CN101221554A - 基于小波变换和bp神经网络的脑电特征提取方法 - Google Patents

基于小波变换和bp神经网络的脑电特征提取方法 Download PDF

Info

Publication number
CN101221554A
CN101221554A CNA2008100568387A CN200810056838A CN101221554A CN 101221554 A CN101221554 A CN 101221554A CN A2008100568387 A CNA2008100568387 A CN A2008100568387A CN 200810056838 A CN200810056838 A CN 200810056838A CN 101221554 A CN101221554 A CN 101221554A
Authority
CN
China
Prior art keywords
average power
imagination
left hand
hand
wavelet transform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100568387A
Other languages
English (en)
Inventor
李明爱
王蕊
刘净瑜
阮晓钢
郝冬梅
左国玉
孙亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CNA2008100568387A priority Critical patent/CN101221554A/zh
Publication of CN101221554A publication Critical patent/CN101221554A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明是脑机接口系统想象动作脑电信号特征的提取方法,特别是基于小波变换和BP神经网络的脑电特征提取方法。本发明是以想象动作思维引起的能量变化作为区分左右手想象运动的特征,按照平均功率公式分别计算出想象左右手动作从C3、C4通道获取的脑电信号(以下简称左右手C3、C4)在0~9s内所有采样点对应的平均功率。设置时间窗,对加窗段的数据进行离散二进小波变换,选取第六尺度上的逼近信号a6,作为信号特征;以BP神经网络作为分类器进行分类。本文采用离散小波变换和BP神经网络提取想象运动电位的方法有助于提高想象动作电位的信噪比和识别正确率;另外,小波变换是一种线性变换,计算速度快,适合于在线分析。

