CN101221223B - Single slice battery essential resistance and voltage on-line testing system for fuel cell pile - Google Patents
Single slice battery essential resistance and voltage on-line testing system for fuel cell pile Download PDFInfo
- Publication number
- CN101221223B CN101221223B CN2007101690837A CN200710169083A CN101221223B CN 101221223 B CN101221223 B CN 101221223B CN 2007101690837 A CN2007101690837 A CN 2007101690837A CN 200710169083 A CN200710169083 A CN 200710169083A CN 101221223 B CN101221223 B CN 101221223B
- Authority
- CN
- China
- Prior art keywords
- circuit
- voltage
- fuel cell
- current
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 75
- 239000000446 fuel Substances 0.000 title claims abstract description 39
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 238000004891 communication Methods 0.000 claims abstract description 24
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 9
- 238000000926 separation method Methods 0.000 claims description 24
- 230000003750 conditioning effect Effects 0.000 claims description 10
- 230000001052 transient effect Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 13
- 230000005284 excitation Effects 0.000 abstract description 12
- 239000003990 capacitor Substances 0.000 abstract description 9
- 230000000903 blocking effect Effects 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 102220187649 rs145044428 Human genes 0.000 description 1
- 102220107651 rs1802645 Human genes 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Fuel Cell (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
本发明涉及一种燃料电池堆单片电池内阻与电压在线测试系统,包括测试单元、程控交流电流激励源、隔直电容、电流检测模块、键盘及液晶显示单元、存储单元,其特点是:程控交流电流激励源串接隔直电容后再与燃料电池输出端并联,测试单元通过通信接口周期性地控制交流电流激励源的频率和幅值、依次采集各单片电池电压与电流信号并进行内阻计算;电流检测模块、键盘及液晶显示单元、存储单元分别与测试单元连接,测试单元通过通信接口与电堆主控制器或其它设备通信。本发明电路简洁、清晰,可靠性高,成本适中,测量精度高、速度快,接口丰富且易扩展,满足燃料电池堆单片电池内阻与电压实时高精度测试的需要。
The invention relates to an online test system for the internal resistance and voltage of a fuel cell stack single-chip battery, which includes a test unit, a program-controlled AC current excitation source, a DC blocking capacitor, a current detection module, a keyboard, a liquid crystal display unit, and a storage unit, and is characterized in that: The program-controlled AC current excitation source is connected in series with a DC blocking capacitor and then connected in parallel with the output of the fuel cell. The test unit periodically controls the frequency and amplitude of the AC current excitation source through the communication interface, and sequentially collects the voltage and current signals of each single cell and performs Internal resistance calculation; the current detection module, keyboard, liquid crystal display unit, and storage unit are respectively connected to the test unit, and the test unit communicates with the main controller of the stack or other equipment through the communication interface. The invention has simple and clear circuit, high reliability, moderate cost, high measurement accuracy, fast speed, abundant interfaces and easy expansion, and meets the needs of real-time and high-precision testing of the internal resistance and voltage of a single-chip battery of a fuel cell stack.
Description
技术领域technical field
本发明属于一种串联电源单体内阻与电压测试系统,特别是一种燃料电池堆单片电池内阻与电压在线测试系统。 The invention belongs to a system for testing the internal resistance and voltage of a series power supply unit, in particular to an on-line testing system for the internal resistance and voltage of a fuel cell stack monolithic battery. the
背景技术Background technique
燃料电池是一种通过电化学反应将储存在燃料和氧化剂中的化学能转换成电能的装置。这种装置的最大特点是反应过程中不涉及到燃烧,因此其能量转换效率不受“卡诺循环”的限制,实际使用效率则是普通内燃机的2~3倍。另外,它还具有能量高、噪音小、无污染、零排放等优点,因此世界各国都把它视为解决环境与能源短缺问题的重大攻关项目之一。根据实际应用中对燃料电池功率要求,通常燃料电池堆由几片到几百片单电池串联组成,在燃料电池运行过程中,单片电池的异常会影响整个电堆的性能与安全,为了确保燃料电池的正常工作并评估其性能,必须对运行参数进行实时监控。毋庸置疑,单片电池电压是电池发电性能的最直接反映,所以必须实时监测。内阻是衡量电子和质子在电极内传输难易程度的主要因素,也是决定燃料电池发电效率的关键参数,而且燃料电池湿度和温度与其内阻具有较强的耦合关系,通过内阻测试可实现对湿度和温度的软测量,为湿度、温度等参数的控制提供参考。因此,为了确保燃料电池的安全、稳定、高效运行,必须对各单片燃料电池内阻进行实时监控。但是,由于燃料电池内阻可以呈容性、感性和纯阻性,单片内阻大小只在 μΩ、mΩ级,而且实时变化,现有普通仪器一般无法对它进行精确测量。 