CN108181262A - Method for rapidly determining content of sargassum horneri cellulose by utilizing near infrared spectrum technology - Google Patents
Method for rapidly determining content of sargassum horneri cellulose by utilizing near infrared spectrum technology Download PDFInfo
- Publication number
- CN108181262A CN108181262A CN201711361539.XA CN201711361539A CN108181262A CN 108181262 A CN108181262 A CN 108181262A CN 201711361539 A CN201711361539 A CN 201711361539A CN 108181262 A CN108181262 A CN 108181262A
- Authority
- CN
- China
- Prior art keywords
- cellulose content
- copper
- infrared spectroscopy
- sample
- algae
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 97
- 229920002678 cellulose Polymers 0.000 title claims abstract description 73
- 239000001913 cellulose Substances 0.000 title claims abstract description 73
- 238000002329 infrared spectrum Methods 0.000 title claims abstract description 20
- 238000005516 engineering process Methods 0.000 title claims abstract description 6
- 241001260874 Sargassum horneri Species 0.000 title description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 91
- 229910052802 copper Inorganic materials 0.000 claims abstract description 91
- 239000010949 copper Substances 0.000 claims abstract description 91
- 241000195493 Cryptophyta Species 0.000 claims abstract description 83
- 238000004497 NIR spectroscopy Methods 0.000 claims abstract description 33
- 238000004445 quantitative analysis Methods 0.000 claims abstract description 25
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 22
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 230000003647 oxidation Effects 0.000 claims abstract description 7
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 7
- 238000004458 analytical method Methods 0.000 claims description 20
- 238000011156 evaluation Methods 0.000 claims description 12
- 230000003595 spectral effect Effects 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000001228 spectrum Methods 0.000 claims description 10
- 230000002159 abnormal effect Effects 0.000 claims description 9
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 claims description 8
- 235000019345 sodium thiosulphate Nutrition 0.000 claims description 8
- 239000002244 precipitate Substances 0.000 claims description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 6
- 230000008030 elimination Effects 0.000 claims description 5
- 238000003379 elimination reaction Methods 0.000 claims description 5
- 238000007781 pre-processing Methods 0.000 claims description 5
- 238000010187 selection method Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 239000004575 stone Substances 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- 229960000583 acetic acid Drugs 0.000 claims description 3
- 238000012569 chemometric method Methods 0.000 claims description 3
- 239000012362 glacial acetic acid Substances 0.000 claims description 3
- 230000008676 import Effects 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000000342 Monte Carlo simulation Methods 0.000 claims description 2
- 238000009833 condensation Methods 0.000 claims description 2
- 230000005494 condensation Effects 0.000 claims description 2
- 230000002068 genetic effect Effects 0.000 claims description 2
- 238000012628 principal component regression Methods 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims description 2
- 238000012353 t test Methods 0.000 claims description 2
- 238000011426 transformation method Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 241001474374 Blennius Species 0.000 abstract description 13
- 239000002028 Biomass Substances 0.000 abstract description 12
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000003908 quality control method Methods 0.000 abstract description 4
- 239000000523 sample Substances 0.000 description 39
- 238000012795 verification Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000010200 validation analysis Methods 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 3
- 238000009795 derivation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 241000195474 Sargassum Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 244000003416 Asparagus officinalis Species 0.000 description 1
- 235000005340 Asparagus officinalis Nutrition 0.000 description 1
- 240000008564 Boehmeria nivea Species 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 241000196252 Ulva Species 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012496 blank sample Substances 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000008104 plant cellulose Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
一种利用近红外光谱技术快速测定铜藻纤维素含量的方法,包括以下步骤:第一步,铜藻样本的采集与预处理;第二步,采用改进硫酸与重铬酸钾氧化法测定铜藻样本的纤维素含量;第三步,由近红外光谱仪扫描获得铜藻样本的近红外光谱;第四步,近红外光谱定量分析模型的建立与评价;第五步,近红外光谱定量分析模型的应用。本发明的方法不仅具有快速、精确、环保等优点,有利于提高铜藻纤维素含量的质量控制水平,还可推广应用于其它海藻类生物质的质量控制中。A method for rapidly determining the cellulose content of copper algae using near-infrared spectroscopy technology comprises the following steps: the first step is to collect and pretreat copper algae samples; the second step is to determine the cellulose content of copper algae samples by using an improved sulfuric acid and potassium dichromate oxidation method; the third step is to obtain the near-infrared spectrum of the copper algae samples by scanning with a near-infrared spectrometer; the fourth step is to establish and evaluate a near-infrared spectroscopy quantitative analysis model; the fifth step is to apply the near-infrared spectroscopy quantitative analysis model. The method of the invention not only has the advantages of being fast, accurate, and environmentally friendly, but is also conducive to improving the quality control level of copper algae cellulose content, and can also be promoted and applied to the quality control of other seaweed biomass.