Description

基于小波变换和BP神经网络的脑电特征提取方法
技术领域
本发明涉及脑机接口(brain-computer interface,BCI)系统想象动作脑电信号特征的提取方法,特别涉及利用离散小波变换和BP神经网络提取想象动作脑电特征的方法。
背景技术
脑-机接口(brain-computer interface,BCI)是指一种不依赖于脑的正常输出通路(即外周神经和肌肉)的脑-机(计算机或其它装置)通讯系统,它是一种全新的通讯和控制方法。BCI系统通常由四个部分组成:即信号采集系统、信号处理系统、模式识别系统和控制装置系统,如图1所示。信号分析和处理环节是每个BCI系统的核心部分,其功能是将输入的脑电信号转换成控制外界装置的输出信号。
想象运动是在动作未发生的情况下,对将要发生的动作的一种预测。当人们想象单侧肢体运动时,大脑对侧的运动感觉区的mu节律和beta节律能量减小,而同侧的运动感觉区mu节律和beta节律能量增大,这是大脑神经元突触后电位相互削弱和增强的结果。这种现象也被称为事件相关去同步和事件相关同步。也就是说,这两种现象反映了特定频率段上的脑电信号,在能量上的减小或增加变化。它成为判断左右手想象运动最根本的依据。但是利用现有技术,如叠加平均法、快速傅立叶变换法,自回归模型谱估计,独立分量分析等方法,从含有大量噪声的脑电信号中提取出特征信号,存在着低信噪比、识别准确率不高,识别速度慢等缺点。
发明内容
为了改善现有技术的不足,本发明的目的是以想象动作思维引起的能量变化作为区分左右手想象运动的特征,提供一种基于离散小波变换和BP神经网络相结合的方法,对含有大量噪声的原始脑电信号进行特征提取及脑电分类,以提高信噪比,分类准确率和通讯速度。
为了实现上述目的,本发明采用了如下技术方案:
通过电极帽采集脑电信号,受试者进行N次想象动作试验,分别包含想象左手动作和想象右手动作试验各
Figure S2008100568387D00021
次。数据由差分电极从国际标准的10~20导联系统的C3,C4通道获得(如图1所示)。采集到的脑电信号经过放大,模数(A/D)转换等前置处理后传送到计算机中,并以信号电压幅值形式存储于存储器中。利用计算机实现小波变换和BP神经网络相结合组成的小波神经网络对脑电信号进行特征提取和分类。N的取值范围是140~300;该方法依次包括下列步骤:
1.脑电信号预处理
1)计算想象左手动作的平均功率
按照平均功率公式 P ( j ) ‾ = 1 N Σ i = 1 N x f ( i , j ) 2 计算
Figure S2008100568387D00023
次想象左手动作从C3、C4通道获取的脑电信号(以下简称左手C3和左手C4)在0~9s内所有采样点对应的平均功率PLC3、PLC4,式中
Figure S2008100568387D00024
为第j个脑电数据所有次试验的平均功率,N为实验次数,xf(i,j) 2为第i次第j个脑电数据。对求出的平均功率设置3.5~8s的时间窗;处理过程如图3所示。
2)计算想象右手动作的平均功率
 同理,按照平均功率公式 P ( j ) ‾ = 1 N Σ i = 1 N x f ( i , j ) 2 ,计算
Figure S2008100568387D00032
次想象右手动作从C3、C4通道获取的脑电信号(以下简称右手C3和右手C4)在0~9s内所有采样点对应的平均功率PRC3、PRC4。对求出的平均功率设置3.5~8s的时间窗。处理过程如图4所示。
2.离散小波变换
1)左手C3、C4的离散小波变换
对左手C3、C4在加窗段内的平均功率进行离散二进小波变换。选用Daubechies类db5小波,采用6层分解。分解结果如图5所示,可以看出左手C3在尺度6上的逼近信号L3a6高于左手C4在尺度6上的逼近信号L4a6。
2)右手C3、C4的离散小波变换
同理,对右手C3、C4在加窗段内的平均功率进行离散二进小波变换。同样选用Daubechies类db5小波,采用6层分解。分解结果如图6所示,可以看出右手C3在尺度6上的逼近信号R3a6低于右手C4在尺度6上的逼近信号R4a6。
经上述分析可知,对于尺度6上的逼近信号a6,左右手存在明显差异。该差异表现为左手C3在尺度6上的逼近信号L3a6高于左手C4在尺度6上的逼近信号L4a6,而右手C3在尺度6上的逼近信号R3a6则低于右手C4在尺度6上的逼近信号R4a6。因此需要按照公式La6=L3a6-L4a6,Ra6=R3a6-R4a6计算出左右手C3、C4在尺度6上的逼近信号a6的差值La6和Ra6。选取La6和Ra6作为区分左右手的特征量。
其中,所述的离散二进小波变换,一维快速分解与重建算法为:
A j + 1 d f = Σ k h ( k - 2 n ) A j d f D j + 1 f = Σ k g ( k - 2 n ) A j d f - - - ( 1 )