A fuel cell is a device that converts chemical energy stored in fuel and oxidant into electrical energy through an electrochemical reaction. The biggest feature of this device is that no combustion is involved in the reaction process, so its energy conversion efficiency is not limited by the "Carnot cycle", and the actual efficiency is 2 to 3 times that of ordinary internal combustion engines. In addition, it also has the advantages of high energy, low noise, no pollution, and zero emissions. Therefore, countries all over the world regard it as one of the major research projects to solve the problems of environment and energy shortage. According to the fuel cell power requirements in practical applications, the fuel cell stack is usually composed of several to hundreds of single cells in series. During the operation of the fuel cell, the abnormality of a single cell will affect the performance and safety of the entire stack. In order to ensure For the normal operation of the fuel cell and to evaluate its performance, the operating parameters must be monitored in real time. There is no doubt that the voltage of a single cell is the most direct reflection of the battery's power generation performance, so it must be monitored in real time. The internal resistance is the main factor to measure the difficulty of electron and proton transmission in the electrode, and also the key parameter to determine the power generation efficiency of the fuel cell, and the humidity and temperature of the fuel cell have a strong coupling relationship with its internal resistance, which can be realized through the internal resistance test The soft measurement of humidity and temperature provides reference for the control of parameters such as humidity and temperature. Therefore, in order to ensure the safe, stable and efficient operation of fuel cells, it is necessary to monitor the internal resistance of each single fuel cell in real time. However, since the internal resistance of the fuel cell can be capacitive, inductive and purely resistive, the internal resistance of a single chip is only in the order of μΩ and mΩ, and it changes in real time. It is generally impossible to measure it accurately with existing ordinary instruments. the
当前燃料电池的交流阻抗只能由复杂的实验设备进行测试,而且这些设备包括许多互连的子系统。这些设备一般包括燃料电池测试台、电子负载、频率分析仪等高档复杂仪器,而且需要技术人员正确配置它们的硬件连线、软件程序和接口通信协议等,这使得该类测试平台非常复杂、成本很高。有关专利显示燃料电池交流阻抗在线测试系统硬件上需要配置可控电子负载、频率分析仪、GPIB接口、电流和电压波形获取设备等,测试软件需要专用数据分析软件和各种仪表驱动程序等。例如:加拿大安大略省洁能氏公司专利WO02/27342和WO2003/083498;加拿大不列颠哥伦比亚省绿光电力技术公司专利WO2003/098769。这些设备通过对电子负载的控制来测试燃料电池内阻,由于实际燃料电池堆所带负载不能按测试要求控制,所以他们的方法不能进行在线测试。 The AC impedance of current fuel cells can only be tested with complex experimental setups consisting of many interconnected subsystems. These devices generally include high-end and complex instruments such as fuel cell test benches, electronic loads, and frequency analyzers, and require technicians to correctly configure their hardware connections, software programs, and interface communication protocols, etc., which makes this type of test platform very complex and expensive. very high. Relevant patents show that the hardware of the fuel cell AC impedance online test system needs to be equipped with controllable electronic loads, frequency analyzers, GPIB interfaces, current and voltage waveform acquisition equipment, etc., and the test software requires special data analysis software and various instrument drivers. For example: Patents WO02/27342 and WO2003/083498 of the Clean Energy Company of Ontario, Canada; patent WO2003/098769 of the Green Light Power Technology Company of British Columbia, Canada. These devices test the internal resistance of the fuel cell by controlling the electronic load. Since the load carried by the actual fuel cell stack cannot be controlled according to the test requirements, their method cannot be used for online testing. the
以上所述测试仪大多也具有燃料电池单片电池电压测试功能,不过单片电池阻抗测试与单片电池电压测试是分开进行的,这也限制了其功能的发挥。 Most of the above-mentioned testers also have the function of testing the voltage of a fuel cell single cell, but the single cell impedance test and the single cell voltage test are performed separately, which also limits its function. the
发明内容Contents of the invention
本发明的目的在于提供一种简单、可靠的燃料电池堆单片电池内阻与电压在线测试系统,以克服现有测试系统的不足。 The object of the present invention is to provide a simple and reliable on-line testing system for the internal resistance and voltage of a fuel cell stack single-chip battery, so as to overcome the shortcomings of the existing testing system. the