Description
技术领域technical field
本发明属于纤维素含量分析领域,特别地,涉及一种基于近红外光谱技术的铜藻纤维素含量快速测定方法。The invention belongs to the field of cellulose content analysis, and in particular relates to a method for rapidly determining the cellulose content of copper algae based on near-infrared spectroscopy.
背景技术Background technique
以大型海藻为代表的海洋生物质资源具有不占用土地和淡水资源的优点,发展潜力巨大。铜藻(Sargassum horneri(Turn.)Ag.俗称“丁香屋”,属马尾藻属(Sargassum),分布于中国沿海浅海区)、羊栖菜和龙须菜等大型海藻植株高大,枝叶繁茂,堪称“海中森林”,是海洋生物避敌、索饵、产卵的理想场所,并且易于规模化人工栽培、环境修复(吸收环境中的氮、磷和重金属,释放氧气,调节水体pH值,固定CO2能力突出,被列为重建海底藻场和实施海洋生态修复的重要物种之一。铜藻(Sargassum horneri(Turn.)生长速度快、产量大,性质单一,植株高大,易于收割,原料采集和物流成本低,能够大规模、稳定地提供生物质原料。但是,高纤维素的大型海藻口感较差,开发食用产品的附加值不高,阻碍了其养殖规模的进一步扩大;而如果任其生长和留在海域中衰亡,不仅海域富营养化和重金属污染等问题无法得到解决,甚至可能造成浒苔大规模增殖等负面问题。因此,开发铜藻生物质高附加值转化利用技术具有重要的现实意义。Marine biomass resources represented by macroalgae have the advantage of not occupying land and freshwater resources, and have great development potential. Copper algae (Sargassum horneri (Turn.) Ag. commonly known as "Lilac House", belonging to the genus Sargassum (Sargassum), distributed in the coastal shallow sea area of China), hijiki and asparagus and other large seaweed plants are tall, with luxuriant branches and leaves. Known as the "sea forest", it is an ideal place for marine organisms to avoid enemies, feed, and lay eggs, and it is easy to scale artificial cultivation and environmental restoration (absorb nitrogen, phosphorus and heavy metals in the environment, release oxygen, adjust the pH of the water body, fix The ability of CO2 is outstanding, and it is listed as one of the important species for rebuilding seabed algae farms and implementing marine ecological restoration. Copper algae (Sargassum horneri (Turn.) has fast growth speed, large output, single nature, tall plants, easy harvesting, and raw material collection and logistics costs are low, and can provide biomass raw materials on a large scale and stably. However, the taste of high-cellulose macroalgae is poor, and the added value of developing edible products is not high, which hinders the further expansion of its breeding scale; Growth and stay in the sea area decline, not only the problems such as eutrophication and heavy metal pollution in the sea area cannot be solved, but may even cause negative problems such as the large-scale proliferation of Enteromorpha. Therefore, it is of great importance to develop the high value-added conversion and utilization technology of copper algae biomass Practical significance.