A j d f = Σ k h ( n - 2 k ) A j + 1 d f + Σ k g ( n - 2 k ) D j f - - - ( 2 )
上式中h(n)和g(n)称为共轭镜像滤波器组,分别对应于低通和高通滤波器的单位脉冲响应。式(1)为小波分解公式,信号f(t)可从j尺度到j+1尺度进行逐步分解。原始信号 f ( t ) = A 0 d f ,其小波分解为{AJ df,(Djf)1≤j≤J},J为某一整数,Aj df是在尺度2j下分解得到的逼近信号,Djf是尺度2j下分解得到的细节信号。式(2)为小波重建公式。
3.利用BP神经网络对特征量进行分类
所述的基于小波变换和BP神经网络的脑电特征提取方法,其特征在于将上述离散小波变换与BP神经网络相结合组成小波BP神经网络。
本发明具有如下优点:
本文采用离散小波变换和BP神经网络提取想象运动脑电特征的方法。由于小波变换具有多分辨率的特点,在低频时,时间分辨率较低但频率分辨率较高;在高频时,时间分辨率较高但频率分辨率较低,它的这种变焦距特性,容易将类别间差距最大的部分突出表示,从而将不同类之间的差异“放大”,有助于提高想象动作电位的信噪比和识别正确率。另外,小波变换是一种线性变换,计算速度快,适合于在线分析。
附图说明
图1为BCI系统基本结构示意图
图2为想象左右手动作实验基本构成示意图
图3为左手C3、C4在0~9s内所有采样点对应的平均功率
图4为右手C3、C4在0~9s内所有采样点对应的平均功率
图5为左手C3、C4经离散小波分解后各尺度的细节信号和逼近信号
其中:d1-d6为尺度1-6上的细节信号,a6为尺度6上的逼近信号;其中L3a6为左手C3在尺度6上的逼近信号,L4a6为左手C4在尺度6上的逼近信号;
图6为想象右手C3、C4经离散小波分解后各尺度的细节信号和逼近信号,其中:d1-d6为尺度1-6上的细节信号,a6为尺度6上的逼近信号;其中R3a6为右手C3在尺度6上的逼近信号,R4a6为右手C4在尺度6上的逼近信号;
图7为想象左右手C3、C4在尺度6上的逼近信号a6的差值
其中:La6为左手C3与C4在尺度6上逼近信号a6的差值,Ra6为右手C3与C4在尺度6上逼近信号a6的差值。
具体实施方式
下面对本发明作进一步详细说明:
想象运动是在动作未发生的情况下,对将要发生的动作的一种预测。人体大脑的C3,C4位置包含了想象对侧手运动时最为丰富的信息,即手的运动感觉区。本发明研究的是想象运动的脑电分类,并针对运动感觉敏感的C3,C4通道的脑电信号,采用离散小波变换和BP神经网络方法对原始信号进行特征提取、分类,以达到区分左右手想象运动的目的。
1.实验设计方案
实验是由一个含有反馈信号控制的在线脑机接口系统完成,所执行的意识任务是通过想象左右手运动来控制反馈的光标。因此,在该实验中信号处理的任务就是在一定的时间内识别出该意识任务是想象左手运动还是右手运动,实现对测试数据的在线分类和分析。试验次数为140次,分别包含想象左手动作和想象右手动作试验各70次。实验的电极位置见图1,实验进程示意见图2。
所有的N次实验都是在同一天执行的,每两次实验中间均有几分钟的间隔,实验时间为9s/次。在起初的2s,受试者保持休息状态,t=2s时,显示器上出现1个持续1s的十字光标,同时会伴随1个声音信号提示实验开始(受试者准备开始想象任务)。在t=3~9s时,有1个指示左右方向的箭头代替十字光标作为指令,同时,要求受试者按照指令所提示的方向通过想象左右手运动控制进度条向箭头指示的方向移动。通过位于C3,C4前后(前“+”后“-”)各2.5cm位置的2对电极记录脑电信号。脑电信号的采样频率是128Hz。
2.脑电信号的预处理
1)计算想象左手动作的平均功率
按照平均功率公式 P ( j ) ‾ = 1 N Σ i = 1 N x f ( i , j ) 2 ,计算70次左手C3、C4在0~9s内所有采样点对应的平均功率PLC3、PLC4,式中
Figure S2008100568387D00071
为第j个脑电数据所有次试验的平均功率,N为实验次数,xf(i,j) 2为第i次第j个脑电数据。对求出的平均功率设置3.5~8s的时间窗。处理过程如图3所示。加窗后左手C3、C4对应的平均功率分别为PLC3′、PLC4′。
2)计算想象右手动作的平均功率
 同理,按照平均功率公式 P ( j ) ‾ = 1 N Σ i = 1 N x f ( i , j ) 2 ,计算70次右手C3、C4在0~9s内所有采样点对应的平均功率PRC3、PRC4。对求出的平均功率设置3.5~8s的时间窗。处理过程如图4所示。加窗后右手C3、C4对应的平均功率分别为PRC3′、PRC4′。
3.离散小波变换