为了实现上述目的,本发明包括程控交流电流激励源、隔直电容、电流检测模块、键盘及液晶显示单元、存储单元、至少一个测试单元, 程控交流电流激励源串接隔直电容后再与燃料电池输出端并联,测试单元通过通信接口周期性地控制交流电流激励源的频率和幅值,依次采集各单片电池电压与电流信号并进行内阻计算;电流检测模块、键盘及液晶显示单元、存储单元(经过USB接口)分别与测试单元连接,液晶显示单元显示各单片电池内阻与电压,并对内阻或电压异常的电池报警;测试单元通过通信接口与电堆主控制器或其它设备通信,多个测试单元通过通信网络连接对任意片数的燃料电池堆进行单片内阻与电压测试。 In order to achieve the above object, the present invention includes a program-controlled alternating current excitation source, a DC blocking capacitor, a current detection module, a keyboard and a liquid crystal display unit, a storage unit, and at least one test unit. The battery output terminals are connected in parallel, and the test unit periodically controls the frequency and amplitude of the AC current excitation source through the communication interface, sequentially collects the voltage and current signals of each single battery and calculates the internal resistance; the current detection module, keyboard and liquid crystal display unit, The storage unit (through the USB interface) is connected to the test unit respectively, and the liquid crystal display unit displays the internal resistance and voltage of each single battery, and alarms the battery with abnormal internal resistance or voltage; the test unit communicates with the main controller of the stack or other Device communication, multiple test units are connected through a communication network to perform single-chip internal resistance and voltage tests on any number of fuel cell stacks. the
[0008其特点是:测试单元由控制器MCU、多路模拟开关、信号调理电路、两个交直流分离电路、相位差检测电路、两个有效值测量电路、A/D转换器、通信接口和至少一个仪表放大器组成,其中控制器MCU通过通信接口与交流电流激励源实现通信,每个仪表放大器两个输入端与对应的各单电池两端分别连接,多个仪表放大器的输出与一个多路模拟开关的输入端相连,多路模拟开关的输出端与电压采集通道的交直流分离电路1的输入端连接,多路模拟开关的控制端与控制器MCU的I/O口连接;交直流分离电路1的交流输出端与有效值测量电路1的输入端和相位差检测电路输入端连接;信号调理电路的输入端与电流检测模块的输出端相连,信号调理电路的输出端与电流采集通道的交直流分离电路2的输入端连接,交直流分离电路2的交流输出端与有效值测量电路2的输入端和相位差检测电路输入端连接;两个交直流分离电路的直流输出端及两个有效值测量电路输出端和相位差检测电路输出端及两个有效值测量电路输出端和相位差检测电路输出端 分别通过A/D转换器与控制器MCU连接,相位差检测电路还有一输出端与控制器MCU连接。 It is characterized in that: test unit is made of controller MCU, multi-channel analog switch, signal conditioning circuit, two alternating and direct current separation circuits, phase difference detection circuit, two effective value measurement circuits, A/D converter, communication interface and Composed of at least one instrumentation amplifier, in which the controller MCU communicates with the AC current excitation source through a communication interface. The two input terminals of each instrumentation amplifier are respectively connected to the two ends of the corresponding single cells, and the outputs of multiple instrumentation amplifiers are connected to a multi-channel The input terminals of the analog switches are connected, the output terminals of the multi-channel analog switches are connected with the input terminals of the AC-
上述电流检测电路由精密闭环霍尔电流传感器和精密采样电阻组成,实现精确I/V转换,其输出端与测试单元的信号调理电路输入端连接。 The above-mentioned current detection circuit is composed of a precision closed-loop Hall current sensor and a precision sampling resistor to realize precise I/V conversion, and its output terminal is connected to the input terminal of the signal conditioning circuit of the test unit. the
上述交流电流激励源受控制器MCU实时控制,其输出电流幅值不大于电堆电流的5%,其输出电流频率在100Hz-20kHz之间周期变化。 The above AC current excitation source is controlled by the controller MCU in real time, its output current amplitude is not greater than 5% of the stack current, and its output current frequency changes periodically between 100Hz-20kHz. the
上述测试单元中信号调理电路由仪表放大器和精密电阻构成。 The signal conditioning circuit in the above test unit consists of an instrumentation amplifier and precision resistors. the
上述测试单元中两个交直流分离电路分别由二阶高通有源滤波电路、电压跟随器、二阶低通有源滤波电路组成,直流输出端由限流电阻R、稳压管D构成限幅输出保护电路,交流输出端由限流电阻R、瞬态电压抑制器TVS构成限幅输出保护电路。 The two AC-DC separation circuits in the above test unit are composed of a second-order high-pass active filter circuit, a voltage follower, and a second-order low-pass active filter circuit. The DC output terminal is composed of a current-limiting resistor R and a voltage regulator tube D. Output protection circuit, the AC output terminal is composed of a current limiting resistor R and a transient voltage suppressor TVS to form a limiting output protection circuit. the
