversity effect on data stream b, there are two possible realizations. So the above 6 matching pairs (m, n) contained in and When filling in the schematic diagram of the scheme for achieving the best interference diversity effect on data stream b, there are 2×2×2×2×2×2=64 possible implementation schemes, and these 64 kinds of schemes all use the embodiment of the present invention The principle is obtained, thereby all within the protection scope of the present invention.
这64种方案是这样得到的,把第1个匹配对填入示意图时,有两种可能的实现,记为(I1、I2)。把第2个匹配对填入示意图时,有两种可能的实现,记为(II1、II2)。相应的把第3、4、5和6个匹配对填入示意图时,各自有两种可能的实现,分别记为(III1、III2),(IV1、IV2),(V1、V2),(VI1、VI2)。容易看到,填入第1个和第2个匹配对后,可能的方案有2×2=4种,即方案I1II1、I1II2、I2II1、I2II2,例如其中的I2II1表示填入第1个匹配对用I2实现而填入第2个匹配对用II1实现的方案;填入第1个、第2个和第3个匹配对后,可能的方案有2×2×2=8种,即方案I1II1III1、I1II2III1、I2II1III1、I2II2III1、I1II1III2、I1II2III2、I2II1III2、I2II2III2,例如其中的I2II1III2表示填入第1个匹配对用I2实现,填入第2个匹配对用II1实现的方案,并且填入第3个匹配对用III2实现的方案。由此可以类推到把更多的配对匹配对填同时,容易验证,在所有的24种不同的排列中,去掉上述达到最好干扰分集效果的方案所必须的一群的至少12种不同的排列以后,所余下的12种排列,必然还是达到最好干扰分集效果的方案所必须的另外一群的至少12种不同的排列,即遍历上述余下的12种排列的方案,仍旧是达到最好干扰分集效果的方案。我们可以举例验证这一点。These 64 schemes are obtained in this way. When filling the first matching pair into the schematic diagram, there are two possible realizations, denoted as (I 1 , I 2 ). When filling the second matching pair into the schematic diagram, there are two possible realizations, denoted as (II 1 , II 2 ). Correspondingly, when the 3rd, 4th, 5th and 6th matching pairs are filled in the schematic diagram, there are two possible realizations respectively, which are respectively recorded as (III 1 , III 2 ), (IV 1 , IV 2 ), (V 1 , V 2 ), (VI 1 , VI 2 ). It is easy to see that after filling in the first and second matching pairs, there are 2×2=4 possible schemes, that is, schemes I 1 II 1 , I 1 II 2 , I 2 II 1 , I 2 II 2 , For example, I 2 II 1 means filling in the first matching pair with I 2 and filling in the second matching pair with II 1 ; after filling in the first, second and third matching pairs , there are 2×2×2=8 possible schemes, that is, schemes I 1 II 1 III 1 , I 1 II 2 III 1 , I 2 II 1
在所有的24种不同的排列:去掉上述达到最好干扰分集效果的方案所必须的至少12种不同的排列,即下面的12种排列,记为群一,In all 24 different permutations: remove at least 12 different permutations necessary for the above scheme to achieve the best interference diversity effect, that is, the following 12 permutations, which are recorded as
然后我们得到余下的12种排列,记为群二,即Then we get the remaining 12 permutations, which are recorded as
因为在接收端采用干扰消除技术以后,第一个被检测并消除其干扰的数据流a,对后续的数据流b和c的检测不构成干扰,所以把a用□代替,而□表示对当前待检测数据流的符号不形成干扰,由此得到不考虑a的干扰的示意图如下Because after the interference cancellation technology is adopted at the receiving end, the first data stream a that is detected and its interference is eliminated does not interfere with the detection of subsequent data streams b and c, so a is replaced by □, and □ means that it is harmful to the current The symbols of the data stream to be detected do not form interference, so the schematic diagram of the interference without considering a is as follows
数据流c和d都对数据流b的检测构成干扰,所以把c和d用*代替,而*表示对当前待检测数据流的符号形成干扰,由此得到Both data streams c and d interfere with the detection of data stream b, so c and d are replaced by *, and * means that they interfere with the symbols of the current data stream to be detected, thus we get
由上图可以看出,对于数据流b的检测,这个方案达到了最优干扰分集的效果,即在b使用某一固定的天线发射时,对b形成干扰的发射信号所使用的发射天线组合遍历所有可能的组合。As can be seen from the above figure, for the detection of data stream b, this scheme achieves the effect of optimal interference diversity, that is, when b uses a fixed antenna to transmit, the combination of transmitting antennas used by the transmitting signal that interferes with b Go through all possible combinations.
数据流d对数据流c的检测构成干扰,而数据流b对数据流c的检测不构成干扰,所以在不考虑a的干扰的示意图中把d用*代替并且把b用□代替,得到:Data stream d interferes with the detection of data stream c, while data stream b does not interfere with the detection of data stream c, so in the schematic diagram that does not consider the interference of a, replace d with * and b with □ to obtain:
由上图可以看出,对于数据流c的检测,这个方案也达到了最优干扰分集的效果,即在c使用某一固定的天线发射时,对c形成干扰的发射信号所使用的发射天线组合遍历所有可能的组合。从而我们验证了在所有的24种不同的排列中,去掉上述达到最好干扰分集效果的方案所必须的至少12种不同的排列以后,所余下的12种排列,必然还是达到最好干扰分集效果的方案所必须的至少12种不同的排列。As can be seen from the above figure, for the detection of data stream c, this scheme also achieves the effect of optimal interference diversity, that is, when c uses a fixed antenna to transmit, the transmitting antenna used by the transmitting signal that interferes with c Combinations iterate over all possible combinations. Thus we have verified that in all 24 different permutations, after removing at least 12 different permutations necessary for the above scheme to achieve the best interference diversity effect, the remaining 12 permutations must still achieve the best interference diversity effect The program must have at least 12 different permutations.
综上所述,可以看出,本发明实施例对于发射4个数据流的情况,共有两个可以选择应用的实现方案:一个是遍历所有的24种排列,并且在一个TTI内每种排列使用的次数尽可能相等,记为方案A;另一种是遍历上述的特定的12种排列,并且在一个TTI内每种排列使用的次数尽可能相等,记为方案B。To sum up, it can be seen that for the case of transmitting 4 data streams in the embodiment of the present invention, there are two implementation schemes that can be selected and applied: one is to traverse all 24 permutations, and use each permutation in one TTI The number of times is as equal as possible, which is recorded as scheme A; the other is to traverse the above-mentioned 12 specific permutations, and the number of times each permutation is used is as equal as possible within one TTI, which is recorded as scheme B.
在实际的实现中,还可以把上述的两种方案结合起来,现在举一个实施例如下:假设1个TTI内包含24*4+12=108个符号周期,那么,可以在1个TTI内,先遍历所有的24种排列4次,占用24*4=96个符号周期,然后在余下的12个符号周期,遍历上述的特定的12种排列。容易看出,这种方案达到了最优干扰分集的效果,因为在所述24*4=96个符号周期内,按照第一种方案遍历了所有的24种排列且每种排列使用的次数相等;而在余下的12个符号周期内,按照第二种方案遍历了上述的特定的12种排列且每种排列使用的次数相等。In actual implementation, the above two schemes can also be combined. Now, an example is given as follows: Assuming that 1 TTI contains 24*4+12=108 symbol periods, then, within 1 TTI, First traverse all 24
通常1个TTI内包含的符号周期数y不一定是24或者12的整数倍。如上所述,如果采用遍历所有的24种排列的方案,那么在遍历多次以后,当余下的符号周期数目不足24但是大于12,那么可以再按照第二种方案遍历上述的特定的12种排列1次,这样余下的符号周期数必然小于12;而如果采用上述的特定的12种排列的方案,那么在遍历多次以后,当余下的符号周期数目不足以再遍历一次时,余下的符号周期数必然也小于12。所以对于1个TTI内包含的符号周期数y不是24或者12的整数倍的情况,我们只需要考虑遍历多次以后余下的符号周期数小于12的情况。Usually, the number of symbol periods y included in one TTI is not necessarily an integer multiple of 24 or 12. As mentioned above, if the scheme of traversing all 24 permutations is adopted, then after traversing multiple times, when the number of remaining symbol periods is less than 24 but greater than 12, then the above-mentioned 12 specific permutations can be traversed according to the
此时,我们把余下的符号周期数记为x,x是y除以12得到的余数,必然小于12。下文给出在余下的x个符号周期内遍历排列的方案,该方案可以达到最优的效果。At this point, we record the remaining number of symbol periods as x, and x is the remainder obtained by dividing y by 12, which must be less than 12. A scheme for traversing permutations within the remaining x symbol periods is given below, which can achieve optimal results.
该方案需要满足,在这x个符号周期内,所经历的x种排列,必然是遍历上述的特定的12种排列的方案B包含的12种排列中不同的x种。如前所述,方案B可以有不同的64种实现,取其中任意一种实现所采用的12种排列即可。The scheme needs to satisfy that within the x symbol periods, the x types of permutations experienced must be different x types of the 12 permutations included in the scheme B that traverses the above-mentioned specific 12 permutations. As mentioned above, scheme B can have 64 different implementations, and any one of the 12 permutations adopted by any one of them can be used.
在x大于等于4的情况下,在所述x个符号周期,每4个符号周期遍历的4个排列还需要满足这样的原则:在这4个排列中,每一个数据流都遍历了所有的4个发射天线,即每一个数据流在这4个排列中的各个所使用的发射天线都各不相同。下面以本发明实施例所举的方案B的一种实现所遍历的特定的12种排列为例,给出上述技术的实施例。In the case that x is greater than or equal to 4, in the x symbol periods, the 4 permutations traversed every 4 symbol periods also need to meet the following principle: in these 4 permutations, each data stream traverses all The 4 transmit antennas, that is, the transmit antennas used by each data stream in the 4 permutations are different. An embodiment of the above-mentioned technology is given below by taking the specific 12 permutations traversed by an implementation of solution B in the embodiment of the present invention as an example.
本发明实施例所举的方案B的一种实现所遍历的特定的12种排列,即如前文所述记为群一的12种排列,如下:The specific 12 kinds of arrangements traversed by a kind of scheme B mentioned in the embodiment of the present invention, that is, the 12 kinds of arrangements recorded as
假设上述所述x个符号周期(x>4)中某4个符号周期遍历的第1个排列是那么根据每一个数据流在这4个排列中的各个所使用的发射天线都各不相同的原则,在这4个符号周期遍历的其它3个排列,必然不会在任意一行的元素与排列在该行的元素相同,由此排除掉的各个排列,如下图所示,被排除掉的排列所对应的列中打-的元素就是与排列在相同行的元素相同的元素。Assume that the first permutation traversed by a certain 4 symbol periods in the above x symbol periods (x>4) is Then, according to the principle that each data stream uses different transmitting antennas in each of these 4 permutations, the other 3 permutations traversed in these 4 symbol periods must not be in any row. The elements in this row are the same, and each arrangement that is excluded from this, as shown in the figure below, the element marked with - in the column corresponding to the excluded arrangement is the same as the arrangement Elements on the same row are the same element.
删除上述所在列有-被排除掉的各个排列后,得到After deleting all the permutations in which the above columns have - excluded, we get
图中把选定的第1个排列放在[]外。 In the figure, the selected first arrangement is placed outside [].