纤维素主要存在于植物细胞壁中,在不同海藻植物体中的含量范围为1%~40%,是生物质原料中利用价值最高的组成部分。生物质原料中的纤维素组分含量对生物质燃料和生物质基化学品的生产过程都有重要影响。因此,定量分析生物质原料的组成成分,特别是纤维素含量,对精确配比原料、提高产品产量及品质都具有重要意义。Cellulose mainly exists in plant cell walls, and its content in different seaweed plants ranges from 1% to 40%. It is the most valuable component of biomass raw materials. The content of cellulose components in biomass feedstock has a significant impact on the production process of both biomass fuels and biomass-based chemicals. Therefore, quantitative analysis of the composition of biomass raw materials, especially the cellulose content, is of great significance for the precise proportioning of raw materials and the improvement of product yield and quality.
目前,植物体纤维素含量的分析主要依据纺织标准GB/T5889-1986和造纸标准GB/T2677.10-1995。若采用上述国家标准对纤维素含量进行测定,不仅测定耗时长达2至3天,且因国家标准法实施例测定对象为苎麻及木材,不一定适用于海藻纤维素的测定,在实际测定过程中也发现采用该方法所得到的海藻纤维素含量测定结果误差极大。其他可采用的方法包括Van Soest及其改进方法和色谱法,其中,Van Soest及其改进方法可同时测定纤维素含量、水分、半纤维素、木质素及灰分等含量,但测定步骤繁琐且耗时过长;若采用气相色谱法、高效液相色谱法等色谱法,虽然测定结果较为精确,但存在成本过高、耗时过长的不足。At present, the analysis of plant cellulose content is mainly based on textile standard GB/T5889-1986 and papermaking standard GB/T2677.10-1995. If the above-mentioned national standard is used to measure the cellulose content, not only the measurement takes up to 2 to 3 days, but also because the measurement object of the national standard method embodiment is ramie and wood, it is not necessarily applicable to the determination of seaweed cellulose. In the actual measurement process It is also found that the measurement results of seaweed cellulose content obtained by this method have great errors. Other available methods include Van Soest and its improved method and chromatographic method, wherein, Van Soest and its improved method can simultaneously measure the contents of cellulose content, moisture, hemicellulose, lignin and ash, but the determination steps are cumbersome and time-consuming. If gas chromatography, high performance liquid chromatography and other chromatographic methods are used, although the measurement results are relatively accurate, there are disadvantages of high cost and too long time consumption.
由此可见,传统的海藻纤维素含量定量分析方法普遍存在测定步骤繁琐、耗时长等缺点,色谱法存在测试成本较高的不足,这限制了这些方法在实际生产过程中的推广和应用。因此,迫切需要开发一种分析程序简单、耗时短且费用低廉的海藻类生物质纤维素含量定量分析方法。It can be seen that the traditional quantitative analysis methods of seaweed cellulose content generally have the disadvantages of cumbersome determination steps and long time-consuming, and the chromatography method has the disadvantage of high testing cost, which limits the promotion and application of these methods in the actual production process. Therefore, there is an urgent need to develop a quantitative analysis method for the cellulose content of seaweed biomass with simple analysis procedures, short time consumption and low cost.
