CN101221125A - Method for measuring eutrophication water body characteristic parameter by spectrum technology - Google Patents

Method for measuring eutrophication water body characteristic parameter by spectrum technology Download PDF

Info

Publication number
CN101221125A
CN101221125A CNA2008100594856A CN200810059485A CN101221125A CN 101221125 A CN101221125 A CN 101221125A CN A2008100594856 A CNA2008100594856 A CN A2008100594856A CN 200810059485 A CN200810059485 A CN 200810059485A CN 101221125 A CN101221125 A CN 101221125A
Authority
CN
China
Prior art keywords
spectrum
sample
cod
characteristic parameter
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100594856A
Other languages
Chinese (zh)
Inventor
何勇
吴桂芳
鲍一丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CNA2008100594856A priority Critical patent/CN101221125A/en
Publication of CN101221125A publication Critical patent/CN101221125A/en
Pending legal-status Critical Current

Links

Images

Abstract

The invention discloses a method for determining the character parameters of a eutrophia water body by adopting a spectrum technology. The steps of the method are as follows: building a spectrum database of corrected sample collection; pretreating the spectrum; building a correcting module; distilling spectrum characteristics; determining the water quality character parameters of an unknown sample. The method has the following advantages of (1) utilizing the spectrum technology for analyzing the character parameters of the eutrophia water body and greatly accelerating the analyzing speed; (2) using no chemical reagents, thus reducing detecting cost and not polluting environment; (3) compared with a chemical method, system errors and artificial errors are reduced greatly, thus improving measuring precision; (4) being capable of simultaneously analyzing and detecting a plurality of water quality parameters, thus saving time and a real-time detecting technology can be better applied to environment monitoring; (5) having excellent social and economic benefits. By being further popularized, the method has good effects on solving the escalating eutrophia problems of lakes and marsh water-area environment at present.