上述测试单元中相位差检测电路由相位差绝对值检测与相位差符号检测组成,相位差绝对值检测引入了电压比较单元、异或门电路、低通有源滤波电路、限幅输出保护电路,其输出端与A/D转换器输入端连接;相位差符号检测由电压比较单元、电压跟随器、异或门电路、RC微分电路与D锁存器组成,其输出端与控制器MCU的I/O口连接。 The phase difference detection circuit in the above test unit is composed of phase difference absolute value detection and phase difference sign detection. The phase difference absolute value detection introduces a voltage comparison unit, an exclusive OR gate circuit, a low-pass active filter circuit, and a limiter output protection circuit. Its output terminal is connected to the input terminal of the A/D converter; the phase difference sign detection is composed of a voltage comparison unit, a voltage follower, an exclusive OR gate circuit, an RC differential circuit and a D latch, and its output terminal is connected to the I of the controller MCU. /O port connection. the
上述测试单元中A/D转换器为14位分辨率的A/D转换器,它与控制器MCU通过SPI方式通信,即接收控制信号和发送模数转换结果,它有8模拟通道、内置4V基准和转换时钟及8×FIFO,而且也可以使用外部电压基准(本发明采用外部+5V作电压基准),具有转换时间短、精度高、使用灵活的优点。控制器MCU与A/D转换器、多路模 拟开关、相位差检测电路、通信接口之间有光电隔离电路,避免外部噪声干扰,确保测试单元稳定运行。 The A/D converter in the above test unit is an A/D converter with 14-bit resolution. It communicates with the controller MCU through SPI, that is, it receives control signals and sends analog-to-digital conversion results. It has 8 analog channels and built-in 4V Reference and conversion clock and 8×FIFO, and can also use an external voltage reference (the present invention uses an external +5V as a voltage reference), which has the advantages of short conversion time, high precision, and flexible use. There is a photoelectric isolation circuit between the controller MCU and the A/D converter, multi-channel analog switch, phase difference detection circuit, and communication interface to avoid external noise interference and ensure the stable operation of the test unit. the
上述测试单元中存储单元经过USB接口与测试单元中控制器MCU相连,控制器MCU通过RS485通信接口与程控交流电流激励源相接,测试单元通过CAN、RS232/485通信接口与电堆主控制器或其它设备通信,多个测试单元通过CAN通信网络连接对任意片数的燃料电池堆进行单片内阻与电压测试。 The storage unit in the above test unit is connected to the controller MCU in the test unit through the USB interface, the controller MCU is connected to the program-controlled AC current excitation source through the RS485 communication interface, and the test unit is connected to the stack main controller through the CAN, RS232/485 communication interface Or other equipment communication, multiple test units are connected through the CAN communication network to perform single-chip internal resistance and voltage tests on any number of fuel cell stacks. the
本发明与现有技术相比,其有益效果是测量系统实用性强、在测试过程中不影响燃料电池正常工作。本发明电路简洁、清晰,可靠性高,成本适中,测量精度高、速度快,接口丰富且易扩展,满足燃料电池堆单片电池内阻与电压实时高精度测试的需要。 Compared with the prior art, the invention has the advantages that the measurement system has strong practicability and does not affect the normal operation of the fuel cell during the testing process. The invention has simple and clear circuit, high reliability, moderate cost, high measurement accuracy, fast speed, abundant interfaces and easy expansion, and meets the needs of real-time and high-precision testing of the internal resistance and voltage of a single-chip battery of a fuel cell stack. the
附图说明Description of drawings
图1为本发明的结构原理框图。 Fig. 1 is a structural principle block diagram of the present invention. the
图2为本发明的多个测试单元测试任意片数燃料电池堆原理框图。 Fig. 2 is a schematic block diagram of a fuel cell stack with any number of pieces tested by multiple test units of the present invention. the
图3为本发明的测试单元中交直流分离电路原理图。 Fig. 3 is a schematic diagram of the AC-DC separation circuit in the test unit of the present invention. the
图4为本发明的测试单元中相位差检测电路原理图。 Fig. 4 is a schematic diagram of the phase difference detection circuit in the test unit of the present invention. the
具体实施方式Detailed ways
下面结合附图和实施例对本发明做进一步的详细说明,但该实施例不应理解为对本发明的限制。 The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments, but these embodiments should not be construed as limiting the present invention. the
本发明包括测试单元、程控交流电流激励源与隔直电容,电流检测模块、键盘及液晶显示单元、存储单元,其中测试单元由控制器MCU、 仪表放大器、多路模拟开关、信号调理电路、交直流分离电路、相位差检测电路、有效值测量电路、A/D转换器、RS232/485通信接口和CAN(控制局域网)通信接口组成(图1),其中程控交流电流激励源串接隔直电容后再与燃料电池堆并联,从而在各单片燃料电池上叠加了正弦交流信号。各单电池两端电压分别经仪表放大器AD621放大10倍后与多路模拟开关输入端相连,多路模拟开关受控制器MCU控制输出其中的一路电压,该路电压进入电压采集通道的交直流分离电路1。电堆电流由精密闭环霍尔电流传感器和精密采样电阻实时采集,采样电阻两端电压经仪表放大器AD620放大4倍后进入电流采集通道的交直流分离电路2。两个交直流分离电路的交流输出端分别与两个有效值测量芯片AD536输入端和相位差检测电路输入端连接,直流输出端以及有效值测量芯片AD536输出端直接与A/D转换器TLC3548模拟输入通道连接。