由于海藻中的含氢基团(C-H、N-H、O-H)在不同的化学环境中对700~2500nm范围电磁波(近红外区域)的吸收情况有明显差别,因此近红外光谱中包含了含氢有机物质丰富的结构及组成信息。近红外光谱存在吸收强度弱、谱带宽且交叠严重以及特征性不强等缺点,但随着近红外光谱与化学计量学相结合并衍生出近红外光谱分析技术,可以通过建立数学模型快速有效辨识出近红外光谱中所含的目标信息,具有无损分析、分析快速、操作简便、结果精确及可实现在线分析等优点。综上所述,可将近红外光谱技术用于实现海藻纤维素含量的快速测定。Since the hydrogen-containing groups (C-H, N-H, O-H) in seaweed have obvious differences in the absorption of electromagnetic waves (near-infrared region) in the range of 700-2500nm in different chemical environments, the near-infrared spectrum contains hydrogen-containing organic substances. Rich structure and composition information. Near-infrared spectroscopy has disadvantages such as weak absorption intensity, spectral bandwidth and serious overlap, and weak characteristics. However, with the combination of near-infrared spectroscopy and chemometrics and the derivation of near-infrared spectroscopy analysis technology, it can be quickly and effectively established by establishing a mathematical model. Identifying the target information contained in the near-infrared spectrum has the advantages of non-destructive analysis, fast analysis, easy operation, accurate results and online analysis. In summary, near-infrared spectroscopy can be used to quickly determine the cellulose content of seaweed.
发明内容Contents of the invention
鉴于传统海藻纤维素含量定量分析方法所存在的缺点,本发明的目的在于提供一种利用近红外光谱技术快速测定铜藻纤维素含量的方法,以便对铜藻生物质中的纤维素含量进行快速、简单、低廉且精确的分析。In view of the shortcomings of traditional methods for quantitative analysis of cellulose content in seaweed, the purpose of the present invention is to provide a method for quickly measuring the cellulose content of copper algae using near-infrared spectroscopy, so that the cellulose content in the copper algae biomass can be rapidly analyzed. , simple, cheap and accurate analysis.
本发明采用的技术方案步骤如下:The technical scheme step that the present invention adopts is as follows:
一种利用近红外光谱技术快速测定铜藻纤维素含量的方法,包括以下步骤:A kind of method utilizing near-infrared spectroscopic technology to measure the cellulose content of copper algae rapidly, comprises the following steps:
第一步,铜藻样本的采集与预处理;The first step is the collection and pretreatment of copper algae samples;
第二步,采用改进硫酸与重铬酸钾氧化法测定铜藻样本的纤维素含量;In the second step, the cellulose content of the copper algae sample was determined by the improved sulfuric acid and potassium dichromate oxidation method;
第三步,由近红外光谱仪扫描获得铜藻样本的近红外光谱;In the third step, the near-infrared spectrum of the copper algae sample is scanned by a near-infrared spectrometer;
第四步,近红外光谱定量分析模型的建立与评价;The fourth step is the establishment and evaluation of the quantitative analysis model of near-infrared spectroscopy;
将第二步得到的纤维素含量数据与第三步得到的近红外光谱数据导入数值计算软件matlab 8.3中,采用包括异常样本剔除方法、样本集划分法、光谱预处理法、特征波段选择法及多元校正法在内的各种化学计量学方法建立铜藻纤维素含量的定量分析模型,并采用模型评价参数量化评价模型性能。Import the cellulose content data obtained in the second step and the near-infrared spectrum data obtained in the third step into the numerical calculation software matlab 8.3, and adopt methods including abnormal sample elimination method, sample set division method, spectral preprocessing method, characteristic band selection method and A variety of chemometric methods, including the multivariate calibration method, were used to establish a quantitative analysis model for the cellulose content of copper algae, and the model performance was quantitatively evaluated using model evaluation parameters.
第五步,近红外光谱定量分析模型的应用;The fifth step is the application of the quantitative analysis model of near-infrared spectroscopy;
采用所建立的近红外光谱定量分析模型,预测未知铜藻样本的纤维素含量。The established near-infrared spectroscopy quantitative analysis model was used to predict the cellulose content of unknown copper algae samples.
进一步,所述第一步中,铜藻样本预处理过程为:水洗、风干、烘干、粉碎机粉碎及60目过筛后装入密封透明袋中。Further, in the first step, the copper algae sample pretreatment process includes: washing with water, air drying, drying, pulverizing with a pulverizer, and sieving with 60 mesh, and then putting it into a sealed transparent bag.