离散二进小波变换的一维快速分解与重建算法为:
A j + 1 d f = Σ k h ( k - 2 n ) A j d f D j + 1 f = Σ k g ( k - 2 n ) A j d f - - - ( 1 )
A j d f = Σ k h ( n - 2 k ) A j + 1 d f + Σ k g ( n - 2 k ) D j f - - - ( 2 )
上式中h(n)和g(n)称为共轭镜像滤波器组,分别对应于低通和高通滤波器的单位脉冲响应。式(1)为小波分解公式,信号f(t)可从j尺度到j+1尺度进行逐步分解。原始信号 f ( t ) = A 0 d f ,其小波分解为{AJ df,(Djf)1≤j≤J},J为某一整数,aj df是在尺度2j下分解得到的逼近信号,Djf是尺度2j下分解得到的细节信号。式(2)为小波重建公式。
1)左手C3、C4的离散小波变换
对左手C3、C4在加窗段内的平均功率PLC3’、PLC4’分别进行离散二进小波变换。选用Daubechies类db5小波,采用6层分解。分解结果如图5所示,可以看出左手C3在尺度6上的逼近信号L3a6高于左手C4在尺度6上的逼近信号L4a6。
2)右手C3、C4的离散小波变换
同理,对右手C3、C4在加窗段内的平均功率PRC3’、PRC4’分别进行离散二进小波变换。同样选用Daubechies类db5小波,采用6层分解。分解结果如图6所示,可以看出右手C3在尺度6上的逼近信号R3a6低于右手C4在尺度6上的逼近信号R4a6。
对于小波类型和分解层数的选取,曾先后尝试过Daubechies类db4、db5、db6三种小波分解类型以及4、5、6层分解。考虑小波基函数与待分析信号波形的相似性,最终选用Daubechies类db5小波,采用6层分解。并发现了左右手C3、C4在尺度6上的逼近信号a6存在明显差异。该差异表现为左手C3在尺度6上的逼近信号L3a6高于左手C4在尺度6上的逼近信号L4a6,而右手C3在尺度6上的逼近信号R3a6则低于右手C4在尺度6上的逼近信号R4a6。因此需要按照公式La6=L3a6-L4a6,Ra6=R3a6-R4a6计算出左右手C3、C4在尺度6上的逼近信号a6的差值La6和Ra6。选取La6和Ra6作为区分左右手的特征量。
4.利用BP神经网络对特征量进行分类
选用BP神经网络作为分类器。BP模型是一个多层感知机构,是由输入层、中间层(隐层)和输出层构成的前馈网络。相对于其它神经网络模型来说,BP神经网络具有自适应功能、泛化功能以及很强的容错能力。BP网络的过程由前向过程和误差反向传播过程组成,其中输入信号经输入层和隐层神经元逐层处理,前向传输到输出层输出结果;若输出层的输出值与样本值有误差,则该误差沿原来的连接通道反向传播,经修改各层神经元连接阈值与权值,缩小误差并反复迭代,当误差小于允许值时,网络训练过程结束。
其前向计算过程如下:
(1)输入层结点i的输出Oi等于其输入Xi
(2)隐层节点j的输入 net j = Σ i ω ji o i + θ j ,输出 o j = f ( net j ) = θ j + 1 1 + exp ( - net j ) ,式中ωji为隐层节点j与输入层结点i之间的连接权;θj为隐层节点j的阀值,f为非线形Sigmoid传递函数。
(3)输出层结点l的输入 net l = Σ i ω lj o j + θ l ,输出 o l = f ( net l ) = θ l + 1 1 + exp ( - net l ) , 式中ωlj为输出层节点l与隐含层结点j之间的连接权;θl为隐层节点1的阀值。
对给定的训练样本集(xp1,xp2,...,xpn)→(lp1,lp2,..lpn),p=1,2,3,...,P为样本号,网络运算结果与训练样本目标之间的均方误差和表示为:
W = 1 p Σ p - 1 p E p
E p = 1 2 Σ l - 1 l ( l pl - o pl ) 2
对于输出层与隐层之间的权值ωli有:
ωlj(k+1)=ωlj(k)+η·δj·oi
δl=f(netl)·(tl-ol)
对于输入层与隐层之间的权值ωji有:
ωji(k+1)=ωji(k)+η·δj·oi
δ j = f ( ne t j ) Σ l ω lj · δ l
式中k为迭代次数,η为学习率;0<η<1。
网络训练学习的过程就是通过调节网络内部连接权使网络误差最小。BP网络内部连接权的调整过程也就是误差的反向传播过程。
将上述离散小波变换与BP神经网络相结合组成小波BP神经网络提取想象运动脑电特征的方法,实际实施效果体现在可以提高信噪比,处理后诱发电位波形明显,容易识别。同时缩短了提取视觉诱发电位所需的时间,有助于提高脑机接口的通讯速度。与传统方法相比,该项发明具有准确率高,识别速度快的优点。