A/D转换器TLC3548以SPI方式给控制器MCU发送模数转换结果,控制器MCU根据相位差符号和模数转换结果求出交流电压电流的相位差α,并根据模数转换结果求出电堆交流电流IAC、直流电流IDC、单片电池的交流电压VAC直流电压VDC,再结合相位差α计算单片电池内阻Z: The invention includes a test unit, a program-controlled AC current excitation source and a DC blocking capacitor, a current detection module, a keyboard, a liquid crystal display unit, and a storage unit, wherein the test unit is composed of a controller MCU, an instrument amplifier, a multi-channel analog switch, a signal conditioning circuit, and an AC Composed of DC separation circuit, phase difference detection circuit, effective value measurement circuit, A/D converter, RS232/485 communication interface and CAN (Control Local Area Network) communication interface (Figure 1), in which the program-controlled AC current excitation source is connected in series with a DC blocking capacitor Then it is connected in parallel with the fuel cell stack, so that a sinusoidal AC signal is superimposed on each single fuel cell. The voltage at both ends of each cell is respectively amplified 10 times by the instrumentation amplifier AD621 and then connected to the input terminal of the multi-channel analog switch. The multi-channel analog switch is controlled by the controller MCU to output one of the voltages, and the voltage enters the AC-DC separation of the voltage acquisition channel.
控制器MCU将所测单片电池内阻Z与电压VDC发给液晶显示单元实时显示,并对内阻大于预警值或电压小于警戒值的电池报警显示。 The controller MCU sends the measured internal resistance Z and voltage V DC of the single battery to the liquid crystal display unit for real-time display, and displays an alarm for batteries whose internal resistance is greater than the warning value or whose voltage is lower than the warning value.
本发明的多个测试单元通过CAN通信网络连接可对任意片数的燃料电池堆进行单片内阻与电压测试,燃料电池堆中的多个单片电池与 一个测试单元输入端连接,全部单片电池与n个测试单元输入端连接,程控交流电流激励源和隔直电容串联后与燃料电池堆输出端并联,电流检测模块与测试单元1连接(图2)。测试单元1测试多个单片电池内阻与电压的同时还通过RS485通信接口实时控制程控交流电流激励源、采集电堆电流,并将电流值通过CAN通信网络发送给其它测试单元,测试单元2~测试单元n测试的多个单片电池内阻与电压值通过CAN通信网络发送到测试单元1,测试单元1将全部单片电池内阻与电压值传送给液晶显示单元进行显示,并将全部单片电池内阻与电压值通过USB接口发送给存储单元储存,测试系统通过测试单元1的RS232/485通信接口与PC或其它设备通信。 The plurality of test units of the present invention can be connected through the CAN communication network to perform single-chip internal resistance and voltage tests on any number of fuel cell stacks. Multiple single-chip batteries in the fuel cell stack are connected to the input end of a test unit, and all single-chip The slice battery is connected to the input terminals of n test units, the program-controlled AC current excitation source and the DC blocking capacitor are connected in parallel with the output terminals of the fuel cell stack, and the current detection module is connected to the test unit 1 (Fig. 2). While testing the internal resistance and voltage of multiple single-chip batteries, the
本发明的电压采集通道交直流分离电路1与电流采集通道交直流分离电路2相同,交直流分离电路由二阶高通有源滤波电路、电压跟随器、二阶低通有源滤波电路组成,形成交流通道和直流通道(图3)。 The AC-
1、交直流分离电路的交流通道由二阶高通有源滤波电路和二阶低通有源滤波电路组成,使其输出100Hz-20kHz信号,其输出端有限流电阻R12、瞬态电压抑制器TVS构成的限幅输出保护电路,使其输出钳位在-VT到+VT之间,保护有效值测量芯片AD536和后续器件的安全。二阶高通有源滤波电路传递函数为: 1. The AC channel of the AC-DC separation circuit is composed of a second-order high-pass active filter circuit and a second-order low-pass active filter circuit, so that it can output 100Hz-20kHz signals, and its output terminal has a current-limiting resistor R12 and a transient voltage suppressor TVS The limiting output protection circuit constituted makes its output clamp between -V T to +V T , and protects the safety of the effective value measurement chip AD536 and subsequent devices. The transfer function of the second-order high-pass active filter circuit is:
其中通带增益:
下限频率:
阻尼系数:
根据AF(∞)=-1、fn=100Hz、ε=0.707以及实际电阻、电容参数限制,取C1=C2=C3=0.1μF,R1=7.5kΩ,R2=36kΩ,实际二阶高通有源滤波电路AF(∞)=-1,fn=97Hz,ε=0.685,可满足系统100Hz高通滤波要求。二阶低通有源滤波电路与二阶高通有源滤波电路具有对偶性,将二阶高通有源滤波电路中的电阻替换成电容,电容替换成电阻,就可得二阶低通有源滤波电路,同样根据通带增益、上限频率、阻尼系数确定各电阻、电容实际参数。 According to A F (∞)=-1, f n =100Hz, ε=0.707 and the actual resistance and capacitance parameters, take C1=C2=C3=0.1μF, R1=7.5kΩ, R2=36kΩ, the actual second-order high-pass has The source filter circuit A F (∞)=-1, f n =97Hz, ε=0.685, which can meet the system's 100Hz high-pass filter requirements. The second-order low-pass active filter circuit and the second-order high-pass active filter circuit have duality, and the second-order low-pass active filter can be obtained by replacing the resistor in the second-order high-pass active filter circuit with a capacitor, and replacing the capacitor with a resistor. The circuit also determines the actual parameters of each resistor and capacitor according to the passband gain, the upper limit frequency, and the damping coefficient.