在[]中,相同行的元素相同的排列不可以共存,它们是列(1)(3)、列(1)(4)、列(1)(2)、列(1)(4)(5)、列(2)(5)、列(3)(5)、列(4)(5)。因为(1)与所有的列不能共存,排除(1),那么剩下的列(2)(3)(4)(5)中,不能共存的是列(2)(5)、列(3)(5)、列(4)(5),因为(5)与所有剩下的列不能共存,排除(5),所以得到4个排列In [], the same arrangement of elements in the same row cannot coexist, they are columns (1) (3), columns (1) (4), columns (1) (2), columns (1) (4) ( 5), column (2) (5), column (3) (5), column (4) (5). Because (1) cannot coexist with all columns, excluding (1), then among the remaining columns (2)(3)(4)(5), the column(2)(5) and column(3) cannot coexist )(5), column (4)(5), because (5) cannot coexist with all remaining columns, exclude (5), so get 4 permutations
记为组一。 Recorded as group one.
它们满足每一个数据流在这4个排列中的各个所使用的发射天线都各不相同的原则。They satisfy the principle that the transmit antennas used in each of the 4 permutations are different for each data stream.
上述方案B的一种实现所遍历的特定的12种排列中,去掉上述的4个排列后,余下的8个排列如下:Among the specific 12 permutations traversed by an implementation of the above scheme B, after removing the above-mentioned 4 permutations, the remaining 8 permutations are as follows:
采用求得上述的4个排列的方法类似的方法,则可以求得这8个排列可以分成2组,每组有4个排列且组内的4个排列满足每一个数据流在这4个排列中的各个所使用的发射天线都各不相同的原则。这两组分别是:Using a similar method to obtain the above 4 permutations, it can be obtained that these 8 permutations can be divided into 2 groups, each group has 4 permutations and the 4 permutations in the group satisfy each data stream in these 4 permutations The principle that the transmitting antennas used in each of them are different. These two groups are:
由上面的叙述可以知道,在x大于4的情况下,在所述x个符号周期,每4个符号周期遍历的4个排列可以是上述的组一、组二和组三中任意一组所包含的4个排列。It can be known from the above description that when x is greater than 4, in the x symbol periods, the 4 permutations traversed every 4 symbol periods can be any one of the
更具体的,在x大于等于8的情况下,在4个符号周期遍历上述的组一、组二和组三中任意一组所包含的4个排列例如组二,再在另4个符号周期遍历除了已经遍历的组(例如组二)以外上述的组一、组二和组三中任意一组所包含的4个排列例如组一,最后的(x-8)个符号周期,遍历除了已经遍历的两个组(例如组二、组一)以外上述的组一、组二和组三中任意一组所包含的4个排列中任意的(x-8)个。More specifically, in the case that x is greater than or equal to 8, the 4 permutations contained in any of the above-mentioned
在x大于等于4小于8的情况下,在4个符号周期遍历上述的组一、组二和组三中任意一组所包含的4个排列例如组二,最后的(x-4)个符号周期,遍历除了已经遍历的两个组(例如组二、组一)以外上述的组一、组二和组三中任意一组所包含的4个排列中任意的(x-4)个。In the case that x is greater than or equal to 4 and less than 8, traverse the 4 permutations contained in any of the above-mentioned
在x小于4的情况下,在x个符号周期,遍历上述的组一、组二和组三中任意一组所包含的4个排列中任意的x个。In the case that x is less than 4, any x of the 4 permutations contained in any one of the
上述在4个符号周期是指在时间域或者频率域相邻的某4个符号周期内(即不是任意的4个符号周期,而是相邻的4个符号周期),每个数据流使用的发射天线各不相同,相应的具体处理可以包括:在一个TTI内,从某个符号周期开始所经历的时间域或者频率域相邻的4个符号周期内,每个数据流使用的发射天线各不相同;从与上述4个符号周期中至少一个在时间域或者频率域相邻的某一个符号周期开始所经历的时间域或者频率域相邻的4个符号周期内,每个数据流使用的发射天线各不相同;如此依次经历的多组时间域或者频率域相邻的4个符号周期都满足上述条件,直到所述的一个TTI内剩余的符号周期数目小于4。The above 4 symbol periods refer to the 4 adjacent symbol periods in the time domain or the frequency domain (that is, not any 4 symbol periods, but adjacent 4 symbol periods), each data stream uses The transmit antennas are different, and the corresponding specific processing may include: within a TTI, within the 4 adjacent symbol periods in the time domain or frequency domain experienced from a certain symbol period, the transmit antennas used by each data stream are respectively Not the same; within the 4 symbol periods adjacent to the time domain or frequency domain experienced from a certain symbol period adjacent to at least one of the above 4 symbol periods in the time domain or frequency domain, each data stream uses The transmitting antennas are different; multiple sets of adjacent 4 symbol periods in the time domain or frequency domain in this way all meet the above conditions, until the number of remaining symbol periods in one TTI is less than 4.
同样还可以对如前文所述记为群二的12种排列进行相应的划分处理,所述群二的12种排列如下:Similarly, the 12 permutations recorded as group two as mentioned above can also be divided accordingly, and the 12 permutations of the group two are as follows:
采用与把群一的12种排列分成上述三组的方法相同的方法,还可以把群二的12种排列分成3组,具体如下:Using the same method as the method for dividing the 12 permutations of
可见,该群二的三组也满足每组有4个排列且组内的4个排列满足每一个数据流在这4个排列中的各个所使用的发射天线都各不相同的原则。It can be seen that the three groups of the
此外,在实际的MIMO+OFDM信道中,信道情况是沿时间域和频率域逐渐变化的。即,时间域和频率域相邻的多个符号周期,虽然可以近似认为在这些符号周期内信道情况不变,实际上是两个符号周期在时间域和频率域上距离越小,这两个符号周期的信道情况差别越小。比如在前述一个数据包使用时域上连续的8个OFDM符号,每个OFDM符号占用频域上连续的16个子载波的通信方案中,虽然可以近似的认为信道情况在所述的8个OFDM符号和16个子载波上的128个符号周期内的变化可以忽略,实际上,在位于同一OFDM符号和相邻子载波的两个符号周期内,以及在位于同一子载波和相邻OFDM符号的两个符号周期内,信道的变化非常小;而在时域或者频域间隔较大的两个符号周期内,信道的变化较大。In addition, in an actual MIMO+OFDM channel, the channel condition changes gradually along the time domain and the frequency domain. That is, multiple symbol periods adjacent to the time domain and the frequency domain, although it can be approximately considered that the channel conditions remain unchanged in these symbol periods, in fact, the smaller the distance between the two symbol periods in the time domain and the frequency domain, the two The channel condition difference of the symbol period is smaller. For example, in the aforementioned communication scheme in which a data packet uses 8 consecutive OFDM symbols in the time domain, and each OFDM symbol occupies 16 consecutive subcarriers in the frequency domain, although it can be approximately considered that the channel condition is within the range of the 8 OFDM symbols and 128 symbol periods on 16 subcarriers are negligible, in fact, within two symbol periods located on the same OFDM symbol and adjacent subcarriers, and within two symbol periods located on the same subcarrier and adjacent OFDM symbols Within a symbol period, the change of the channel is very small; while within two symbol periods with a large interval in the time domain or frequency domain, the change of the channel is relatively large.
从而,为了达到更好的分集效果,在遍历所有的24种排列多次的过程中,或者在遍历达到最优干扰分集效果的12种排列多次的过程中,每一次遍历24种排列或者12种排列时,所包含的24种或者12种排列不是按照任意顺序被遍历,而是满足在频率域或者时间域连续的4个符号周期内所经历的4个排列中的各个,每一个数据流所使用的发射天线都各不相同的原则。注意在实际的通信系统中,有些符号周期被用来发射导频符号,从而不能用来发射数据符号;对于某两个数据符号所占用的两个符号周期在物理上并不相邻,而是间隔有用于发射导频符号的一个或者多个符号周期(一般是一个符号周期)的情况,我们也认为所述的两个数据符号所占用的两个符号周期是连续的。Therefore, in order to achieve a better diversity effect, in the process of traversing all the 24 permutations for multiple times, or in the process of traversing the 12 permutations that achieve the optimal interference diversity effect, each traversal of 24 permutations or 12 When permutations, the 24 or 12 permutations included are not traversed in any order, but satisfy each of the 4 permutations experienced in 4 consecutive symbol periods in the frequency domain or time domain. Each data stream The transmitting antennas used all vary in principle. Note that in an actual communication system, some symbol periods are used to transmit pilot symbols, so they cannot be used to transmit data symbols; the two symbol periods occupied by two data symbols are not physically adjacent, but The interval may be one or more symbol periods (generally one symbol period) for transmitting pilot symbols, and we also consider that the two symbol periods occupied by the two data symbols are continuous.
采用方案B时,在连续的12个符号周期遍历达到最优干扰分集效果的12种排列多次的过程中,满足上述原则的方法在下文介绍。当所用的12种排列就是前文所述本发明实施例所举方案B的一种实现所遍历的特定的12种排列,即,When scheme B is adopted, in the process of traversing the 12 permutations that achieve the optimal interference diversity effect multiple times in 12 consecutive symbol periods, the method that satisfies the above principles is introduced below. When the 12 permutations used are the specific 12 permutations traversed by a realization of the scheme B mentioned in the embodiment of the present invention mentioned above, that is,
由前文所述,这12种排列可以分成3组,每组包括4个不同的排列,并且每组内的4个排列满足每一个数据流在这4个排列中的各个所使用的发射天线都各不相同的原则。这三个组如下:As mentioned above, these 12 permutations can be divided into 3 groups, each group includes 4 different permutations, and the 4 permutations in each group meet the requirement that the transmit antennas used by each data stream in each of the 4 permutations different principles. The three groups are as follows:
那么,在遍历达到最优干扰分集效果的12种排列多次的过程中的每一次,都在时间域或者频率域连续的4个符号周期内遍历以上三个组中的任意一组的4个排列,再在接下来的时间域或者频率域连续的4个符号周期内遍历以上三个组中除掉已经被遍历的一组以外余下的组中的任意一组的4个排列,最后在接下来的时间域或者频率域连续的4个符号周期内遍历以上三个组中除掉已经被遍历的两组以外余下的唯一一组中的4个排列,以完成对所述12种排列的一次遍历。Then, each time in the process of traversing the 12 permutations to achieve the optimal interference diversity effect for multiple times, it is necessary to traverse the 4 symbols of any one of the above three groups within 4 consecutive symbol periods in the time domain or frequency domain. Arrangement, and then in the next 4 consecutive symbol periods in the time domain or frequency domain, traverse the 4 permutations of any group of the remaining groups except for the group that has been traversed in the above three groups, and finally in the following Traverse the 4 permutations in the remaining unique group except the two groups that have been traversed in the above three groups in the 4 consecutive symbol periods in the time domain or frequency domain, so as to complete the 12 permutations one pass.
在时间域或者频率域连续的4个符号周期内遍历以上三个组中的某一组的4个排列时,这4个排列的顺序可以任意变化而对系统性能的影响比较小。然而,为了达到更好的分集效果,需要满足两个相邻的组之间的两个相邻的符号周期内所用的两个排列,也满足每一个数据流在这两个排列中的各个所使用的发射天线都各不相同的原则。When traversing the 4 permutations of one of the above three groups within 4 consecutive symbol periods in the time domain or the frequency domain, the order of the 4 permutations can be changed arbitrarily with relatively little impact on system performance. However, in order to achieve a better diversity effect, it is necessary to satisfy the two permutations used in two adjacent symbol periods between two adjacent groups, and also satisfy the requirements of each data stream in the two permutations. The transmitting antennas used all vary in principle.