Claims (1)

1.基于小波变换和BP神经网络的脑电特征提取方法,通过电极帽采集脑电信号,受试者进行N次想象动作试验,分别包含想象左手动作和想象右手动作试验各
Figure S2008100568387C00011
次;采集到的脑电信号经过放大,模数转换前置处理后传送到计算机中,并以信号电压幅值形式存储于存储器中;其特征在于,所述的N的取值范围是140~300;依次包括下列步骤:
1)脑电信号预处理
i)计算想象左手动作的平均功率
按照平均功率公式 P ( j ) ‾ = 1 N Σ i = 1 N x f ( i , j ) 2 计算次想象左手动作从C3、C4通道获取的脑电信号在0~9s内所有采样点对应的平均功率PLC3、PLC4,式中
Figure S2008100568387C00014
为第j个脑电数据所有次试验的平均功率,N为实验次数,xf(i,j) 2为第i次第j个脑电数据;对PLC3、PLC4设置3.5~8s的时间窗;记加窗后左手C3、C4通道对应的平均功率分别为PLC3′、PLC4′;
ii)计算想象右手动作的平均功率
按照平均功率公式 P ( j ) ‾ = 1 N Σ i = 1 N x f ( i , j ) 2 ,计算
Figure S2008100568387C00016
次想象右手动作从C3、C4通道获取的脑电信号在0~9s内所有采样点对应的平均功率PRC3、PRC4;对PRC3、PRC4设置3.5~8s的时间窗;加窗后右手C3、C4对应的平均功率分别为PRC3′、PRC4′;
2)离散小波变换
i)左手C3、C4的离散小波变换
对左手C3、C4在加窗段内的平均功率PLC3′、PLC4′进行离散二进小波变换;选用Daubechies类db5小波,采用六层分解;
ii)右手C3、C4的离散小波变换
对右手C3、C4在加窗段内的平均功率PRC3′、PRC4′分别进行离散二进小波变换;同样选用Daubechies类db5小波,采用六层分解;
按照公式La6=L3a6-L4a6,Ra6=R3a6-R4a6计算出左右手C3、C4在尺度6上的逼近信号a6的差值La6和Ra6;其中:L3a6、L4a6分别为左手C3、C4在尺度6上的逼近信号,R3a6、R4a6分别为右手C3、C4在尺度6上的逼近信号;选取La6和Ra6作为区分左右手的特征量;
3)利用BP神经网络对特征量进行分类
按照建立BP神经网络、对特征量进行训练、仿真的步骤来完成这一过程。
CNA2008100568387A 2008-01-25 2008-01-25 基于小波变换和bp神经网络的脑电特征提取方法 Pending CN101221554A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100568387A CN101221554A (zh) 2008-01-25 2008-01-25 基于小波变换和bp神经网络的脑电特征提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100568387A CN101221554A (zh) 2008-01-25 2008-01-25 基于小波变换和bp神经网络的脑电特征提取方法

Publications (1)

Publication Number Publication Date
CN101221554A true CN101221554A (zh) 2008-07-16

Family

ID=39631400

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100568387A Pending CN101221554A (zh) 2008-01-25 2008-01-25 基于小波变换和bp神经网络的脑电特征提取方法

Country Status (1)

Country Link
CN (1) CN101221554A (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101828911A (zh) * 2010-04-27 2010-09-15 杭州电子科技大学 一种基于奇异谱熵的神经元动作电位特征提取方法
CN101569569B (zh) * 2009-06-12 2011-05-11 东北大学 微功率无线通讯模式下人脑-机械手接口系统
CN102394844A (zh) * 2011-08-11 2012-03-28 浙江大学 基于fpga的锋电位信号并行检测装置和方法
RU2467384C1 (ru) * 2011-06-28 2012-11-20 Андрей Борисович Степанов Способ анализа электроэнцефалограмм
CN102821002A (zh) * 2011-06-09 2012-12-12 中国移动通信集团河南有限公司信阳分公司 网络流量异常检测方法和系统
CN103413050A (zh) * 2013-08-20 2013-11-27 北京工业大学 基于极速学习机的运动想象脑电信号投票策略分类方法
CN103412682A (zh) * 2013-08-13 2013-11-27 北京工业大学 基于红外超声联合定位的电子白板实验系统及定位方法
CN103623504A (zh) * 2013-12-10 2014-03-12 天津市鸣都科技发展有限公司 脑电语言障碍康复设备
CN103845137A (zh) * 2014-03-19 2014-06-11 北京工业大学 基于稳态视觉诱发脑机接口的机器人控制方法
CN104239708A (zh) * 2014-09-09 2014-12-24 北京迈赛富特科技有限责任公司 基于小波神经网络的岩溶陷落柱预测方法
CN104680176A (zh) * 2015-02-09 2015-06-03 北京邮电大学 一种基于非高斯中性向量特征选择的脑电波(eeg)信号分类方法
CN105469140A (zh) * 2015-08-24 2016-04-06 南京邮电大学 一种心音小波神经网络的构造方法
CN106214391A (zh) * 2016-07-21 2016-12-14 山东建筑大学 基于脑机接口的智能护理床及其控制方法
CN106510702A (zh) * 2016-12-09 2017-03-22 广州大学 基于中潜伏期听觉诱发电位的听觉注意特征提取、识别系统及方法
CN106640066A (zh) * 2016-12-28 2017-05-10 贵州大学 一种确定薄煤层滚筒采煤机综采工艺模式的方法
CN106778186A (zh) * 2017-02-14 2017-05-31 南方科技大学 一种用于虚拟现实交互设备的身份识别方法及装置
CN107049308A (zh) * 2017-06-05 2017-08-18 湖北民族学院 一种基于深度神经网络的意念控制系统
CN107095670A (zh) * 2017-05-27 2017-08-29 西南交通大学 驾驶员反应时间预测方法
CN108280414A (zh) * 2018-01-17 2018-07-13 重庆大学 一种基于能量特征的运动想象脑电信号的识别方法
CN109344816A (zh) * 2018-12-14 2019-02-15 中航华东光电(上海)有限公司 一种基于脑电实时检测面部动作的方法
CN110859593A (zh) * 2019-08-22 2020-03-06 西安八水健康科技有限公司 一种基于宽度神经网络的睡眠阶段自动划分算法
CN111103568A (zh) * 2019-12-10 2020-05-05 北京声智科技有限公司 一种声源定位方法、装置、介质和设备
CN111614576A (zh) * 2020-06-02 2020-09-01 国网山西省电力公司电力科学研究院 一种基于小波分析和支持向量机的网络数据流量识别方法及系统