2、交直流分离电路的直流通道由电压跟随器U3、二阶低通有源滤波电路和放大电路组成,其输出端有限流电阻R13、稳压管D1构成的限幅输出保护电路,使其输出在钳位-0.7V到+VD之间,保护A/D转换器TLC3548和后续器件的安全,以免损坏电路及芯片。二阶低通有源滤波电路与二阶高通有源滤波电路具有对偶性,二阶低通有源滤波电路中电阻、电容参数参考上述交流通道二阶高通有源滤波电路参数确定。 2. The DC channel of the AC-DC separation circuit is composed of a voltage follower U3, a second-order low-pass active filter circuit and an amplifier circuit. The limiting output protection circuit composed of a current-limiting resistor R13 and a voltage regulator tube D1 at the output end makes it The output is clamped between -0.7V and +V D to protect the safety of A/D converter TLC3548 and subsequent devices, so as not to damage the circuit and chip. The second-order low-pass active filter circuit and the second-order high-pass active filter circuit have duality, and the resistance and capacitance parameters in the second-order low-pass active filter circuit are determined by referring to the parameters of the second-order high-pass active filter circuit of the AC channel.
本发明的相位差测试电路采用电压比较器LM311对正弦交流电压信号V(t)、电流信号Vi(t)进行整形,V(t)和Vi(t)经过电压比较器LM311整形后输出方波A、B,A和B经过异或门电路输出C脉冲(图4),其傅立叶级数表达式为: The phase difference test circuit of the present invention adopts the voltage comparator LM311 to carry out shaping to the sinusoidal AC voltage signal V(t) and the current signal V i (t), and V(t) and V i (t) are output after being shaped by the voltage comparator LM311 Square waves A, B, A and B pass through the XOR gate circuit to output C pulse (Figure 4), and its Fourier series expression is:
其中q为C脉冲的占空比、ω=400π~12000π、an和bn为常数。C脉冲经过时间常数RC≥10T(T=2π/ω为C脉冲的周期,Tmax≤0.005S,此处选择R26=100kΩ、C10=1μF可满足1.59Hz低通滤波要求,完全满足系统要求)的低通有源滤波电路输出稳定电压UF,即UC(t)的平均值: Among them, q is the duty cycle of C pulse, ω=400π~12000π, a n and b n are constants. C pulse elapsed time constant RC≥10T (T=2π/ω is the cycle of C pulse, T max ≤0.005S, here choose R26=100kΩ, C10=1μF can meet the requirements of 1.59Hz low-pass filter, fully meet the system requirements) The low-pass active filter circuit outputs a stable voltage U F , which is the average value of U C (t):
UF通过限流电阻R27、稳压管D3构成的限幅输出保护电路,其输出钳位在-0.7V到+VD之间,然后进入TLC3548进行模数转换,其分辨率为: U F passes through the limiting output protection circuit composed of current limiting resistor R27 and voltage regulator tube D3. Its output is clamped between -0.7V and +V D , and then enters TLC3548 for analog-to-digital conversion. The resolution is:
5/214=0.305mV 5/2 14 =0.305mV
根据
这种相位差测试方法精度高达6.1π×10-5弧度,而且精度不受输入信号频率大小影响,非常适合本系统中信号频率大范围变化的情况。其测试范围为-π~π,不存在测试死角。 The accuracy of this phase difference test method is as high as 6.1π×10 -5 radians, and the accuracy is not affected by the frequency of the input signal, which is very suitable for the situation where the signal frequency varies in a large range in this system. Its test range is -π~π, and there is no test dead angle.