Description

Method with spectrum technology determining eutrophication water characteristic parameter
Technical field
The present invention relates to visible light and near-infrared spectral measurement method, especially relate to a kind of method with spectrum technology determining eutrophication water characteristic parameter.
Technical background
Body eutrophication be meant lake or wetland waters natural cause and (or) under the influence of mankind's activity, a large amount of nutritive salt input lake or wetland waters, a kind of phenomenon that lake or wetland waters are progressively changed to the higher eutrophic state of the level of the productive forces by the lower poor nutritional status of the level of the productive forces.In order accurately to evaluate the residing eutrophic state of eutrophication water, and then, need carry out regular monitoring to total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) (COD), chlorophyll a (Chla), the transparency characteristic parameters such as (SD) of eutrophic lake for the control of body eutrophication provides scientific basis.The classic method of Cai Yonging had in the past: the mensuration of water body total nitrogen adopts alkaline alkaline potassium per-sulfate digestion ultraviolet spectrophotometry; The mensuration of water body total phosphorus adopts the ammonium molybdate spectrophotometric method; The mensuration of chemical oxygen demand of water body adopts dichromate titration; The concentration of the chlorophyll a of water body adopts spectrophotometer method to measure; Water transparency adopts tradition match gram dish method (Secchi Disk).Because water surface area is big, measuring point is many, on the other hand owing to be the measurement of many reference amounts, therefore sample size is big, there is a lot of defectives in above-mentioned each parameter assay method: needs consume a large amount of chemical reagent and instrument and equipment, and sample preparation steps is loaded down with trivial details, and a plurality of parameters of same sample are detected respectively, cost height, the cycle of analyzing a sample are long, are not suitable for multisample, many reference amounts eutrophication water are carried out analyzing and testing.The visible light that we adopted and the principal feature of near-infrared spectrum technique are: analysis speed is fast, can finish the measurement of a sample in one minute; Simultaneous determination of multiponents, the content of total nitrogen in the sample (TN), total phosphorus (TP), chemical oxygen demand (COD) (COD), chlorophyll a (Chla), transparency (SD) can disposablely be measured simultaneously; Sample does not need pre-service; Without any need for chemical reagent; Non-destructive analysis; Long distance is measured and real-time analysis; Harmonic analysis cost and simple to operate.Therefore spectral technique relatively is fit to multisample, many reference amounts eutrophication water are carried out analyzing and testing.
Summary of the invention
In order to overcome the problem that exists in the background technology, the object of the present invention is to provide a kind of method of effectively measuring characteristic parameter in the eutrophication water fast.Can not only carry out fast eutrophication water, detect in real time, and can detect a plurality of characteristic parameters in the water body simultaneously.
The step that the present invention solves the scheme that its technical matters adopts is as follows:
1) foundation of correcting sample light harvesting spectrum database; At first will be at the water body sample of equally distributed each measuring point in waters to be measured as the calibration samples collection, then the sample in the calibration samples set is carried out spectral scan and obtain the calibration samples standard spectrum, same sample needs repeatedly duplicate measurements, with averaged spectrum as this sample standard spectrum;
2) pre-service of spectrum; The first step behind the acquisition calibration samples collection standard spectrum is that calibration samples collection standard spectrum is carried out pre-service, and the pretreated effect of spectrum is standardization, the counteracting background interference of spectrogram and the quality that improves spectrum;
3) foundation of calibration model; Use the multiple regression algorithm and set up calibration model for the normative reference measured value of pretreated spectroscopic data and sample;
4) extraction of spectral signature; The data of spectrum generally all have hundreds of to thousands of data points, all data all are used for setting up model and often cause the model learning time long, model structure complexity, method commonly used are that the method that progressively returns is sought characteristic wave bands, and the method for perhaps using the related coefficient tracing analysis realizes;
5) the water quality characteristic parameter of unknown sample is measured; At first scan the spectrum that sample to be measured obtains them, the measuring method that is adopted when obtaining their spectrum, the measuring method that is adopted in the time of must obtaining the sample spectrum of setting up calibration model together is consistent; Each parameter that the method for sampling of being taked, resolution, sweep spacing or sweep time are adopted in the time of also should obtaining the sample spectrum of setting up calibration model together is consistent;
6) calibration model that unknown water sample has been set up through the input of pretreated spectral information can dope total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) (COD), the chlorophyll a (Chla) of unknown sample, the content of transparency (SD).
Describedly sample spectrum is carried out pre-service be level and smooth, centralization, derivative, normalization preprocessing procedures.
Described multiple regression algorithm is multiple linear regression algorithm and nonlinear multivariable regression algorithm.