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569569B (zh) * 2009-06-12 2011-05-11 东北大学 微功率无线通讯模式下人脑-机械手接口系统
CN101828911B (zh) * 2010-04-27 2011-07-20 杭州电子科技大学 一种基于奇异谱熵的神经元动作电位特征提取方法
CN101828911A (zh) * 2010-04-27 2010-09-15 杭州电子科技大学 一种基于奇异谱熵的神经元动作电位特征提取方法
CN102821002B (zh) * 2011-06-09 2015-08-26 中国移动通信集团河南有限公司信阳分公司 网络流量异常检测方法和系统
CN102821002A (zh) * 2011-06-09 2012-12-12 中国移动通信集团河南有限公司信阳分公司 网络流量异常检测方法和系统
RU2467384C1 (ru) * 2011-06-28 2012-11-20 Андрей Борисович Степанов Способ анализа электроэнцефалограмм
CN102394844A (zh) * 2011-08-11 2012-03-28 浙江大学 基于fpga的锋电位信号并行检测装置和方法
CN102394844B (zh) * 2011-08-11 2014-06-18 浙江大学 基于fpga的锋电位信号并行检测装置和方法
CN103412682A (zh) * 2013-08-13 2013-11-27 北京工业大学 基于红外超声联合定位的电子白板实验系统及定位方法
CN103413050A (zh) * 2013-08-20 2013-11-27 北京工业大学 基于极速学习机的运动想象脑电信号投票策略分类方法
CN103413050B (zh) * 2013-08-20 2016-08-24 北京工业大学 基于极速学习机的运动想象脑电信号投票策略分类方法
CN103623504A (zh) * 2013-12-10 2014-03-12 天津市鸣都科技发展有限公司 脑电语言障碍康复设备
CN103845137B (zh) * 2014-03-19 2016-03-02 北京工业大学 基于稳态视觉诱发脑机接口的机器人控制方法
CN103845137A (zh) * 2014-03-19 2014-06-11 北京工业大学 基于稳态视觉诱发脑机接口的机器人控制方法
CN104239708B (zh) * 2014-09-09 2017-12-26 北京迈赛富特科技有限责任公司 基于小波神经网络的岩溶陷落柱预测方法
CN104239708A (zh) * 2014-09-09 2014-12-24 北京迈赛富特科技有限责任公司 基于小波神经网络的岩溶陷落柱预测方法
CN104680176A (zh) * 2015-02-09 2015-06-03 北京邮电大学 一种基于非高斯中性向量特征选择的脑电波(eeg)信号分类方法
CN104680176B (zh) * 2015-02-09 2018-04-24 北京邮电大学 一种基于非高斯中性向量特征选择的脑电波(eeg)信号分类方法
CN105469140A (zh) * 2015-08-24 2016-04-06 南京邮电大学 一种心音小波神经网络的构造方法
CN106214391A (zh) * 2016-07-21 2016-12-14 山东建筑大学 基于脑机接口的智能护理床及其控制方法
CN106510702A (zh) * 2016-12-09 2017-03-22 广州大学 基于中潜伏期听觉诱发电位的听觉注意特征提取、识别系统及方法
CN106510702B (zh) * 2016-12-09 2019-09-17 广州大学 基于中潜伏期听觉诱发电位的听觉注意特征提取、识别系统及方法
CN106640066B (zh) * 2016-12-28 2019-08-30 贵州大学 一种确定薄煤层滚筒采煤机综采工艺模式的方法
CN106640066A (zh) * 2016-12-28 2017-05-10 贵州大学 一种确定薄煤层滚筒采煤机综采工艺模式的方法
CN106778186A (zh) * 2017-02-14 2017-05-31 南方科技大学 一种用于虚拟现实交互设备的身份识别方法及装置
CN107095670A (zh) * 2017-05-27 2017-08-29 西南交通大学 驾驶员反应时间预测方法
CN107049308A (zh) * 2017-06-05 2017-08-18 湖北民族学院 一种基于深度神经网络的意念控制系统
CN107049308B (zh) * 2017-06-05 2020-04-17 湖北民族学院 一种基于深度神经网络的意念控制系统
CN108280414A (zh) * 2018-01-17 2018-07-13 重庆大学 一种基于能量特征的运动想象脑电信号的识别方法
CN109344816A (zh) * 2018-12-14 2019-02-15 中航华东光电(上海)有限公司 一种基于脑电实时检测面部动作的方法
CN110859593A (zh) * 2019-08-22 2020-03-06 西安八水健康科技有限公司 一种基于宽度神经网络的睡眠阶段自动划分算法
CN111103568A (zh) * 2019-12-10 2020-05-05 北京声智科技有限公司 一种声源定位方法、装置、介质和设备
CN111614576A (zh) * 2020-06-02 2020-09-01 国网山西省电力公司电力科学研究院 一种基于小波分析和支持向量机的网络数据流量识别方法及系统