再进一步,所述第二步中,改进硫酸与重铬酸钾氧化法测定各铜藻样本纤维素含量的步骤为:Further, in the second step, the step of improving sulfuric acid and potassium dichromate oxidation method to measure the cellulose content of each copper algae sample is:
2.1)将铜藻样本放入含有冰醋酸和硝酸的混合液的锥形瓶中,沸水浴加热;2.1) put the copper algae sample into the Erlenmeyer flask containing the mixture of glacial acetic acid and nitric acid, and heat it in a boiling water bath;
2.2)加热完毕冷却至室温,过滤、洗涤、沉淀后将全部沉淀置于含有硫酸和重铬酸钾混合液的锥形瓶中,沸水浴加热;2.2) After heating, cool to room temperature, filter, wash, and precipitate, place all the precipitates in an Erlenmeyer flask containing a mixture of sulfuric acid and potassium dichromate, and heat in a boiling water bath;
2.3)加热完毕冷却至室温,加入碘化钾溶液与淀粉溶液,用硫代硫酸钠滴定,并同步进行空白对照试验,依据所消耗的硫代硫酸钠溶液体积计算铜藻样本的纤维素含量。2.3) After heating, cool to room temperature, add potassium iodide solution and starch solution, titrate with sodium thiosulfate, and carry out blank control test simultaneously, calculate the cellulose content of copper algae sample according to the volume of consumed sodium thiosulfate solution.
更进一步,所述第三步中,近红外光谱采集条件为:在漫反射模式下采集光谱,光谱仪扫描波数范围为4000cm-1~12000cm-1,分辨率为8cm-1。Furthermore, in the third step, the near-infrared spectrum collection conditions are: the spectrum is collected in diffuse reflectance mode, the scanning wavenumber range of the spectrometer is 4000cm -1 ~ 12000cm -1 , and the resolution is 8cm -1 .
所述第四步中,异常样本剔除方法包括马氏距离法、t检验法、光谱残差分析法以及上述方法的组合。In the fourth step, the abnormal sample elimination method includes the Mahalanobis distance method, the t-test method, the spectral residual analysis method and the combination of the above methods.
所述第四步中,样本集划分法包括Kennard-Stone样本集划分法、随机选取样本方法、SPXY法、剔除法和缩合法。In the fourth step, the sample set division method includes Kennard-Stone sample set division method, random sample selection method, SPXY method, elimination method and condensation method.
所述第四步中,光谱预处理方法包括平滑去噪算法、导数处理法、标准正态变量变换法、多元散射校正法、Normalization归一化法以及上述方法的组合。In the fourth step, the spectral preprocessing method includes a smoothing denoising algorithm, a derivative processing method, a standard normal variable transformation method, a multivariate scattering correction method, a Normalization normalization method, and a combination of the above methods.
所述第四步中,特征波段选择法包括间隔偏最小二乘法、移动窗口偏最小二乘法、蒙特卡罗法、相关系数法、连续投影法、遗传算法以及上述方法的组合。In the fourth step, the characteristic band selection method includes interval partial least square method, moving window partial least square method, Monte Carlo method, correlation coefficient method, continuous projection method, genetic algorithm and the combination of the above methods.
所述第四步中,多元校正法包括主成分回归和偏最小二乘法。In the fourth step, the multivariate correction method includes principal component regression and partial least squares method.
所述第四步中,模型评价参数包括校正集留一交互验证标准偏差RMSECV、预测相关系数R、预测标准偏差SEP和相对分析误差RPD。In the fourth step, the model evaluation parameters include calibration set leave-one-interaction verification standard deviation RMSECV, prediction correlation coefficient R, prediction standard deviation SEP and relative analysis error RPD.