Described total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) (COD), chlorophyll a (Chla), transparency (SD) content of setting up the calibration samples of calibration model is to adopt the method for GB regulation and the standard value that existent method measures;
Described with calibration samples spectroscopic data and their standard total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) (COD), chlorophyll a (Chla), transparency (SD) content set up calibration model
Described spectrometer is for obtaining the water sample spectral signal at 325-2500nm wavelength place simultaneously.
The present invention compares with background technology, has the following advantages:
(1) utilize spectral technique to analyze the characteristic parameter of eutrophication water, its analysis speed is accelerated greatly.
(2) do not use any chemical reagent, reduced the detection cost, also free from environmental pollution.
(3) compare with chemical method, systematic error and personal error reduce greatly, have improved measuring accuracy.
(4) a plurality of water quality parameters of analyzing and testing are simultaneously saved time, and detection technique can be good at being applied to environmental monitoring in real time.
(5) have good social benefit and economic benefit.As further popularization, good effect is arranged to solving the lake that is on the rise at present and the water body environment eutrophication problem of wetland.
Description of drawings
Accompanying drawing is a theory diagram of the present invention.
Embodiment
This accompanying drawing has shown that whole implementation process of the present invention comprises following two parts:
First is the foundation of calibration model, mainly may further comprise the steps:
1. with data line spectrometer is linked to each other with the PC computer, sample places special glass sample container.Spectrometer probe, light source all keep vertical with the sample container baseplane.At first, with the sample in the 14.5V Halogen lamp LED irradiation sample cell, (wavelength coverage is 325~2500nm) at one end sample cell to be gathered spectral information, carries out the spectral information initialization, then water sample is injected sample cell with visible light/near infrared spectrometer, sample cell is placed on the specimen holder, the spectral information of collected specimens, light source is fixed as 45cm apart from the water surface elevation of water sample, and spectrometer probe is fixed as 30cm at opposite side apart from the water surface distance of water sample, each scan sample 30 times, resolution 3.5cm -1, the probe field angle is 20 degree.The water sample spectroscopic data of gathering is delivered to computing machine by data line interface.
To the spectroscopic data that obtains with spectrometer with the spectral information of scan sample being carried out the spectrum average treatment with spectrum dedicated analysis software ASD ViewSpec ProV2.14, then spectral-transmission favtor is converted into absorbance, the multivariate data information processing platform of building with Unscramble V9.7 and matlab program to the spectral absorbance value carry out smoothly, derivative, the pre-service of normalization spectrum, eliminate system noise and interference.
3. the total nitrogen (TN) of the method for employing GB regulation or existent method measurement modeling sample, total phosphorus (TP), chemical oxygen demand (COD) (COD), chlorophyll a (Chla), transparency (SD) content are as standard content.The mensuration of water quality total nitrogen adopts alkaline alkaline potassium per-sulfate digestion ultraviolet spectrophotometry (GB 11894-1989), the mensuration of water quality total phosphorus adopts ammonium molybdate spectrophotometric method (GB 11893-1989), the mensuration of hydrochemistry oxygen demand adopts dichromate titration (GB 11914-1989), the concentration of the chlorophyll a of water sample is after sampling, return experimental determination immediately, at first use the 0.45m membrane filtration, use acetone extract then, after covering light 24h, adopt spectrophotometer method to measure; Water transparency adopts tradition match gram dish method (Secchi Disk).
4. adopt polynary correcting algorithm (partial least squares regression, multiple linear regression, neural network, support vector machine etc.) to set up quantitative relationship between the near infrared spectrum of modeling sample and their total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) (COD), chlorophyll a (Chla), transparency (SD) the content standard content, promptly set up calibration model.
5. adopt the method for progressively recurrence and the spectral signature wave band that related coefficient curve distribution feature is sought total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) (COD), chlorophyll a (Chla), transparency (SD).
Second portion is the mensuration of unknown water sample, mainly may further comprise the steps:
1. at first scan unknown water sample to obtain their spectrum, the measuring method that is adopted when obtaining their spectrum, the measuring method that is adopted in the time of must obtaining the sample spectrum of setting up calibration model together is consistent, be the method for sampling, resolution, sweep spacing and sweep time, should be consistent.
To the spectroscopic data that obtains with spectrometer with the spectral information of scan sample being carried out the spectrum average treatment with spectrum dedicated analysis software ASD ViewSpec ProV2.14, then spectral-transmission favtor is converted into absorbance, the multivariate data information processing platform of building with Unscramble V9.7 and Matlab program to the spectral absorbance value carry out smoothly, derivative, the pre-service of normalization spectrum, eliminate system noise and interference.
3. unknown water sample is imported the content of total nitrogen (TN) that calibration model that above-mentioned first sets up can dope unknown sample, total phosphorus (TP), chemical oxygen demand (COD) (COD), chlorophyll a (Chla), transparency (SD) through pretreated spectral information.