如下图所示,假设组内各个排列遍历的顺序就是按照上图中的顺序,而在一段连续的符号周期内按照组一、组二和组三的先后顺序遍历12个排列,而在下一段连续的符号周期内再按照组一、组二和组三的先后顺序遍历12个排列,那么其示意图如下:As shown in the figure below, it is assumed that the traversal order of each permutation in the group is in accordance with the order in the above figure, and the 12 permutations are traversed in the order of
由上图可以看出,两个相邻的组之间的两个相邻的符号周期包括:组一的第4个符号周期和组二的第1个符号周期、组二的第4个符号周期和组三的第1个符号周期、组三的第4个符号周期和组一的第1个符号周期。容易看到,其中只有在组三的第4个符号周期和组一的第1个符号周期的两个排列,不满足每一个数据流在这两个排列中的各个所使用的发射天线都各不相同的原则。所以我们相应的通过交换组三的第4个符号周期所用排列和组三的第2个符号周期所用排列,以调整组三的4个符号周期所用4个排列的顺序,使得在组三的第4个符号周期和组一的第1个符号周期的两个排列,也满足每一个数据流在这两个排列中的各个所使用的发射天线都各不相同的原则。调整后的结果如下:As can be seen from the above figure, the two adjacent symbol periods between two adjacent groups include: the 4th symbol period of
类似的,如前所述,在遍历前述的12种排列或者24种排列多次以后,在余下的不足12的数目的符号周期内,如前所述遍历0个或者若干个组,再遍历某个组中的0个或若干个排列的情况下,两个相邻的组之间的两个相邻的符号周期内所用的两个排列,也满足每一个数据流在这两个排列中的各个所使用的发射天线都各不相同的原则。Similarly, as mentioned above, after traversing the aforementioned 12 permutations or 24 permutations for multiple times, within the remaining symbol periods less than 12, traverse 0 or several groups as described above, and then traverse a certain In the case of 0 or several permutations in a group, the two permutations used in two adjacent symbol periods between two adjacent groups also satisfy the requirements of each data stream in these two permutations The principle is different for each transmit antenna used.
总而言之,为了达到更好的分集效果,需要时域或者频域相邻的任意两个符号周期内所用的两个排列,尽量满足每一个数据流在这两个排列中的各个所使用的发射天线都各不相同的原则。All in all, in order to achieve a better diversity effect, two permutations used in any two adjacent symbol periods in the time domain or frequency domain are required, and try to satisfy the transmit antennas used by each data stream in these two permutations. All have different principles.
接下来介绍采用方案A时,遍历所有的24种排列多次的过程中,满足在连续的4个符号周期内所经历的4个排列中的各个,每一个数据流所使用的发射天线都各不相同的原则的方法。由前文所述,可以在所有的24种不同的排列中,找出达到最好干扰分集效果的方案所必须的至少12种不同的排列,把它们记为群一,然后在所有的24种不同的排列中去掉群一的12种排列以后所余下的12种排列,必然还是达到最好干扰分集效果的方案所必须的另外一群的至少12种不同的排列,记为群二。Next, when scheme A is adopted, in the process of traversing all 24 permutations for multiple times, each of the 4 permutations experienced in 4 consecutive symbol periods is satisfied, and the transmit antennas used by each data stream are different. Not the same principle of approach. As mentioned above, among all 24 different permutations, at least 12 different permutations necessary to achieve the best interference diversity effect can be found, and they are recorded as group one, and then among all 24 different permutations The remaining 12 permutations after removing the 12 permutations of
从而,遍历所有的24种排列多次的过程中,可以先遍历上述的两个群中的一个,再遍历上述的两个群中的另外一个,比如依照群二、群一、群二、群一…的方式遍历。如前所述,两个群中的每一个所包含的12种排列可以分成3组,每组包括4个不同的排列,并且每组内的4个排列满足每一个数据流在这4个排列中的各个所使用的发射天线都各不相同的原则。Therefore, in the process of traversing all 24 permutations multiple times, one of the above two groups can be traversed first, and then the other of the above two groups can be traversed, for example, according to
从而,在连续的12个符号周期遍历某一个群中的12个排列的各个过程中的每一个,都在时间域或者频率域连续的4个符号周期内遍历上述三个组中的任意一组的4个排列,再在接下来的时间域或者频率域连续的4个符号周期内遍历以上三个组中除掉已经被遍历的一组以外余下的组中的任意一组的4个排列,最后在接下来的时间域或者频率域连续的4个符号周期内遍历以上三个组中除掉已经被遍历的两组以外余下的唯一一组中的4个排列,以完成对所述12种排列的一次遍历。Therefore, each of the processes of traversing the 12 permutations in a certain group in 12 consecutive symbol periods traverses any one of the above three groups in 4 consecutive symbol periods in the time domain or
在时间域或者频率域连续的4个符号周期内遍历任意一个群包含的三个组中的某一组的4个排列时,这4个排列的顺序可以任意变化而对系统性能的影响比较小。然而,为了达到更好的分集效果,需要满足两个相邻的组之间的两个相邻的符号周期内所用的两个排列,也满足每一个数据流在这两个排列中的各个所使用的发射天线都各不相同的原则。注意因为采用了依照群二、群一、群二、群一…的方式遍历,所以需要满足两个相邻的群之间的两个相邻的符号周期内所用的两个排列,也满足每一个数据流在这两个排列中的各个所使用的发射天线都各不相同的原则;即在群二的最后一个符号周期的排列与群一的第一个符号周期的排列之间每一个数据流所使用的发射天线各不相同,以及群一的最后一个符号周期的排列与群二的第一个符号周期的排列之间每一个数据流所使用的发射天线各不相同。作为对比,注意方案B下12个排列遍历多次时,由于12个排列遍历一次后紧接着开始遍历第二次,这12个排列的最后一个与这12个排列的第一个在时间或者频率域上相邻,从而需要满足每一个数据流在这两个排列中的各个所使用的发射天线都各不相同。When traversing the 4 permutations of one of the three groups contained in any group within 4 consecutive symbol periods in the time domain or frequency domain, the order of these 4 permutations can be changed arbitrarily and the impact on system performance is relatively small . However, in order to achieve a better diversity effect, it is necessary to satisfy the two permutations used in two adjacent symbol periods between two adjacent groups, and also satisfy the requirements of each data stream in the two permutations. The transmitting antennas used all vary in principle. Note that because the method of traversing according to
如前所述,在遍历所述24种排列多次以后当剩余的符号周期数目不足24时,如果剩余的符号周期数目大于12,则遍历前述的满足最优干扰分集的12种排列一次,直到余下符号周期的数目不足12。此时两个相邻的组之间的两个相邻的符号周期内所用的两个排列,也尽量满足每一个数据流在这两个排列中的各个所使用的发射天线都各不相同的原则。As mentioned above, when the number of remaining symbol periods is less than 24 after traversing the 24 permutations for multiple times, if the number of remaining symbol periods is greater than 12, then traverse the aforementioned 12 permutations that satisfy the optimal interference diversity once until The number of remaining symbol periods is less than twelve. At this time, the two permutations used in two adjacent symbol periods between two adjacent groups also try to meet the requirement that each data stream uses different transmit antennas in the two permutations. in principle.
下面给出依据以上的这些原则,总结出在前述一个数据包使用时域上连续的8个OFDM符号,每个OFDM符号占用频域上连续的16个子载波的通信方案中,本发明的优选实施例。下图表示一种把所述8个OFDM符号和16个子载波上的128个符号周期编号的一种方式,这种编号只表示序号相邻的两个符号周期必然在时间上或者频域上相邻,满足这个条件的编号方式有很多种,本文只就其中的一种编号方式,给出实施例。Based on the above principles, the following summarizes the preferred implementation of the present invention in a communication scheme in which a data packet uses 8 consecutive OFDM symbols in the time domain, and each OFDM symbol occupies 16 consecutive subcarriers in the frequency domain. example. The figure below shows a way to number the 8 OFDM symbols and 128 symbol periods on the 16 subcarriers. This numbering only means that the two symbol periods with adjacent serial numbers must be in the same time or frequency domain. Neighbors, there are many numbering methods that meet this condition, and this article only gives an example of one of the numbering methods.
128个符号周期编号的方式一128 symbol
首先给出本发明方案B的优选实施例。128个符号周期内,可以在第1到第120个符号周期,遍历所述的达到最优干扰分集的12种排列10次,在每次遍历所述的12种排列时,如前所述,依次遍历前述的群一的组一、组二和组三,注意组三的4个符号周期所用4个排列的顺序做了前述的调整,以满足相邻的两个符号周期每个流使用的发射天线都不同。Firstly, a preferred embodiment of the scheme B of the present invention is given. Within 128 symbol periods, the 12 permutations that achieve optimal interference diversity can be traversed 10 times in the 1st to 120th symbol periods, and each time the 12 permutations are traversed, as mentioned above,
然后在余下的128-120=8个符号周期,遍历组一一次,再遍历组二一次。这个实施例中没有剩余的数目小于4的x个符号周期,如果有,则再依照符号周期从小到大的序号依次遍历组三中的第1个直到第x个符号周期。之所以不从组三任意取x个排列,而是只依次取前面的x个排列,是因为组三的4个符号周期所用4个排列的顺序已经调整到满足相邻的两个符号周期每个流使用的发射天线都不同。Then, in the remaining 128-120=8 symbol periods, group one is traversed once, and group two is traversed again. In this embodiment, there are no remaining x symbol periods whose number is less than 4. If there are, then traverse the first to the xth symbol periods in group three in sequence according to the sequence numbers of the symbol periods from small to large. The reason why we do not randomly select x permutations from group three, but only take the previous x permutations sequentially, is because the order of the four permutations used in the four symbol periods of group three has been adjusted to meet the requirement of every two adjacent symbol periods. Each stream uses a different transmit antenna.
下面再给出本发明方案A的优选实施例。128个符号周期内,可以在第1到第120个符号周期,遍历所有的24种排列5次。每次遍历24种排列时,都是先遍历所述的群一,再遍历所述的群二,详细的一种实现如下:Provide the preferred embodiment of scheme A of the present invention again below. Within 128 symbol periods, all 24 permutations can be traversed 5 times from the 1st to the 120th symbol periods. When traversing the 24 permutations each time, the
由上可见,下述位于相邻符号周期的两个排列,即群一的组三的最后一个排列与群二的组一的第一个排列,以及群二的组一的最后一个排列与群二的组二的第一个排列,不满足相邻的两个符号周期每个流使用的发射天线都不同的要求。为此,需要调整群二的组一内各个排列被遍历的顺序,调整后得到改进后的方案如下:It can be seen from the above that the following two permutations located in adjacent symbol periods are the last permutation of group three of group one and the first permutation of group one of group two, and the last permutation of group one of group two and group The first permutation of
上述改进后的方案满足相邻的两个符号周期每个流使用的发射天线都不同的要求。The above improved scheme satisfies the requirement that the transmit antennas used by each stream in two adjacent symbol periods are different.