本发明的有益效果在于:所述利用近红外光谱技术快速测定铜藻纤维素含量的方法,不仅具有快速、准确、环保等优点,有利于提高铜藻纤维素含量的质量控制水平,还可推广应用于其它海藻类生物质的质量控制中。The beneficial effects of the present invention are: the method for quickly measuring the cellulose content of copper algae by using near-infrared spectroscopy not only has the advantages of fastness, accuracy, and environmental protection, but also helps to improve the quality control level of the copper algae cellulose content, and can also be popularized It is applied to the quality control of other seaweed biomass.
附图说明Description of drawings
图1为40个铜藻样本的纤维素含量数据分布;Fig. 1 is the cellulose content data distribution of 40 copper algae samples;
图2为40个铜藻样本的原始近红外光谱;Fig. 2 is the original near-infrared spectrum of 40 copper algae samples;
图3为40个铜藻样本的近红外光谱残差分析结果;Fig. 3 is the near-infrared spectrum residual analysis result of 40 copper algae samples;
图4为用于建立定量分析模型的铜藻样本近红外光谱特征波段(原始近红外光谱经Savitzky-Golay卷积二阶求导算法预处理);Fig. 4 is the near-infrared spectrum characteristic band of the copper algae sample used to establish the quantitative analysis model (the original near-infrared spectrum is preprocessed by the Savitzky-Golay convolution second-order derivation algorithm);
图5为铜藻纤维素含量近红外光谱定量分析模型的预测效果(验证集)。Figure 5 is the prediction effect (validation set) of the near-infrared spectroscopy quantitative analysis model for the cellulose content of copper algae.
具体实施方法Specific implementation method
以下将结合附图及优选实施例对本发明的实施方式进行详细说明。The implementation of the present invention will be described in detail below with reference to the accompanying drawings and preferred embodiments.
参照图1~图5,一种利用近红外光谱技术快速测定铜藻纤维素含量的方法,包括以下步骤:Referring to Figures 1 to 5, a method for rapidly determining the cellulose content of copper algae using near-infrared spectroscopy comprises the following steps:
第一步,采集不同来源或不同批次的铜藻样本,并进行必要的样本预处理。The first step is to collect samples of copper algae from different sources or batches, and perform necessary sample pretreatment.
本发明优选实施例采集的铜藻样本来自于浙南温州海域,共采集40个铜藻样本。样本通过水洗去除表现附着的泥沙及盐分后,放置于阳光下简单风干,随后在105℃下烘干,将洗净后的干燥铜藻样本用粉碎机将其粉碎,并通过多层筛网,取60目样本装入抽真空的密封透明袋中。The copper algae samples collected in the preferred embodiment of the present invention come from the Wenzhou sea area in southern Zhejiang, and a total of 40 copper algae samples were collected. After the sample was washed with water to remove the attached sediment and salt, it was placed in the sun to dry briefly, and then dried at 105°C. The washed and dried copper algae sample was crushed with a pulverizer and passed through a multi-layer sieve. , Take a 60 mesh sample and put it into a vacuum sealed transparent bag.
第二步,采用改进硫酸与重铬酸钾氧化法测定铜藻样本的纤维素含量。In the second step, the cellulose content of copper alga samples was determined by the improved oxidation method of sulfuric acid and potassium dichromate.