本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。 The content not described in detail in this specification belongs to the prior art known to those skilled in the art. the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101690837A CN101221223B (en) | 2007-12-27 | 2007-12-27 | Single slice battery essential resistance and voltage on-line testing system for fuel cell pile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101690837A CN101221223B (en) | 2007-12-27 | 2007-12-27 | Single slice battery essential resistance and voltage on-line testing system for fuel cell pile |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101221223A CN101221223A (en) | 2008-07-16 |
CN101221223B true CN101221223B (en) | 2011-03-16 |
Family
ID=39631186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101690837A Expired - Fee Related CN101221223B (en) | 2007-12-27 | 2007-12-27 | Single slice battery essential resistance and voltage on-line testing system for fuel cell pile |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101221223B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014071773A1 (en) * | 2012-11-06 | 2014-05-15 | 清华大学 | Field test method and test apparatus for membrane electrode status of fuel cell stack |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101477177B (en) * | 2008-10-13 | 2011-09-28 | 李庆兰 | On-line intelligent inspection tour instrument for essential resistance of multipath accumulator |
JP5586219B2 (en) * | 2009-12-25 | 2014-09-10 | 株式会社東芝 | Diagnostic device, battery pack, and battery value index manufacturing method |
JP2012107946A (en) * | 2010-11-16 | 2012-06-07 | Lapis Semiconductor Co Ltd | Cell voltage measurement system and cell voltage measurement method |
CN102262184B (en) * | 2011-04-19 | 2013-02-27 | 哈尔滨工业大学 | Battery internal resistance on-line tester and internal resistance test method |
CN102222405A (en) * | 2011-05-30 | 2011-10-19 | 东南大学 | Wireless data acquisition system for acquiring voltages of microbial fuel cells |
US9099706B2 (en) * | 2011-06-28 | 2015-08-04 | GM Global Technology Operations LLC | Method of providing a calibrating reference voltage and index synchronization sequence for a cell voltage measurement system |
CN102508035B (en) * | 2011-11-01 | 2014-11-12 | 武汉理工大学 | Fuel cell AC impedance on-line testing system and measuring and controlling method |
CN102540095A (en) * | 2012-01-06 | 2012-07-04 | 中国人民解放军63908部队 | Voltage detection system of fuel cell uniwafers |
CN103209068B (en) * | 2012-01-12 | 2017-05-17 | 国民技术股份有限公司 | Full-duplex signal transmission circuit and method |
CN102721928A (en) * | 2012-05-22 | 2012-10-10 | 绵阳市维博电子有限责任公司 | Storage battery parameter monitor and parameter monitoring method |
CN103630861B (en) * | 2012-08-29 | 2016-04-20 | 同济大学 | The caliberating device of fuel battery internal partition performance detection PCB and method |
CN104704381B (en) * | 2012-10-09 | 2017-03-08 | 日产自动车株式会社 | The impedance measurement device of layer-built battery |
CN102989694B (en) * | 2012-12-12 | 2014-04-30 | 常州大学 | Quick battery sorting system based on FPGA |
CN104007391A (en) * | 2014-04-29 | 2014-08-27 | 江苏华东锂电技术研究院有限公司 | Temperature and voltage monitoring system of lithium battery pack |
CN104076301B (en) * | 2014-06-24 | 2017-02-01 | 国家电网公司 | Separating type monitoring circuit of alternating/direct current aliasing magnetic field |
CN104027241B (en) * | 2014-06-25 | 2016-01-13 | 安阳市翔宇医疗设备有限责任公司 | Moxibustion therapeutic equipment |
CN104698316B (en) * | 2015-03-09 | 2017-09-26 | 艾德克斯电子(南京)有限公司 | Connection status detection circuit, internal resistance of cell detection means, cell tester |
CN105372599A (en) * | 2015-11-19 | 2016-03-02 | 东莞氢宇新能源科技有限公司 | An automated comprehensive test platform for stacks with expandable modules |
CN106199200A (en) * | 2016-07-19 | 2016-12-07 | 重庆恩信科技有限公司 | Accumulator internal resistance on-line monitoring system and method |
CN107677873B (en) * | 2017-08-01 | 2019-11-15 | 国网山东省电力公司电力科学研究院 | A transmission line current detection device |
CN107512191B (en) * | 2017-09-13 | 2024-01-23 | 无锡商业职业技术学院 | Experimental device for be used for hydrogen fuel cell electric automobile |
CN107843855A (en) * | 2017-12-14 | 2018-03-27 | 株洲广锐电气科技有限公司 | Accumulator internal resistance detecting system |
CN109873643B (en) * | 2019-03-27 | 2024-03-22 | 上海航嘉电子科技股份有限公司 | A/D sampling circuit and sampling method for alternating current power supply resistance type sensor |
CN110441704A (en) * | 2019-07-23 | 2019-11-12 | 广州供电局有限公司 | Battery detection circuit |
CN110596461A (en) * | 2019-09-19 | 2019-12-20 | 中科智探(北京)科技有限公司 | Embedded digital intelligent drilling resistivity tester |
CN111257777B (en) * | 2020-03-13 | 2022-05-06 | 深圳市新威尔电子有限公司 | Internal resistance detection device with offset magnetic flux |