之后,在余下的128-120=8个符号周期,遍历群一的组一一次,再遍历群一的组二一次。这个实施例中没有剩余的数目小于4的x个符号周期,如果有,则再依照符号周期从小到大的序号依次遍历群一的组三中的第1个直到第x个符号周期。或者,在所述余下的8个符号周期,也可以遍历群二的若干个组,只需要满足相邻的两个符号周期每个流使用的发射天线都不同即可。After that, in the remaining 128-120=8 symbol periods, group one of group one is traversed once, and group two of group one is traversed again. In this embodiment, there are no remaining x symbol periods whose number is less than 4. If there are, then traverse the first to the xth symbol periods in group three of group one according to the sequence numbers of the symbol periods from small to large. Alternatively, in the remaining 8 symbol periods, several groups of
前述的实施例中,群一的12种排列是达到最优干扰分集效果的12种排列,是在所述4路数据流依照a、b、c、d的先后顺序被检测的情况下才被验证成立的。而容易验证,在所述4路数据流依照完全相反的先后顺序,即依照d、c、b、a的先后顺序被检测的情况下,群一的12种排列仍然是达到最优干扰分集效果的12种排列。所述依照d、c、b、a的先后顺序被检测,是指接收端首先检测数据流d并使用检测结果消除d的干扰,其次接收端检测数据流c并使用检测结果消除c的干扰,此后接收端检测数据流b并使用检测结果消除b的干扰,最后接收端检测数据流a。验证的过程在下面的段落中详述。In the foregoing embodiment, the 12 permutations of
如前所述,群一的12种排列如下:As mentioned earlier, the 12 permutations of group one are as follows:
因为在接收端采用干扰消除技术以后,第一个被检测并消除其干扰的数据流d,对后续的数据流c的检测不构成干扰,所以把d用□代替,而□表示对当前待检测数据流的符号不形成干扰,由此得到不考虑d的干扰的示意图如下Because after the interference cancellation technology is adopted at the receiving end, the first data stream d that is detected and its interference is eliminated does not interfere with the detection of the subsequent data stream c, so d is replaced by □, and □ represents the current detection The symbols of the data stream do not form interference, so the schematic diagram of the interference without considering d is as follows
数据流b和a都对数据流c的检测构成干扰,所以把b和a用*代替,而*表示对当前待检测数据流的符号形成干扰,由此得到Both data streams b and a interfere with the detection of data stream c, so b and a are replaced by *, and * means that they interfere with the symbols of the current data stream to be detected, thus we get
由上图可以看出,对于数据流c的检测,这个方案达到了最优干扰分集的效果,即在c使用某一固定的天线发射时,对c形成干扰的发射信号所使用的发射天线组合遍历所有可能的组合。As can be seen from the above figure, for the detection of data stream c, this scheme achieves the effect of optimal interference diversity, that is, when c uses a fixed antenna to transmit, the combination of transmitting antennas used by the transmitting signal that interferes with c Go through all possible combinations.
数据流a对数据流b的检测构成干扰,而数据流c对数据流b的检测不构成干扰,所以在不考虑d的干扰的示意图中把a用*代替并且把c用□代替,得到:Data stream a interferes with the detection of data stream b, while data stream c does not interfere with the detection of data stream b, so in the schematic diagram that does not consider the interference of d, replace a with * and replace c with □ to get:
由上图可以看出,对于数据流b的检测,这个方案也达到了最优干扰分集的效果,即在b使用某一固定的天线发射时,对b形成干扰的发射信号所使用的发射天线组合遍历所有可能的组合。从而我们验证了在所述4路数据流依照完全相反的先后顺序,即依照d、c、b、a的先后顺序被检测的情况下,群一的12种排列仍然是达到最优干扰分集效果的12种排列。As can be seen from the above figure, for the detection of data stream b, this scheme also achieves the effect of optimal interference diversity, that is, when b uses a fixed antenna to transmit, the transmitting antenna used by the transmitting signal that interferes with b Combinations iterate over all possible combinations. Therefore, we have verified that the 12 permutations of
而此前我们已经验证了在所有的24种不同的排列中,去掉达到最好干扰分集效果的方案所必须的至少12种不同的排列以后,所余下的12种排列,必然还是达到最好干扰分集效果的方案所必须的至少12种不同的排列。所以,容易推理得到,并且也容易验证,在所述4路数据流依照完全相反的先后顺序,即依照d、c、b、a的先后顺序被检测的情况下,群二的12种排列也仍然是达到最优干扰分集效果的12种排列。而如前所述,群二的12种排列如下:And before we have verified that in all 24 different permutations, after removing at least 12 different permutations necessary for the scheme to achieve the best interference diversity effect, the remaining 12 permutations must still achieve the best interference diversity A scheme of effects requires at least 12 different permutations. Therefore, it is easy to deduce and verify that when the four data streams are detected in the completely opposite order, that is, in the order of d, c, b, and a, the 12 arrangements of group two are also There are still 12 permutations that achieve the optimal interference diversity effect. As mentioned earlier, the 12 arrangements of
需要说明的是,在上述的符号周期1和32、2和31,以及3和30等各对符号周期,虽然序号不是连续的,但实际上在时域是相邻的,为更加优化实施方案,则可以达到在这样的时域上连续的符号周期,也满足本发明实施例所述的上述原则,具体的实施例不再赘述。It should be noted that, in the above-mentioned
在无线通信标准中,通常还有使用3发射天线的情况,本发明实施例也为这种情况设计相应的达到最好干扰分集效果的方案。In wireless communication standards, there is usually a case where three transmit antennas are used, and the embodiment of the present invention also designs a corresponding solution to achieve the best interference diversity effect for this case.
以使用4个天线中的3个的情况为例,3个数据流a、b、c的各个符号循环使用被选择的3个天线中的每一个的方案,其示意图如下,在此,仍然假设数据流a、b、c在接收端按照a、b、c的先后顺序被检测,并且假设天线3没有被选择使用。Taking the case of using 3 of the 4 antennas as an example, each symbol of the 3 data streams a, b, and c uses each of the selected 3 antennas in a circular manner. The schematic diagram is as follows. Here, it is still assumed that The data streams a, b, c are detected at the receiving end in the order of a, b, c, and it is assumed that the
当数据流a已经被正确检测并消除其干扰后,相应的示意图是,After the data flow a has been correctly detected and its interference eliminated, the corresponding schematic diagram is,
容易看到,在上图中,当数据流b的符号由某一个确定的天线发射时,对它形成干扰的一个数据流c的符号总是由固定不变的一个天线发射。而如果当数据流b的符号由某一个确定的天线发射时,发射对它形成干扰的一个数据流c的符号所使用的天线随着不同的符号周期而变化,那么就可以达到干扰分集的效果,从而让数据流b的瞬时信道容量具有更集中的分布。而为了达到最好的干扰分集效果,需要做到当数据流b的符号由某一个确定的天线发射时,发射对它形成干扰的一个数据流的符号所使用的一个随着不同的符号周期而变化并遍历所有可能的组合,而且在一个TTI内,每个组合被使用的次数尽可能相同。It is easy to see that in the figure above, when the symbol of data stream b is transmitted by a certain antenna, the symbol of a data stream c that interferes with it is always transmitted by a fixed antenna. And if when the symbol of data stream b is transmitted by a certain antenna, the antenna used to transmit the symbol of a data stream c that interferes with it changes with different symbol periods, then the effect of interference diversity can be achieved , so that the instantaneous channel capacity of data flow b has a more concentrated distribution. In order to achieve the best interference diversity effect, it is necessary to realize that when the symbols of the data stream b are transmitted by a certain antenna, the one used to transmit the symbols of a data stream that interferes with it varies with different symbol periods. Change and traverse all possible combinations, and within a TTI, each combination is used as many times as possible.
本发明实施例提供了一种达到最好干扰分集效果的方法,就是数据流a、b、c的符号分别使用各个天线1、2、4发射时,在一个TTI内,数据流a、b、c与天线1、2、4对应关系,遍历所有可能的排列(3的排列有6种),而且,一个TTI内的各个符号周期,每一种排列被用到的次数尽可能相等。因为所有的排列都被用到,那么显然当某个数据流的符号由某一个确定的天线发射时,发射对它形成干扰的一个或多个数据流的符号所使用的一个或多个天线,会遍历所有可能的组合。The embodiment of the present invention provides a method for achieving the best interference diversity effect, that is, when the symbols of the data streams a, b, and c are respectively transmitted using
上述方案的示意图如下,图中,所有的6种排列都被列出:The schematic diagram of the above scheme is as follows. In the figure, all 6 permutations are listed:
在上述方案中,所使用的排列数目已经较少,故可以不再进一步减少。此外,分析也表明,对于使用3发射天线的情况,可以不再如使用4发射天线的情况那样,减少所需要使用的排列的数目。In the above solution, the number of permutations used is already small, so no further reduction is possible. Furthermore, the analysis also shows that for the case of using 3 transmit antennas, the number of permutations that need to be used can no longer be reduced as in the case of using 4 transmit antennas.
对于使用3发射天线的情况,在1个TTI内包含的符号周期数y不是6的整数倍时,考虑遍历上述的6种排列多次直到余下的符号周期数小于6的情况。For the case of using 3 transmit antennas, when the number of symbol periods y contained in one TTI is not an integer multiple of 6, consider traversing the above 6 permutations for multiple times until the number of remaining symbol periods is less than 6.
此时,我们把余下的符号周期数记为x,x是y除以6得到的余数,必然小于6。下文给出在余下的x个符号周期内遍历排列的方案,该方案可以达到最优的效果。At this time, we record the remaining number of symbol periods as x, and x is the remainder obtained by dividing y by 6, which must be less than 6. A scheme for traversing permutations within the remaining x symbol periods is given below, which can achieve optimal results.
该方案需要满足,在这x个符号周期内,所经历的x种排列,必然是遍历上述的6种排列中不同的x种。This scheme needs to satisfy that within the x symbol periods, the x types of permutations experienced must traverse different x types of the above-mentioned 6 permutations.
在x大于等于3的情况下,在所述x个符号周期,每3个符号周期遍历的3个排列还需要满足这样的原则:在这3个排列中,每一个数据流都遍历了所有的3个发射天线,即每一个数据流在这3个排列中的各个所使用的发射天线都各不相同。In the case that x is greater than or equal to 3, in the x symbol periods, the 3 permutations traversed every 3 symbol periods also need to meet the following principle: in these 3 permutations, each data stream traverses all The three transmitting antennas, that is, the transmitting antennas used by each data stream in the three arrangements are different.
上述的6种排列可以分为两组,The above six permutations can be divided into two groups,
容易看出,每组都满足在该组内的3个排列中,每一个数据流都遍历了所有的3个发射天线,即每一个数据流在这3个排列中的各个所使用的发射天线都各不相同。It is easy to see that each group satisfies that in the 3 permutations in the group, each data stream traverses all 3 transmit antennas, that is, the transmit antennas used by each data stream in each of the 3 permutations All are different.