Claims (6)

1. method with spectrum technology determining eutrophication water quality characteristic parameter is characterized in that the step of this method is as follows:
1) foundation of correcting sample light harvesting spectrum database; At first will be at the water body sample of equally distributed each measuring point in waters to be measured as the calibration samples collection, then the sample in the calibration samples set is carried out spectral scan and obtain the calibration samples standard spectrum, same sample needs repeatedly duplicate measurements, with averaged spectrum as this sample standard spectrum;
2) pre-service of spectrum; The first step behind the acquisition calibration samples collection standard spectrum is that calibration samples collection standard spectrum is carried out pre-service, and the pretreated effect of spectrum is standardization, the counteracting background interference of spectrogram and the quality that improves spectrum;
3) foundation of calibration model; Use the multiple regression algorithm and set up calibration model for the normative reference measured value of pretreated spectroscopic data and sample;
4) extraction of spectral signature; The data of spectrum generally all have hundreds of to thousands of data points, all data all are used for setting up model and often cause the model learning time long, model structure complexity, method commonly used are that the method that progressively returns is sought characteristic wave bands, and the method for perhaps using the related coefficient tracing analysis realizes;
5) the water quality characteristic parameter of unknown sample is measured; At first scan the spectrum that sample to be measured obtains them, the measuring method that is adopted when obtaining their spectrum, the measuring method that is adopted in the time of must obtaining the sample spectrum of setting up calibration model together is consistent; Each parameter that the method for sampling of being taked, resolution, sweep spacing or sweep time are adopted in the time of also should obtaining the sample spectrum of setting up calibration model together is consistent;
6) calibration model that unknown water sample has been set up through the input of pretreated spectral information can dope total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) (COD), the chlorophyll a (Chla) of unknown sample, the content of transparency (SD).
2. the method for a kind of using visible light according to claim 1 and near-infrared spectrum technique fast measuring lake eutrophication characteristic parameter is characterized in that: describedly sample spectrum is carried out pre-service be level and smooth, centralization, derivative, normalization preprocessing procedures.
3. a kind of method with spectrum technology determining eutrophication water quality characteristic parameter according to claim 1, it is characterized in that: described multiple regression algorithm is multiple linear regression algorithm and nonlinear multivariable regression algorithm.
4. a kind of method with spectrum technology determining eutrophication water quality characteristic parameter according to claim 1 is characterized in that: described total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) (COD), chlorophyll a (Chla), transparency (SD) content of setting up the calibration samples of calibration model is to adopt the method for GB regulation and the standard value that existent method measures;
5. a kind of method with spectrum technology determining eutrophication water quality characteristic parameter according to claim 1 is characterized in that: describedly set up calibration model with the spectroscopic data of calibration samples and their standard total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) (COD), chlorophyll a (Chla), transparency (SD) content
6. a kind of method with spectrum technology determining eutrophication water quality characteristic parameter according to claim 1, it is characterized in that: described spectrometer is for obtaining the water sample spectral signal at 325-2500nm wavelength place simultaneously.
CNA2008100594856A 2008-01-24 2008-01-24 Method for measuring eutrophication water body characteristic parameter by spectrum technology Pending CN101221125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100594856A CN101221125A (en) 2008-01-24 2008-01-24 Method for measuring eutrophication water body characteristic parameter by spectrum technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100594856A CN101221125A (en) 2008-01-24 2008-01-24 Method for measuring eutrophication water body characteristic parameter by spectrum technology

Publications (1)

Publication Number Publication Date
CN101221125A true CN101221125A (en) 2008-07-16

Family

ID=39631096

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100594856A Pending CN101221125A (en) 2008-01-24 2008-01-24 Method for measuring eutrophication water body characteristic parameter by spectrum technology

Country Status (1)