ES2991928T3 (en) * | 2020-04-28 | 2024-12-05 | Mintech Co Ltd | Battery electric flow testing procedure and system |
CN111650524A (en) * | 2020-04-29 | 2020-09-11 | 千黎(苏州)电源科技有限公司 | Alternating current impedance testing system and method for power battery |
CN111812537A (en) * | 2020-05-29 | 2020-10-23 | 厦门领航互联信息技术有限公司 | An online real-time monitoring system for battery internal resistance |
CN112782480A (en) * | 2020-12-04 | 2021-05-11 | 阳光电源股份有限公司 | Electrolytic tank impedance monitoring method, controller and power supply |
CN113156322B (en) * | 2021-01-27 | 2024-05-14 | 西安新艾电气技术有限公司 | Battery on-line impedance spectrum detection system and method based on digital module |
CN112953017B (en) * | 2021-03-29 | 2023-06-20 | 国网新疆电力有限公司阿克苏供电公司 | Comprehensive linkage monitoring device and monitoring method for distributed power distribution equipment |
CN113253123B (en) * | 2021-04-26 | 2022-05-31 | 清华大学 | Device and method for on-line impedance testing of fuel cell under full operating conditions |
CN114594383A (en) * | 2022-03-04 | 2022-06-07 | 吉林大学 | Online impedance measuring device for fuel cell pack |
CN114878912A (en) * | 2022-04-15 | 2022-08-09 | 常州中海电力科技有限公司 | A high-precision sampling circuit for fuel cell impedance testing equipment |
CN116953545B (en) * | 2023-09-21 | 2024-02-27 | 武汉理工大学 | High-power fuel cell stack alternating current impedance detection system and method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201156079Y (en) * | 2007-12-27 | 2008-11-26 | 武汉理工大学 | A fuel cell stack monolithic cell internal resistance and voltage online testing device |
-
2007
- 2007-12-27 CN CN2007101690837A patent/CN101221223B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201156079Y (en) * | 2007-12-27 | 2008-11-26 | 武汉理工大学 | A fuel cell stack monolithic cell internal resistance and voltage online testing device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014071773A1 (en) * | 2012-11-06 | 2014-05-15 | 清华大学 | Field test method and test apparatus for membrane electrode status of fuel cell stack |
Also Published As
Publication number | Publication date |
---|---|
CN101221223A (en) | 2008-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101221223B (en) | Single slice battery essential resistance and voltage on-line testing system for fuel cell pile | |
CN201156079Y (en) | A fuel cell stack monolithic cell internal resistance and voltage online testing device | |
CN102508035B (en) | Fuel cell AC impedance on-line testing system and measuring and controlling method | |
CN202305673U (en) | Alternating current (AC) impedance testing device suitable for fuel cells | |
CN100498367C (en) | Electric vehicle accumulator internal resistance pulse detecting method | |
CN111722044B (en) | DC charging pile testing method, device and equipment based on frequency sweep calibration shunt | |
CN201828554U (en) | Comprehensive evaluation device for sulfur hexafluoride electrical equipment | |
CN201532446U (en) | Battery inherent resistance testing device | |
CN101482602A (en) | Detection analysis system of relay-protection tester | |
CN102385047A (en) | Charging post direct-current electric energy meter calibrating device | |
CN103149546A (en) | Portable electric energy measuring terminal comprehensive calibration instrument on site | |
CN101251585A (en) | Method and apparatus for checking global error of high voltage energy metering installation | |
CN2914100Y (en) | Monolithic voltage detector of fuel battery group | |
CN204101671U (en) | A kind of Novel multi-core cable tester | |
CN201397381Y (en) | Novel voltage internal resistance testing device for lithium ion battery | |
CN202018479U (en) | High-precision testing device for portable-type loop resistor | |
CN111650524A (en) | Alternating current impedance testing system and method for power battery | |
CN209417262U (en) | A kind of internal resistance of cell measuring circuit | |
Shen et al. | Design of online detection system for insulation resistance of electric vehicle based on unbalanced bridge | |
CN202339390U (en) | Bad contact detection device for instrument test line | |
CN105548725A (en) | Online detector for super capacitor and internal resistance detection method based on detector | |
CN201293825Y (en) | Device for testing battery internal resistance | |
CN201145709Y (en) | Apparatus for testing battery essential resistance | |
CN112924883A (en) | DC/AC-based battery impedance spectrum online detection system and detection method | |
CN208588813U (en) | A real-time monitoring device for battery pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110316 Termination date: 20141227 |
|
EXPY | Termination of patent right or utility model |