在x大于等于3的情况下,在3个符号周期遍历上述的组一和组二中任意一组所包含的3个排列例如组二,再在最后的(x-3)个符号周期,遍历除了已经遍历的一个组(例如组二)以外的一组所包含的3个排列中任意的(x-3)个。In the case that x is greater than or equal to 3, traverse the 3 permutations contained in any group of the above-mentioned
在x小于3的情况下,在x个符号周期,遍历上述的组一和组二中任意一组所包含的3个排列中任意的x个。In the case that x is less than 3, any x of the 3 permutations contained in any one of the
与前面所述发射4个流的情况的最优方案的原理相同,为了达到更好的分集效果,发射3个流的情况下,在遍历所有的6种排列多次的过程中,每一次遍历时,所包含的6种排列不是按照任意顺序被遍历,而是满足在连续的3个符号周期内所经历的3个排列中的各个,每一个数据流所使用的发射天线都各不相同的原则。具体的实施方式就是,每次遍历所有的6种排列,都是先遍历两个组中的任意一组的3种排列,再遍历两个组中的余下一组的3种排列,比如两次遍历所有的6种排列,可以按照组一、组二、组一、组二的方式进行。组内各个排列的顺序可以任意,因为两组间在相邻符号周期的两个排列,都必然有且仅有一个发射天线上发相同的数据流,不能通过组内排列顺序的调整避免。The principle of the optimal solution for the case of transmitting 4 streams mentioned above is the same. In order to achieve a better diversity effect, in the case of transmitting 3 streams, in the process of traversing all 6 permutations for multiple times, each traversal When , the six permutations included are not traversed in any order, but satisfy each of the three permutations experienced in three consecutive symbol periods, and the transmit antennas used by each data stream are different. in principle. The specific implementation method is that each time when traversing all the 6 permutations, first traverse the 3 permutations of any one of the two groups, and then traverse the 3 permutations of the remaining group of the two groups, for example, twice Traversing all 6 permutations can be performed in the manner of
上述在3个符号周期是指在时间域或者频率域相邻的某3个符号周期内(即不是任意的3个符号周期,而是相邻的3个符号周期),每个数据流使用的发射天线各不相同,相应的具体处理过程可以包括:在一个TTI内,从某个符号周期开始所经历的时间域或者频率域相邻的3个符号周期内,每个数据流使用的发射天线各不相同;从与上述3个符号周期中至少一个在时间域或者频率域相邻的某一个符号周期开始所经历的时间域或者频率域相邻的3个符号周期内,每个数据流使用的发射天线各不相同;如此依次经历的多组时间域或者频率域相邻的3个符号周期都满足上述条件,直到所述的一个TTI内剩余的符号周期数目小于3。The above 3 symbol periods refer to 3 adjacent symbol periods in the time domain or frequency domain (that is, not any 3 symbol periods, but adjacent 3 symbol periods), each data stream uses The transmit antennas are different, and the corresponding specific processing may include: within a TTI, the transmit antenna used by each data stream in the time domain or frequency domain adjacent to the 3 symbol periods experienced from a certain symbol period They are different; each data stream uses The transmit antennas are different; multiple groups of three adjacent symbol periods in the time domain or frequency domain that are experienced in this way all meet the above conditions, until the number of remaining symbol periods in one TTI is less than three.
本发明实施例描述的干扰分集的思想,也可以用于更多发射天线的情况下的方案设计。假定在有5个发射天线的情况下,5个数据流a、b、c、d、e依照a、b、c、d、e的先后顺序被检测。下面针对这种情形描述本发明实施例的应用。The idea of interference diversity described in the embodiments of the present invention can also be used for scheme design in the case of more transmit antennas. Assume that in the case of 5 transmitting antennas, 5 data streams a, b, c, d, e are detected in the order of a, b, c, d, e. The following describes the application of the embodiment of the present invention for this situation.
在检测数据流a时,存在数据流b、c、d、e的干扰;在检测数据流b时,因为已经用数据流a的解码结果从接收信号中消除了数据流a的发射信号对检测后续数据流的影响,所以只存在数据流c、d、e的干扰;在检测数据流c时,因为已经依次用数据流a和b的解码结果从接收信号中消除了数据流a和b的发射信号对检测后续数据流的影响,所以只存在数据流d、e的干扰;在检测数据流d时,因为已经依次用数据流a、b和c的解码结果从接收信号中消除了数据流a、b和c的发射信号对检测后续数据流的影响,所以只存在数据流e的干扰;在检测数据流e时,因为已经依次用数据流a、b、c和d的解码结果从接收信号中消除了数据流a、b、c和d的发射信号对检测后续数据流的影响,所以不存在其它数据流的干扰。When detecting data stream a, there are interferences of data streams b, c, d, e; when detecting data stream b, because the decoding result of data stream a has been used to eliminate the transmission signal of data stream a from the received signal to detect The impact of subsequent data streams, so there is only interference of data streams c, d, e; when detecting data stream c, because the decoding results of data streams a and b have been used in turn to eliminate the interference of data streams a and b from the received signal The impact of the transmitted signal on the detection of subsequent data streams, so there is only the interference of data streams d and e; when detecting data stream d, because the decoding results of data streams a, b and c have been used in turn to eliminate the data stream from the received signal The influence of the transmitted signals of a, b, and c on the detection of subsequent data streams, so there is only the interference of data stream e; when detecting data stream e, because the decoding results of data streams a, b, c, and d have been sequentially used from the receiver In the signal, the influence of the transmitted signals of data streams a, b, c and d on the detection of subsequent data streams is eliminated, so there is no interference from other data streams.
5个发射天线的情况下,有120种不同的排列。应用上面的方法可以求出,实际只需要遍历较少数目的排列,就可以达到最好的干扰分集效果。In the case of 5 transmit antennas, there are 120 different arrangements. By applying the above method, it can be found that actually only need to traverse a small number of permutations to achieve the best interference diversity effect.
考察检测数据流b的情况,由上所述,这时存在未检测的3个数据流c、d和e的符号的干扰。因为只需要b的符号由某一个确定的天线发射时,发射对它形成干扰的3个数据流的符号所使用的3个天线遍历所有可能的组合,所以用×表示作为干扰的数据流c、d和e的符号。从以下示意图(注意图中各列表示各个发射天线,而各行表示各个符号周期)的前4行可以看出,当b的符号由天线1发射时,发射对它形成干扰的3个数据流的符号所使用的3个天线遍历所有可能的组合(从余下的4个天线中取3个,有4种组合);容易看出当b的符号分别由天线2、3、4、5发射时,发射对它形成干扰的3个数据流的符号所使用的3个天线也遍历所有可能的组合。而作为干扰的数据流c、d和e的符号,可以随意放入每一行的3个×的位置。Considering the situation of detecting data stream b, as mentioned above, there is interference of undetected symbols of three data streams c, d and e. Because only the symbols of b are required to be transmitted by a certain antenna, the 3 antennas used to transmit the symbols of the 3 data streams that interfere with it traverse all possible combinations, so use × to represent the data stream c as interference, The symbols of d and e. It can be seen from the first 4 rows of the following schematic diagram (note that each column in the figure represents each transmit antenna, and each row represents each symbol period), when the symbol b is transmitted by
对数据流b达到最好干扰分集效果的方案的示意图如下:The schematic diagram of the solution to achieve the best interference diversity effect for data stream b is as follows:
考察检测数据流c的情况,由上所述,这时存在未检测的2个数据流d和e的符号的干扰。因为只需要c的符号由某一个确定天线发射时,发射对它形成干扰的2个数据流的符号所使用的2个天线遍历所有可能的组合,所以用×表示作为干扰的数据流d和e的符号。从以下示意图的前6行可以看出,当c的符号由天线1发射时,发射对它形成干扰的2个数据流的符号所使用的2个天线遍历所有可能的组合(从余下的4个天线中取2个,有6种组合);容易看出当c的符号分别由天线2、3、4、5发射时,发射对它形成干扰的2个数据流的符号所使用的2个天线也遍历所有可能的组合。而作为干扰的数据流d和e的符号,可以随意放入每一行的2个×的位置。Considering the situation of detecting data stream c, as mentioned above, there is interference of symbols of two undetected data streams d and e at this time. Because only the symbol of c is required to be transmitted by a certain antenna, the two antennas used to transmit the symbols of the two data streams that interfere with it traverse all possible combinations, so use × to represent the data streams d and e as interference symbol. As can be seen from the first 6 lines of the following schematic diagram, when the symbol of c is transmitted by
对数据流c达到最好干扰分集效果的方案的示意图Schematic diagram of the scheme to achieve the best interference diversity effect for data stream c
考察检测数据流d的情况,由上所述,这时存在未检测的1个数据流e的符号的干扰。因为只需要d的符号由某一个确定天线发射时,发射对它形成干扰的1个数据流的符号所使用的1个天线遍历所有可能的组合,所以用×表示作为干扰的数据流e的符号。从以下示意图的前6行可以看出,当d的符号由天线1发射时,发射对它形成干扰的1个数据流的符号所使用的1个天线遍历所有可能的组合(从余下的4个天线中取1个,有4种组合);容易看出当d的符号分别由天线2、3、4、5发射时,发射对它形成干扰的1个数据流的符号所使用的1个天线也遍历所有可能的组合。而作为干扰的数据流e的符号,可以随意放入每一行的1个×的位置。Considering the situation of detecting data stream d, as mentioned above, there is interference of a symbol of undetected data stream e at this time. Because only the symbols of d are required to be transmitted by a certain antenna, the 1 antenna used to transmit the symbols of 1 data stream that interferes with it traverses all possible combinations, so × represents the symbol of the interfering data stream e . It can be seen from the first 6 lines of the following schematic diagram that when the symbol of d is transmitted by
对数据流d达到最好干扰分集效果的方案的示意图Schematic diagram of the scheme to achieve the best interference diversity effect for data stream d
在对数据流b达到最好干扰分集效果的方案的示意图,考察对b形成干扰的3个天线是天线组合1、2、3的情况,把×用$代替,表示这种情况。可以看到共有2种情况。In the schematic diagram of the solution to achieve the best interference diversity effect on data stream b, consider the situation that the three antennas that interfere with b are
然后在对数据流c达到最好干扰分集效果的方案的示意图,考察所使用的3个天线是天线组合1、2、3的情况,把×用$代替,表示这种情况。可以看到共有3种情况。Then, in the schematic diagram of the solution to achieve the best interference diversity effect for data stream c, examine the situation that the three antennas used are
对比上面两矩阵示意图可以看出,对数据流b达到最好干扰分集效果的20种情况第1次循环时,对b形成干扰的3个天线是天线组合1、2、3的情况共有2种;而在对数据流c达到最好干扰分集效果的方案的矩阵示意图中,所使用的3个天线是天线组合1、2、3的情况共有3种。所以不可能在对数据流b达到最好干扰分集效果的20种情况第1次循环时,把在对数据流c达到最好干扰分集效果的方案的示意图中所使用的3个天线是天线组合1、2、3的3种情况完全填入,而只能填入其中的2种。对于使用的3个天线是天线组合1、2、3的情况以外的其它9种组合的任意一种的情况,这一点都是成立的(5取3共有10种组合)。Comparing the above two matrix diagrams, it can be seen that in the first cycle of the 20 cases in which the data stream b achieves the best interference diversity effect, there are 2 cases where the three antennas that interfere with b are
所以在对数据流b达到最好干扰分集效果的20种情况第1次循环时,只填入而在对数据流c达到最好干扰分集效果的方案的示意图中所使用的3个天线是天线组合1、2、3的3种情况中的2种,如下图(矩阵示意图a)所示:Therefore, in the first cycle of the 20 cases in which the best interference diversity effect is achieved for data stream b, only the three antennas used in the schematic diagram of the scheme for achieving the best interference diversity effect for data stream c are
然后在对数据流b达到最好干扰分集效果的20种情况第2次循环时,填入而在对数据流c达到最好干扰分集效果的方案的示意图中所使用的3个天线是天线组合1、2、3的3种情况中除了先前被填入的2种以外的余下1种,并且填入两次,如下图(矩阵示意图b)所示:Then, in the second cycle of the 20 cases in which the best interference diversity effect is achieved for data stream b, the three antennas used in the schematic diagram of the scheme for achieving the best interference diversity effect for data stream c are antenna combinations Among the 3 cases of 1, 2, and 3, except for the 2 previously filled in, the remaining 1 is filled in twice, as shown in the following figure (matrix diagram b):
而为了保证在对数据流c达到最好干扰分集效果的方案的示意图中,所使用的3个天线是天线组合1、2、3的3种情况被使用的次数相等,实际中可以按照矩阵示意图a、矩阵示意图b、矩阵示意图a的周期循环,即按照矩阵示意图a、矩阵示意图b、矩阵示意图a、矩阵示意图a、矩阵示意图b、矩阵示意图a的方式循环。这样相当于每一个循环周期包括60种情况,并且在一个循环周期内,对数据流b达到最好干扰分集效果的方案的20种情况循环3次,而对数据流c达到最好干扰分集效果的方案的30种情况循环2次。In order to ensure that in the schematic diagram of the scheme that achieves the best interference diversity effect on the data stream c, the three antennas used are
然后在对数据流c达到最好干扰分集效果的方案的示意图中,考察对c形成干扰的2个天线是天线组合1、2的情况,把×用#代替,表示这种情况。相应的可以看到共有3种情况,如下所示:Then, in the schematic diagram of the scheme for achieving the best interference diversity effect on data stream c, examine the situation that the two antennas that interfere with c are
然后在对数据流d达到最好干扰分集效果的方案的示意图,考察所使用的2个天线是天线组合1、2的情况,把×用#代替,表示这种情况。可以看到共有2种情况,如下所示:Then, in the schematic diagram of the scheme for achieving the best interference diversity effect on the data stream d, examine the situation that the two antennas used are
所以,在对数据流c达到最好干扰分集效果的30种情况第1次循环时,填入在对数据流d达到最好干扰分集效果的方案的示意图中所使用的2个天线是天线组合1、2的2种情况,并且把其中的情况1重复填入一次;然后,在对数据流c达到最好干扰分集效果的30种情况第2次循环时,填入在对数据流d达到最好干扰分集效果的方案的示意图中所使用的2个天线是天线组合1、2的2种情况,并且把其中的情况2重复填入一次。Therefore, in the first cycle of the 30 cases of achieving the best interference diversity effect for data stream c, the two antennas used in the schematic diagram of the scheme for achieving the best interference diversity effect for data stream d are antenna combinations The two cases of 1 and 2, and fill in
综上所述,每一个循环周期包括60种排列,就可以达到整体的最好干扰分集效果,这比遍历5发射天线情况下所有的120种不同的排列的方案要简单。以上所述是本发明实施例针对5发射天线MIMO系统所使用的一个优选实施例。当然,遍历所有的120种不同的排列也能实现本发明实施例的目的,可以构成本发明的次优实施例,但其复杂度要大于遍历60种排列的本发明优选实施例。To sum up, if each cycle includes 60 permutations, the overall best interference diversity effect can be achieved, which is simpler than the scheme of traversing all 120 different permutations in the case of 5 transmit antennas. The above is a preferred embodiment used by the embodiment of the present invention for a MIMO system with 5 transmit antennas. Of course, traversing all 120 different permutations can also achieve the purpose of the embodiment of the present invention, and can constitute a suboptimal embodiment of the present invention, but its complexity is greater than that of the preferred embodiment of the present invention that traverses 60 permutations.