Country Link
CN (1) CN101221125A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907565A (en) * 2010-06-25 2010-12-08 杨季冬 Spectral analysis method capable of measuring chemical oxygen demand and biochemical oxygen demand in waste water simultaneously
CN102053140A (en) * 2009-10-27 2011-05-11 华中科技大学 Diagnosis and evaluation method for water quality of eutrophic shallow lake subjected to ecological restoration
CN102507458A (en) * 2011-11-23 2012-06-20 浙江大学 Correction method of sunlight source in outdoor hyperspectral image acquisition system
CN102564965A (en) * 2011-12-31 2012-07-11 聚光科技(杭州)股份有限公司 Detecting method based on spectroscopy detection technology
CN102707025A (en) * 2012-01-11 2012-10-03 戴会超 Intelligent distinguishing method and intelligent distinguishing device for nutritional status of lakes and reservoirs
CN103473707A (en) * 2013-09-17 2013-12-25 山东大学 Method for establishing urban river network water body spectrum library and application
CN103913421A (en) * 2012-12-28 2014-07-09 中国科学院沈阳应用生态研究所 Method for determining water-soluble Fe content of eutrophic lake
CN101988894B (en) * 2009-07-31 2015-01-28 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 Method for determining a parameter of liquid sample
CN104677847A (en) * 2015-03-04 2015-06-03 中国科学院南京地理与湖泊研究所 Quick lake flooding detection method
CN104794346A (en) * 2015-04-22 2015-07-22 北京师范大学 Quantitative method for quickly recognizing influences of human activities on lake water bloom
CN104964954A (en) * 2015-05-20 2015-10-07 安徽建筑大学 Method used for determining total nitrogen concentration in river water body via fluorescence spectrum
CN105092523A (en) * 2015-08-25 2015-11-25 江南大学 Scheme based on near infrared technology and used for detecting phosphorous in water
CN105891143A (en) * 2016-03-30 2016-08-24 安徽建筑大学 Method for measuring total phosphorus concentration in denitrifying phosphorus removal system by means of near infrared spectrum
CN106226267A (en) * 2016-08-31 2016-12-14 晨光生物科技集团股份有限公司 A kind of near-infrared assay method of Fructus Capsici dry color valency
CN107036974A (en) * 2016-11-18 2017-08-11 中国水利水电科学研究院 Inversion method is cooperateed with based on the water quality parameter multi-model that certainty set is modeled
CN107643258A (en) * 2017-09-06 2018-01-30 河海大学 A kind of water quality parameter photoelectricity Accurate measurement
CN107860727A (en) * 2017-10-25 2018-03-30 宇星科技发展(深圳)有限公司 A kind of method and device for detecting water quality transparency
CN108007881A (en) * 2017-11-30 2018-05-08 中国农业大学 A kind of aquaculture water quality total nitrogen content detection method based on spectral technique
CN109709057A (en) * 2018-12-29 2019-05-03 四川碧朗科技有限公司 Water quality indicator prediction model construction method and water quality indicator monitoring method
CN109883982A (en) * 2019-01-25 2019-06-14 北京农业信息技术研究中心 A kind of rapid detection method of water body total phosphorus content
CN111157485A (en) * 2019-12-19 2020-05-15 郑州轻工业大学 Rapid water quality detection device and detection method thereof
CN111898314A (en) * 2020-07-15 2020-11-06 中国科学院空天信息创新研究院 Lake water body parameter detection method and device, electronic equipment and storage medium
CN114371152A (en) * 2022-03-22 2022-04-19 山东省科学院海洋仪器仪表研究所 Drifting type automatic seawater transparency measuring device and transparency measuring method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101988894B (en) * 2009-07-31 2015-01-28 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 Method for determining a parameter of liquid sample
CN102053140B (en) * 2009-10-27 2013-06-05 华中科技大学 Diagnosis and evaluation method for water quality of eutrophic shallow lake subjected to ecological restoration
CN102053140A (en) * 2009-10-27 2011-05-11 华中科技大学 Diagnosis and evaluation method for water quality of eutrophic shallow lake subjected to ecological restoration
CN101907565A (en) * 2010-06-25 2010-12-08 杨季冬 Spectral analysis method capable of measuring chemical oxygen demand and biochemical oxygen demand in waste water simultaneously
CN102507458B (en) * 2011-11-23 2013-07-10 浙江大学 Correction method of sunlight source in outdoor hyperspectral image acquisition system
CN102507458A (en) * 2011-11-23 2012-06-20 浙江大学 Correction method of sunlight source in outdoor hyperspectral image acquisition system
CN102564965A (en) * 2011-12-31 2012-07-11 聚光科技(杭州)股份有限公司 Detecting method based on spectroscopy detection technology
CN102707025A (en) * 2012-01-11 2012-10-03 戴会超 Intelligent distinguishing method and intelligent distinguishing device for nutritional status of lakes and reservoirs
CN103913421A (en) * 2012-12-28 2014-07-09 中国科学院沈阳应用生态研究所 Method for determining water-soluble Fe content of eutrophic lake
CN103473707A (en) * 2013-09-17 2013-12-25 山东大学 Method for establishing urban river network water body spectrum library and application
CN104677847A (en) * 2015-03-04 2015-06-03 中国科学院南京地理与湖泊研究所 Quick lake flooding detection method
CN104794346B (en) * 2015-04-22 2018-02-02 北京师范大学 The quantitative approach that a kind of quick identification human activity influences on lake wawter bloom
CN104794346A (en) * 2015-04-22 2015-07-22 北京师范大学 Quantitative method for quickly recognizing influences of human activities on lake water bloom
CN104964954A (en) * 2015-05-20 2015-10-07 安徽建筑大学 Method used for determining total nitrogen concentration in river water body via fluorescence spectrum
CN105092523A (en) * 2015-08-25 2015-11-25 江南大学 Scheme based on near infrared technology and used for detecting phosphorous in water
CN105891143A (en) * 2016-03-30 2016-08-24 安徽建筑大学 Method for measuring total phosphorus concentration in denitrifying phosphorus removal system by means of near infrared spectrum
CN106226267B (en) * 2016-08-31 2017-08-04 晨光生物科技集团股份有限公司 A kind of near-infrared assay method of dry chili color value
CN106226267A (en) * 2016-08-31 2016-12-14 晨光生物科技集团股份有限公司 A kind of near-infrared assay method of Fructus Capsici dry color valency
CN107036974A (en) * 2016-11-18 2017-08-11 中国水利水电科学研究院 Inversion method is cooperateed with based on the water quality parameter multi-model that certainty set is modeled
CN107643258A (en) * 2017-09-06 2018-01-30 河海大学 A kind of water quality parameter photoelectricity Accurate measurement
CN107860727A (en) * 2017-10-25 2018-03-30 宇星科技发展(深圳)有限公司 A kind of method and device for detecting water quality transparency
CN108007881A (en) * 2017-11-30 2018-05-08 中国农业大学 A kind of aquaculture water quality total nitrogen content detection method based on spectral technique
CN109709057A (en) * 2018-12-29 2019-05-03 四川碧朗科技有限公司 Water quality indicator prediction model construction method and water quality indicator monitoring method
CN109883982A (en) * 2019-01-25 2019-06-14 北京农业信息技术研究中心 A kind of rapid detection method of water body total phosphorus content
CN111157485A (en) * 2019-12-19 2020-05-15 郑州轻工业大学 Rapid water quality detection device and detection method thereof
CN111898314A (en) * 2020-07-15 2020-11-06 中国科学院空天信息创新研究院 Lake water body parameter detection method and device, electronic equipment and storage medium
CN111898314B (en) * 2020-07-15 2024-03-08 中国科学院空天信息创新研究院 Lake water parameter inspection method and device, electronic equipment and storage medium
CN114371152A (en) * 2022-03-22 2022-04-19 山东省科学院海洋仪器仪表研究所 Drifting type automatic seawater transparency measuring device and transparency measuring method