Similar Documents

Publication Publication Date Title
CN101221554A (zh) 基于小波变换和bp神经网络的脑电特征提取方法
CN108491077B (zh) 一种基于多流分治卷积神经网络的表面肌电信号手势识别方法
CN103728551B (zh) 一种基于级联集成分类器的模拟电路故障诊断方法
Doulah et al. Wavelet domain feature extraction scheme based on dominant motor unit action potential of EMG signal for neuromuscular disease classification
AU2020100027A4 (en) Electroencephalogram-based negative emotion recognition method and system for aggressive behavior prediction
CN110680313B (zh) 一种基于脉冲群智能算法并结合stft-psd和pca的癫痫时期分类方法
CN102521505A (zh) 用于控制意图识别的脑电和眼电信号决策融合方法
CN103761424B (zh) 基于二代小波和独立分量分析肌电信号降噪与去混迭方法
CN104771163A (zh) 基于csp和r-csp算法的脑电信号特征提取方法
CN114533086B (zh) 一种基于空域特征时频变换的运动想象脑电解码方法
CN113158964B (zh) 一种基于残差学习和多粒度特征融合的睡眠分期方法
CN110969108A (zh) 一种基于自主运动想象脑电的肢体动作识别方法
Cheng et al. The optimal wavelet basis function selection in feature extraction of motor imagery electroencephalogram based on wavelet packet transformation
CN111523601A (zh) 一种基于知识引导和生成对抗学习的潜在情绪识别方法
CN111616706B (zh) 一种基于卷积神经网络的表面肌电信号分类方法及系统
CN108280414A (zh) 一种基于能量特征的运动想象脑电信号的识别方法
Montazerin et al. ViT-HGR: vision transformer-based hand gesture recognition from high density surface EMG signals
CN111931656B (zh) 基于迁移学习的用户独立型运动想象分类模型训练方法
CN107122050A (zh) 基于csfl‑gdbn的稳态运动视觉诱发电位脑‑机接口方法
Aly et al. Bio-signal based motion control system using deep learning models: A deep learning approach for motion classification using EEG and EMG signal fusion
Li et al. A novel motor imagery EEG recognition method based on deep learning
CN113128384A (zh) 一种基于深度学习的脑卒中康复系统脑机接口软件关键技术方法
CN111603135B (zh) 一种基于主从支持向量机的低功耗癫痫检测电路
Qin et al. Bogie fault identification based on EEMD information entropy and manifold learning
Murugavel et al. Combined seizure index with adaptive multi-class SVM for epileptic EEG classification

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20080716