如前所述,我们给出了一个数据包使用时域上连续的8个OFDM符号,每个OFDM符号占用频域上连续的16个子载波的通信方案中,本发明实施例的方案B和方案A的优选实施例。这些优选实施例主要是满足在频域上连续的4个符号周期内所经历的4个排列中的各个,每一个数据流所使用的发射天线都各不相同的原则。这些优选实施例也满足在两个相邻的组之间的两个频域上相邻的符号周期内所用的两个排列,每一个数据流在这两个排列中各自所使用的发射天线都各不相同的原则,注意这就相当于满足在任意两个频域上相邻的符号周期内所用的两个排列,每一个数据流在这两个排列中各自所使用的发射天线都各不相同的原则,因为一个组内的4个排列,已经满足每一个数据流在这两个排列中的各个所使用的发射天线都各不相同的原则。可以找到另一种优选实施例,除了满足上述的条件以外,还尽量满足在时域上连续的4个符号周期内所经历的4个排列中的每一个数据流所使用的发射天线都各不相同的原则,以及在任意两个时域上相邻的符号周期内所用的两个排列中的每一个数据流在这两个排列中的各个所使用的发射天线都各不相同的原则。所述另一种优选实施例的设计过程和结果在下面介绍。As mentioned above, in the communication scheme in which a data packet uses 8 consecutive OFDM symbols in the time domain, and each OFDM symbol occupies 16 consecutive subcarriers in the frequency domain, the scheme B and the scheme of the embodiment of the present invention Preferred embodiment of A. These preferred embodiments mainly satisfy the principle that each of the 4 permutations experienced in 4 consecutive symbol periods in the frequency domain uses different transmitting antennas for each data stream. These preferred embodiments also satisfy the two permutations used in two adjacent symbol periods in the frequency domain between two adjacent groups, and the transmit antennas used by each data stream in the two permutations are the same Note that this is equivalent to satisfying the two permutations used in any two adjacent symbol periods in the frequency domain, and the transmit antennas used by each data stream in these two permutations are different. The same principle, because the four permutations in one group already satisfy the principle that each data stream uses different transmitting antennas in each of the two permutations. Another preferred embodiment can be found. In addition to satisfying the above conditions, it is also possible to satisfy that the transmitting antennas used by each data stream in the 4 permutations experienced in the 4 consecutive symbol periods in the time domain are different. The same principle, and the principle that each data stream in the two permutations used in any two adjacent symbol periods in the time domain uses different transmit antennas for each of the two permutations. The design process and results of the alternative preferred embodiment are described below.
首先考虑方案B的另一种优选实施例。如前文所述,遍历达到最优干扰分集效果的12种排列,是依照下图所示的各个排列的顺序,在连续的12个符号周期内遍历。即按照下图中的顺序,在一段连续的符号周期内按照组一、组二和组三的先后顺序遍历12个排列,而在下一段连续的符号周期内再按照组一、组二和组三的先后顺序遍历12个排列。Consider first another preferred embodiment of Scheme B. As mentioned above, the traversal of the 12 permutations that achieve the optimal interference diversity effect is traversed within 12 consecutive symbol periods according to the order of the permutations shown in the figure below. That is, according to the sequence in the figure below, traverse 12 permutations in the order of
具体可以采用“组m-n”,表示组m中的第n个排列。如果采用下图所示的实施例,就可以尽量满足在时域上连续的4个符号周期内所经历的4个排列中的各个,每一个数据流所使用的发射天线都各不相同的原则。Specifically, "group m-n" may be used to indicate the nth arrangement in group m. If the embodiment shown in the figure below is adopted, the principle that each of the 4 permutations experienced in 4 consecutive symbol periods in the time domain and the transmitting antennas used by each data stream are different can be satisfied as much as possible. .
上图中的组m-?,表示确定使用组m,但是使用组m内的哪一个排列,还需要优化。从上图可以看出,在6个使用方框“□”圈示的4个连续的子载波以及4个连续的OFDM符号组成的块以内,都满足在所有的时域上连续的4个符号周期内所经历的4个排列中的各个,每一个数据流所使用的发射天线都各不相同的原则,同时还满足先前所述的在所有的频域上连续的4个符号周期内所经历的4个排列中的各个,每一个数据流所使用的发射天线都各不相同的原则。例如,在第1到第4个子载波以及第1到第4个OFDM符号组成的块以内,在该4×4的矩阵块的任意一行的4个符号周期即为时域上连续的4个符号周期,而在该4×4的矩阵块的任意一列的4个符号周期即为频域上连续的4个符号周期。容易看到,在矩阵块每一行的4个符号周期内所经历的4个排列中都满足每一个数据流所使用的发射天线都各不相同的原则,同时在矩阵块每一列的4个符号周期内所经历的4个排列中都满足每一个数据流所使用的发射天线都各不相同的原则。在这个实施例中,在多次遍历每一组的4种排列的每一次,这4种排列的相对顺序略有变化,然而这带来的复杂度的增加很小。The group m-? , which means that group m is determined to be used, but which arrangement in group m to use still needs to be optimized. It can be seen from the above figure that within the block composed of 4 consecutive subcarriers circled by the box "□" and 4 consecutive OFDM symbols, all 4 consecutive symbols in all time domains are satisfied. For each of the 4 permutations experienced in the cycle, the transmit antennas used by each data stream are different, and at the same time, it also satisfies the previously described 4 consecutive symbol periods in all frequency domains. In each of the 4 permutations, the transmit antennas used by each data stream are different in principle. For example, within the block composed of the 1st to 4th subcarriers and the 1st to 4th OFDM symbols, the 4 symbol periods in any row of the 4×4 matrix block are 4 consecutive symbols in the time domain period, and the 4 symbol periods in any column of the 4×4 matrix block are 4 consecutive symbol periods in the frequency domain. It is easy to see that the principle that the transmit antennas used by each data stream are different in the 4 permutations experienced in the 4 symbol periods of each row of the matrix block, and at the same time, the 4 symbols in each column of the matrix block The principle that the transmit antennas used by each data stream are different is satisfied in the four permutations experienced in a cycle. In this embodiment, the relative order of the 4 permutations of each set is changed slightly each time the 4 permutations of each group are traversed multiple times, however this brings about a small increase in complexity.
在上述实施例中,与先前的方案B的一种优选实施例中相同,组1-4与组2-1所在的符号周期在频域相邻,组2-4与组3-1所在的符号周期在频域相邻。此外,下面的这些排列所在的符号周期也相邻,即组1-1与组2-2相邻、组1-2与组2-3相邻、组1-3与组2-4相邻、组2-1与组3-2相邻、组2-2与组3-3相邻、组2-3与组3-4相邻。可以调整每个组内各个排列的相对顺序,使得在上述的各个相邻符号周期内的排列,都满足每一个数据流所使用的发射天线都各不相同的原则。In the above embodiment, same as the previous preferred embodiment of scheme B, the symbol periods where group 1-4 and group 2-1 are located are adjacent in the frequency domain, and the symbol periods where group 2-4 and group 3-1 are located The symbol periods are contiguous in the frequency domain. In addition, the symbol periods of the following arrangements are also adjacent, that is, group 1-1 is adjacent to group 2-2, group 1-2 is adjacent to group 2-3, group 1-3 is adjacent to group 2-4 , Group 2-1 is adjacent to Group 3-2, Group 2-2 is adjacent to Group 3-3, Group 2-3 is adjacent to Group 3-4. The relative order of each permutation in each group can be adjusted so that the above permutations in each adjacent symbol period satisfy the principle that the transmitting antennas used by each data stream are different.
调整后的各组内各个排列的相对顺序的结果如下:The results of the adjusted relative order of each permutation within each group are as follows:
此后优化组m-?的各项具体使用组m内的哪一个排列。依据的原则是,先保证频域上在连续的4个符号周期内所经历的4个排列中的每一个数据流所使用的发射天线都各不相同,以及频域上在各个相邻符号周期内的排列中的每一个数据流所使用的发射天线都各不相同;其次,尽量保证时域上在连续的4个符号周期内所经历的4个排列中的每一个数据流所使用的发射天线都各不相同,以及时域上在各个相邻符号周期内的排列中的每一个数据流所使用的发射天线都各不相同。根据上述原则设计的一个实施例如下:Thereafter optimize group m-? Which arrangement in group m is used specifically for each item of . The basis is to ensure that the transmit antennas used by each data stream in the 4 permutations experienced in 4 consecutive symbol periods in the frequency domain are different, and that the transmission antennas used in each adjacent symbol period in the frequency domain are different. The transmit antennas used by each data stream in the permutations are different; secondly, try to ensure that the transmit antennas used by each data stream in the 4 permutations experienced in 4 consecutive symbol periods in the time domain The antennas are all different, and the transmit antennas used for each data stream in the permutation in each adjacent symbol period in the time domain are different. An embodiment designed according to the above principles is as follows:
其次,再设计方案A的另一种优选实施例。我们用“I组m-n”,表示群一的组m中的第n个排列,用“II组m-n”,表示群二的组m中的第n个排列。如果采用下图所示的实施例,就可以尽量满足在时域上连续的4个符号周期内所经历的4个排列中的每一个数据流所使用的发射天线都各不相同的原则。Secondly, another preferred embodiment of scheme A is redesigned. We use "I group m-n" to represent the nth permutation in group m of group one, and "II group m-n" to represent the nth permutation in group m of group two. If the embodiment shown in the figure below is adopted, the principle that the transmit antennas used by each data stream in the 4 permutations experienced in the 4 consecutive symbol periods in the time domain are different as far as possible can be satisfied.