Similar Documents

Publication Publication Date Title
CN101221125A (en) Method for measuring eutrophication water body characteristic parameter by spectrum technology
CN101210875A (en) Damage-free measurement method for soil nutrient content based on near infrared spectra technology
CN102590129B (en) Method for detecting content of amino acid in peanuts by near infrared method
CN102879353B (en) The method of content of protein components near infrared detection peanut
CN101059426A (en) Method for non-destructive measurement for tea polyphenol content of tea based on near infrared spectrum technology
CN102636450A (en) Method for detecting wolfberry polyose content in Chinese wolfberry in a nondestructive way based on near infrared spectrum technology
CN102879340A (en) Method for quickly detecting nutritional quality of root/stem crops on basis of near-infrared spectrum
CN103411906B (en) The near infrared spectrum qualitative identification method of pearl powder and oyster shell whiting
CN101609042A (en) Hand-held soil nutrient nondestructive measurement system based near infrared spectrum
CN105784672A (en) Drug detector standardization method based on dual-tree complex wavelet algorithm
CN109211829A (en) A method of moisture content in the near infrared spectroscopy measurement rice based on SiPLS
CN201503392U (en) Handheld soil nutrient nondestructive measurement device based on near infrared spectrum
CN109374548A (en) A method of quickly measuring nutritional ingredient in rice using near-infrared
CN104266998A (en) Near-infrared spectrum detection method for isocyanate group content in spandex prepolymer
CN105758819A (en) Method for detecting organic components of soil by utilizing near infrared spectrum
CN102937575B (en) Watermelon sugar degree rapid modeling method based on secondary spectrum recombination
CN103487398B (en) A kind of analytical method of lysine fermentation liquor
CN103411895A (en) Near infrared spectrum identification method of adulteration of pearl powder
CN103308475A (en) Method for simultaneously measuring contents of Pu (IV) and HNO3 in aftertreatment feed liquid
CN104596976A (en) Method for determining protein of paper-making reconstituted tobacco through ear infrared reflectance spectroscopy technique
CN113655027A (en) Method for rapidly detecting tannin content in plant by near infrared
CN109612963A (en) A kind of detection method based on total nitrogen in near-infrared transmission-diffusing reflection spectrum large-scale milch cow farms liquid manure
CN101140225B (en) Method for detecting lead in scenting agent with AOTF near-infrared spectrometer
CN104266995A (en) Method for fast detecting dry sea cucumber protein content by near infrared spectroscopy technology
CN101387497A (en) Method for measuring plant fiber material fibre morphology by near-infrared spectrum technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080716