如前所述,可以调整群一的各组内的各个排列的相对顺序,使得在各个相邻符号周期内的排列都满足每一个数据流所使用的发射天线都各不相同的原则。调整后群一的各组内各个排列的相对顺序的结果如下:As mentioned above, the relative order of each permutation in each group of
也可以用同样的方法,调整群二的各组内的各个排列的相对顺序,使得在各个相邻符号周期内的排列,都满足每一个数据流所使用的发射天线都各不相同的原则。这里就不赘述相应的结果。The same method can also be used to adjust the relative order of each arrangement in each group of
采用同样的原理,还可以先保证时域上在连续的4个符号周期内所经历的4个排列中的每一个数据流所使用的发射天线都各不相同,以及时域上在各个相邻符号周期内的排列中的每一个数据流所使用的发射天线都各不相同;其次,尽量保证频域上在连续的4个符号周期内所经历的4个排列中的每一个数据流所使用的发射天线都各不相同,以及频域上在各个相邻符号周期内的排列中的每一个数据流所使用的发射天线都各不相同。根据以上的原则,还可以设计出本发明实施例的方案B和方案A的其它种的优选实施例,这里就不赘述相应的结果。Using the same principle, it can also be ensured that the transmitting antennas used by each data stream in the 4 permutations experienced in the 4 consecutive symbol periods in the time domain are different, and that the antennas used by each adjacent data stream in the time domain are different. The transmit antennas used by each data stream in the permutation in the symbol period are different; secondly, try to ensure that the frequency domain uses the same antenna for each data stream in the 4 permutations experienced in 4 consecutive symbol periods. The transmit antennas used by each of the data streams are different, and the transmit antennas used by each data stream in the permutation in each adjacent symbol period in the frequency domain are different. According to the above principles, other preferred embodiments of the solution B and the solution A of the embodiment of the present invention can also be designed, and the corresponding results will not be described here.
在多码字模式中,存在天线选择,即发射端有M个发射天线,接收端反馈告知发射端使用其中较好的K(K小于等于M)个天线,发射K路信号。天线选择方案确定后,这就等价于K个天线发射K路信号的情况,从而可以应用本发明实施例的方法,以达到整体的最好干扰分集效果。In the multi-codeword mode, there is antenna selection, that is, the transmitting end has M transmitting antennas, and the receiving end informs the transmitting end to use the better K (K is less than or equal to M) antennas among them to transmit K signals. After the antenna selection scheme is determined, this is equivalent to the situation where K antennas transmit K signals, so the method of the embodiment of the present invention can be applied to achieve the best overall interference diversity effect.
需要说明的是,上述各本发明实施例提供的所有矩阵示意图中,相应矩阵的各列的顺序可以在满足相应原则的条件下任意交换,而矩阵的各行的顺序也可以在满足相应原则的条件下任意交换,且得到的新方案其效果仍然相同。这是因为,本发明的实施例中,矩阵的各列表示一个TTI内的各个符号周期而矩阵的各行表示各个发射天线,或者矩阵的各行表示一个TTI内的各个符号周期而矩阵的各列表示各个发射天线,所以矩阵的各行或者各列的顺序,即一个TTI内的各个符号周期的顺序或者各个发射天线的顺序,是可以任意交换而达到的效果相同。It should be noted that, in all the schematic diagrams of the matrices provided by the above-mentioned embodiments of the present invention, the order of the columns of the corresponding matrix can be exchanged arbitrarily under the condition of satisfying the corresponding principle, and the order of the rows of the matrix can also be changed under the condition of satisfying the corresponding principle. Any exchange, and the effect of the new solution obtained is still the same. This is because, in the embodiment of the present invention, each column of the matrix represents each symbol period in one TTI and each row of the matrix represents each transmit antenna, or each row of the matrix represents each symbol period in one TTI and each column of the matrix represents Each transmit antenna, so the order of each row or column of the matrix, that is, the order of each symbol period in one TTI or the order of each transmit antenna, can be exchanged arbitrarily to achieve the same effect.
针对MIMO系统4发射天线系统的情况,现有技术中的方案乙遍历4种排列;而本发明实施例的方案遍历12种排列;或者遍历24种排列。For the case of a MIMO system with 4 transmit antenna systems, scheme B in the prior art traverses 4 permutations; while the scheme in the embodiment of the present invention traverses 12 permutations; or traverses 24 permutations.
现有技术中的方案乙的第二层或者第三层的信号在某一固定的天线上发射时,对它形成干扰的天线集合是固定的,只有一种组合;本发明实施例遍历所有可能的组合,或至少经历了两种组合。When the signal of the second or third layer of solution B in the prior art is transmitted on a fixed antenna, the set of antennas that interfere with it is fixed, and there is only one combination; the embodiment of the present invention traverses all possible combination, or at least two combinations.
现有技术中的方案乙与本发明实施例的方案的瞬时信道容量的概率分布图的对比,仿真结果图如图4所示。采用本发明实施例的MIMO系统,瞬时信道容量的概率分布比现有技术中的方案乙更集中。The comparison of the probability distribution diagram of the instantaneous channel capacity between the solution B in the prior art and the solution of the embodiment of the present invention, the simulation result diagram is shown in FIG. 4 . With the MIMO system of the embodiment of the present invention, the probability distribution of the instantaneous channel capacity is more concentrated than the solution B in the prior art.
上图中,横坐标表示信道容量,而纵坐标表示概率密度函数。从图中可以看出,与Qualcomm Cycling的方案乙相比,Huawei Cycling的本发明实施例的方案下瞬时信道容量具有更集中的分布。数据分析表明,本发明实施例的方案下瞬时信道容量的方差,比方案乙下瞬时信道容量的方差的小9%。In the figure above, the abscissa represents the channel capacity, while the ordinate represents the probability density function. It can be seen from the figure that compared with the solution B of Qualcomm Cycling, the instantaneous channel capacity under the solution of the embodiment of the present invention of Huawei Cycling has a more concentrated distribution. Data analysis shows that the variance of the instantaneous channel capacity under the scheme of the embodiment of the present invention is 9% smaller than the variance of the instantaneous channel capacity under scheme B.
本发明实施例还提供了一种MIMO多码字通信系统,其具体实现结构如图5和图6所示,可以包括以下组成部分:The embodiment of the present invention also provides a MIMO multi-codeword communication system, its specific implementation structure is shown in Figure 5 and Figure 6, and may include the following components:
(一)发射端,包括M个发射天线,由其中的K个发射天线发射K路数据流,所述K路数据流的各路分别独立进行信道编码,在一个传输时间间隔TTI的各个符号周期,K路数据流中的至少一路轮流使用K个发射天线的各个发射;以及,对于在接收端无法通过干扰消除技术消除从而仍然对某一路数据流的符号形成干扰的一个或多个数据流的符号被发射所使用的一个或多个天线的组合,随着不同的符号周期而变化至少一次,以实现干扰分集;(1) The transmitting end includes M transmitting antennas, wherein K transmitting antennas transmit K data streams, each of the K data streams is independently channel-coded, and each symbol period of a transmission time interval TTI , at least one of the K data streams uses K transmit antennas in turn for each transmission; and, for one or more data streams that cannot be eliminated by the interference cancellation technology at the receiving end and still interfere with the symbols of a certain data stream The combination of one or more antennas through which the symbols are transmitted is changed at least once with different symbol periods to achieve interference diversity;
在该发射端还可以包括信道编码方案确定单元,用于接收由接收端反馈的K个CQI,并根据所接收到的K个CQI值,决定相应的发射端所发射的K路数据流的各路在当前TTI的调制与信道编码方案MCS;该信道编码方案确定单元具体可以包括:The transmitting end may also include a channel coding scheme determination unit, which is used to receive K CQIs fed back by the receiving end, and determine the K data streams transmitted by the corresponding transmitting end according to the received K CQI values. The modulation and channel coding scheme MCS in the current TTI; the channel coding scheme determination unit may specifically include:
判断单元,用于在判定所接收到的K个CQI值中是否存在至少一个不可靠;a judging unit, configured to judge whether at least one of the received K CQI values is unreliable;
第一确定单元,用于在所述判断单元确定存在至少一个不可靠时,根据发射端在之前的一个或者几个TTI接收到的CQI值确定所述的至少一个不可靠的CQI值对应的至少一路数据流在当前TTI的MCS,或者,根据所述至少一路数据流在之前的一个或者几个TTI的MCS确定所述的至少一路数据流在当前TTI的MCS;The first determining unit is configured to determine at least one corresponding to the at least one unreliable CQI value according to the CQI value received by the transmitting end in one or several previous TTIs when the judging unit determines that there is at least one unreliable The MCS of one data flow in the current TTI, or determine the MCS of the at least one data flow in the current TTI according to the MCS of the at least one data flow in the previous one or several TTIs;
第二确定单元,用于在所述判断单元确定不存在至少一个不可靠时,则根据发射端当前的TTI接收到的CQI值确定当前的MCS。The second determination unit is configured to determine the current MCS according to the CQI value received by the transmitting end in the current TTI when the judging unit determines that there is no at least one unreliability.
所述发射端具体包括:The transmitting end specifically includes:
干扰数据流确定单元,用于在由K个发射天线中的任意确定的一个发射K路数据流中任意确定的某一路数据流的符号的各个符号周期内,确定在接收端采用干扰消除的检测技术消除了一路或多路已经被检测的数据流的符号的干扰以后,其干扰没有被接收端通过干扰消除技术消除而仍对所述某一路数据流的符号形成干扰的一个或多个数据流的符号;The interfering data flow determination unit is used to determine the detection method using interference cancellation at the receiving end within each symbol period of a symbol of a certain data flow arbitrarily determined in one of the transmitted K data streams arbitrarily determined by any of the K transmitting antennas One or more data streams whose interference has not been eliminated by the receiving end through interference cancellation technology but still interferes with the symbols of a certain data stream after the technology eliminates the interference of one or more symbols of the data stream that have been detected symbol;
发射控制单元,用于将所述干扰数据流确定单元确定的所述仍对所述某一路数据流的符号形成干扰的一个或多个数据流的符号被发射所使用的一个或多个发射天线的组合,在所述的一个TTI内随着不同的符号周期变化至少一次,以实现干扰分集。The transmission control unit is used to transmit the symbols of the one or more data streams determined by the interference data stream determination unit that still interfere with the symbols of the certain data stream to one or more transmit antennas used for transmission The combination of is changed at least once with different symbol periods in the one TTI, so as to realize interference diversity.
在发射端,为实现最优干扰分集,相应的发射控制单元具体可以包括以下单元:At the transmitting end, in order to achieve optimal interference diversity, the corresponding transmission control unit may specifically include the following units:
组合获取单元,用于获取多个发射天线的所有可能的组合;a combination acquiring unit, configured to acquire all possible combinations of multiple transmitting antennas;
控制单元,用于遍历组合获取单元获取的所有可能的组合,发射所述仍对所述某一路数据流的符号形成干扰的一个或多个数据流的符号,并且每个组合被使用的次数尽可能相同,以实现最优干扰分集。The control unit is configured to traverse all possible combinations acquired by the combination acquisition unit, transmit the symbols of the one or more data streams that still interfere with the symbols of the certain data stream, and each combination is used as many times as possible may be the same for optimal interference diversity.
在该系统实施例中,根据发射天线数目的不同(即K值的不同),相应的控制单元将采用不同的方案实现,下面将以K=4和K=3为例,对所述控制单元进行具体描述:In this system embodiment, according to the difference in the number of transmitting antennas (that is, the difference in the value of K), the corresponding control unit will adopt different schemes to realize, and K=4 and K=3 will be used as examples below to describe the control unit To describe in detail:
(1)如图5所示,在K=4时,所述控制单元可以包括:(1) As shown in Figure 5, when K=4, the control unit may include:
第一控制单元,用于在一个TTI的各个符号周期内,遍历数据流D1,D2,…D4与天线1,2,…4对应关系的所有可能的24种排列多次,直到余下的符号周期数x小于24,即不足以遍历数据流D1,D2,…D4与天线1,2,…4对应关系的所有可能的24种排列一次。The first control unit is used for traversing all possible 24 permutations of the corresponding relationship between data streams D1, D2, ... D4 and
可选地,该控制单元还可以包括第二控制单元,用于在所述小于24的x个符号周期内遍历的各个排列,如果x大于等于12,则遍历能够达到最优干扰分集效果12种排列一次,然后x的值减小12以致x小于12;在小于12的x个符号周期内,遍历能够达到最优干扰分集效果的12种排列中的x种各不相同的排列;如果x大于等于8,则遍历所述的12种排列中满足特定条件的4种排列一次,在使用所述的这4种排列发射数据时,满足每个数据流使用的发射天线各不相同,然后x的值减小4以致x小于8;如果x大于等于4,则遍历所述的12种排列中满足特定条件的4种排列一次,在使用所述的这4种排列发射数据时,满足每个数据流使用的发射天线各不相同,然后x的值减小4以致x小于4;在小于4的x个符号周期内,遍历x种排列,在使用所述的这x种排列发射数据时,满足每个数据流使用的发射天线各不相同。Optionally, the control unit may also include a second control unit, which is used for traversing each permutation within the x symbol period less than 24, if x is greater than or equal to 12, then traversing through 12 types can achieve the optimal interference diversity effect Arrange once, and then reduce the value of x by 12 so that x is less than 12; within x symbol periods less than 12, traverse x different permutations among the 12 permutations that can achieve the optimal interference diversity effect; if x is greater than is equal to 8, then traverse the 4 permutations that meet the specific conditions among the 12 permutations, and when using the 4 permutations to transmit data, the transmit antennas used for each data stream are different, and then x The value is reduced by 4 so that x is less than 8; if x is greater than or equal to 4, traverse the 4 permutations that meet the specific conditions in the 12 permutations once, and when using the 4 permutations to transmit data, satisfy each data The transmit antennas used by the streams are different, and then the value of x is reduced by 4 so that x is less than 4; within x symbol periods less than 4, traverse x permutations, and when using the x permutations to transmit data, satisfy Each data stream uses a different transmit antenna.
(2)如图6所示,在K=3时,所述控制单元可以包括:(2) As shown in Figure 6, when K=3, the control unit may include:
第三控制单元,用于在一个TTI的各个符号周期内,遍历数据流D1,D2,…D3与天线1,2,…3对应关系的所有可能的6种排列多次,直到余下的符号周期数x小于6,即不足以遍历数据流D1,D2,…D3与天线1,2,…3对应关系的所有可能的6种排列一次。The third control unit is used for traversing all six possible arrangements of the corresponding relationship between data streams D1, D2, ... D3 and
可选地,所述控制单元还可以包括第四控制单元,用于在所述小于6的x个符号周期内遍历的各个排列,所遍历的x种排列是所有可能的6种排列中的各不相同的x种;如果x大于等于3,则遍历所有可能的6种排列中的满足特定条件的3种排列一次,在使用所述的这3种排列发射数据时,满足每个数据流使用的发射天线各不相同,然后x的值减小3以致x小于3;在小于3的x个符号周期内,遍历x种排列,在使用所述的这x种排列发射数据时,满足每个数据流使用的发射天线各不相同。Optionally, the control unit may further include a fourth control unit, configured to traverse each permutation within the x symbol periods less than 6, and the traversed x permutations are all possible 6 permutations. Different x types; if x is greater than or equal to 3, traverse all possible 6 permutations that meet the specific conditions once, and when using the 3 permutations to transmit data, each data stream is satisfied The transmit antennas are different, and then the value of x is reduced by 3 so that x is less than 3; within x symbol periods less than 3, traverse x permutations, and when using the x permutations to transmit data, satisfy each The transmit antenna used by the data stream varies.
(二)接收端,所述MIMO系统接收端采用干扰消除的检测技术进行接收。(2) The receiving end, the receiving end of the MIMO system adopts the detection technology of interference cancellation for receiving.
在该接收端可以包括信息反馈单元,用于向所述发射端反馈K个信道质量指示CQI的信息,所述K个CQI与所述K路数据流一一对应,用于指示所述K路数据流的各路在当前TTI所经历的信道的信道质量,以便于发射端能够根据相应的CQI确定各TTI对应的MCS。The receiving end may include an information feedback unit, which is used to feed back K channel quality indication CQI information to the transmitting end, and the K CQIs correspond to the K data streams one by one, and are used to indicate the K The channel quality of the channel experienced by each channel of the data stream in the current TTI, so that the transmitting end can determine the MCS corresponding to each TTI according to the corresponding CQI.
显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。应该明白,这些具体实施中的变化对于本领域的技术人员来说是显而易见的,不脱离本发明的精神保护范围。Obviously, those skilled in the art should understand that each module or each step of the above-mentioned embodiments of the present invention can be implemented by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed among multiple computing devices. Optionally, they can be implemented with program codes executable by computing devices, thus, they can be stored in storage devices and executed by computing devices, or they can be made into individual integrated circuit modules, or the Multiple modules or steps among them are realized by making a single integrated circuit module. As such, the present invention is not limited to any specific combination of hardware and software. It should be understood that changes in these specific implementations are obvious to those skilled in the art and do not depart from the spirit protection scope of the present invention.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (31)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101959858A CN101222258B (en) | 2007-01-09 | 2007-12-14 | MIMO multi-codeword communication method, device and system |
PCT/CN2008/070041 WO2008083619A1 (en) | 2007-01-09 | 2008-01-08 | A communication method for mimo multiple code words |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710000610.1 | 2007-01-09 | ||
CNA2007100006101A CN101114890A (en) | 2007-01-09 | 2007-01-09 | MIMO multi-codeword communication method |
CN200710072976.X | 2007-01-16 | ||
CN2007101959858A CN101222258B (en) | 2007-01-09 | 2007-12-14 | MIMO multi-codeword communication method, device and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101222258A true CN101222258A (en) | 2008-07-16 |
CN101222258B CN101222258B (en) | 2010-05-12 |
Family
ID=39023035
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100006101A Pending CN101114890A (en) | 2007-01-09 | 2007-01-09 | MIMO multi-codeword communication method |
CN2007101959858A Expired - Fee Related CN101222258B (en) | 2007-01-09 | 2007-12-14 | MIMO multi-codeword communication method, device and system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100006101A Pending CN101114890A (en) | 2007-01-09 | 2007-01-09 | MIMO multi-codeword communication method |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN101114890A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102255702A (en) * | 2010-05-17 | 2011-11-23 | 电信科学技术研究院 | MIMO (Multiple Input Multiple Output) mode switching method and device |
CN112671510A (en) * | 2020-12-21 | 2021-04-16 | 海能达通信股份有限公司 | Channel quality indication feedback method, adaptive modulation coding method and device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101540690B (en) * | 2008-03-21 | 2011-09-14 | 华为技术有限公司 | Method and system for MIMO communication of multicast service |
US8687731B2 (en) * | 2009-02-02 | 2014-04-01 | Qualcomm Incorporated | Uplink open-loop spatial multiplexing in wireless communications |
CN104883237B (en) * | 2014-02-28 | 2018-03-09 | 中兴通讯股份有限公司 | A kind of data transmission method, apparatus and system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7095709B2 (en) * | 2002-06-24 | 2006-08-22 | Qualcomm, Incorporated | Diversity transmission modes for MIMO OFDM communication systems |
CN100576769C (en) * | 2005-06-07 | 2009-12-30 | 上海贝尔阿尔卡特股份有限公司 | A device and method for adaptive multi-antenna diversity in mobile communication network |
-
2007
- 2007-01-09 CN CNA2007100006101A patent/CN101114890A/en active Pending
- 2007-12-14 CN CN2007101959858A patent/CN101222258B/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102255702A (en) * | 2010-05-17 | 2011-11-23 | 电信科学技术研究院 | MIMO (Multiple Input Multiple Output) mode switching method and device |
CN102255702B (en) * | 2010-05-17 | 2014-08-20 | 电信科学技术研究院 | MIMO (Multiple Input Multiple Output) mode switching method and device |
CN112671510A (en) * | 2020-12-21 | 2021-04-16 | 海能达通信股份有限公司 | Channel quality indication feedback method, adaptive modulation coding method and device |
Also Published As
Publication number | Publication date |
---|---|
CN101222258B (en) | 2010-05-12 |
CN101114890A (en) | 2008-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102017445B (en) | Layer mapping method and data transmission method for MIMO system | |
KR101299386B1 (en) | Advanced mimo interleaving | |
US8014455B2 (en) | Feedback of differentially encoded channel state information for multiple-input multiple-output (MIMO) and subband scheduling in a wireless communication system | |
CN101536389B (en) | MIMO-OFD communication system and MIMO-OFD communication method | |
JP4490922B2 (en) | Multi-antenna transmission apparatus and multi-antenna transmission method | |
US8644262B1 (en) | Method and apparatus for estimating a channel quality indicator (CQI) for multiple input multiple output (MIMO) systems | |
CN104980201B (en) | Beamforming method and beamforming device | |
US8472565B2 (en) | Apparatus for processing received signal, method thereof, and method for selecting mapping rule | |
KR100688120B1 (en) | Apparatus and method for space-time frequency block coding in wireless communication system | |
KR20090017973A (en) | How to transmit codewords in a multiple input multiple output system | |
CN101442389A (en) | Method and apparatus for sending and receiving multi-aerial system data | |
CN101689975A (en) | Method and apparatus for improved radio resource allocation in a MIMO system | |
CN101141166A (en) | Data sending device | |
CN101222258B (en) | MIMO multi-codeword communication method, device and system | |
KR100922957B1 (en) | Signal Detection Device and Method of Multi-input / Output Communication System | |
KR101319878B1 (en) | Method For Indicating The Combination Of Codeward And Stream In The MIMO Communication System | |
JP4510870B2 (en) | Wireless communication method and wireless communication device | |
CN100499396C (en) | Communication method and system in multi-input multi-output system | |
CN101459459A (en) | Transmission method, system and apparatus for MIMO signal | |
KR101476204B1 (en) | Signal transmission method using improved codeword-layer mapping combination | |
KR101319876B1 (en) | Method For Indicating The Combination Of Codeward And Stream In The MIMO Communication System | |
RU2419212C2 (en) | Method to convert levels and method to transfer data for mimo system | |
WO2008083619A1 (en) | A communication method for mimo multiple code words | |
Sharma | Per antenna/stream union bound as a channel quality indicator for MIMO systems | |
BRPI0806330A2 (en) | layer mapping method and minimum system data transmission method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100512 |