改进硫酸与重铬酸钾氧化法测定铜藻样本纤维素含量的详细实施步骤如下:将铜藻粉碎后过60目筛,称取0.2g(±0.0001g)铜藻颗粒置于100ml锥形瓶中,加入5ml冰醋酸和硝酸的混合液(体积比1:1),塞上玻璃塞置于已沸腾的水浴中加热25min,并不断搅拌;取出冷却至室温后过滤,弃去滤液,收集全部沉淀并用蒸馏水洗涤3次;将沉淀置于100ml锥形瓶中,向沉淀中加入10ml质量分数为10%的硫酸溶液和10ml 0.1mol/L的重铬酸钾溶液,摇匀后置于已沸腾的水浴中加热10min;加入10ml蒸馏水,溶液冷却至室温后,加入5ml质量分数为20%的碘化钾溶液和1ml质量分数为0.5%的淀粉溶液,摇匀后用0.2mol/L的硫代硫酸钠滴定,并用10ml质量分数为10%的硫酸溶液混合10ml 0.1mol/L的重铬酸钾溶液作为空白样进行滴定。铜藻纤维素含量的计算公式为:The detailed implementation steps of improving the oxidation method of sulfuric acid and potassium dichromate to determine the cellulose content of copper algae samples are as follows: crush the copper algae and pass through a 60-mesh sieve, weigh 0.2g (±0.0001g) copper algae particles and place them in a 100ml Erlenmeyer flask Add 5ml of a mixture of glacial acetic acid and nitric acid (volume ratio 1:1), put a glass stopper on it and place it in a boiling water bath to heat for 25 minutes with constant stirring; take it out and cool it to room temperature, then filter, discard the filtrate, and collect all The precipitate was washed 3 times with distilled water; the precipitate was placed in a 100ml Erlenmeyer flask, and 10ml of sulfuric acid solution with a mass fraction of 10% and 10ml of 0.1mol/L potassium dichromate solution were added to the precipitate, shaken and placed in a boiling Heat in a water bath for 10 minutes; add 10ml of distilled water, and after the solution is cooled to room temperature, add 5ml of potassium iodide solution with a mass fraction of 20% and 1ml of a starch solution with a mass fraction of 0.5%, and shake it well with 0.2mol/L sodium thiosulfate Titrate, and mix 10ml of 0.1mol/L potassium dichromate solution with 10ml of 10% sulfuric acid solution as a blank sample for titration. The formula for calculating the cellulose content of copper algae is:
式中,K表示硫代硫酸钠溶液的浓度,mol/L;a表示空白滴定所消耗的硫代硫酸钠溶液的体积,ml;b表示溶液所消耗的硫代硫酸钠溶液的体积,ml,n表示铜藻颗粒的质量,g。In the formula, K represents the concentration of sodium thiosulfate solution, mol/L; a represents the volume of sodium thiosulfate solution consumed by blank titration, ml; b represents the volume of sodium thiosulfate solution consumed by the solution, ml, n represents the mass of copper algae particles, g.
40个铜藻样本的纤维素含量分布如图1所示,整体数据的统计分析结果如表1所示。The cellulose content distribution of 40 copper algae samples is shown in Figure 1, and the statistical analysis results of the overall data are shown in Table 1.
表1Table 1
第三步,由近红外光谱仪扫描获得铜藻样本的近红外光谱。In the third step, the near-infrared spectrum of the copper algae sample was scanned by a near-infrared spectrometer.
铜藻样本的近红外光谱数据由Nicolet iS10傅里叶变换近红外光谱仪(美国赛默飞世尔科技公司)采集得到,该仪器带有积分球附件,待仪器运行平稳后在漫反射模式下采集光谱。扫描时环境温度保持恒定(5~25℃),湿度低于25%,铜藻样本粒度均匀且充分干燥,仪器设定自动采集背景光谱,光谱采集波数范围为4000~12000cm-1,每扫描64次自动保存平均光谱并扣除背景光谱,分辨率为8cm-1。取适量的铜藻样本盛入旋转样本池,装满刮平,放在积分球采集窗口上采集光谱。铜藻样本重复装样扫描3次,取3次扫描光谱的平均值作为铜藻样本的原始光谱。40个铜藻样本的扫描结果如图2所示。The near-infrared spectrum data of the copper algae sample was collected by a Nicolet iS10 Fourier transform near-infrared spectrometer (Thermo Fisher Scientific Corporation of the United States). spectrum. When scanning, the ambient temperature is kept constant (5-25°C), the humidity is lower than 25%, the copper algae sample is uniform in particle size and fully dry, and the instrument is set to automatically collect the background spectrum . The average spectrum is automatically saved and the background spectrum is deducted for the second time, with a resolution of 8cm -1 . Take an appropriate amount of copper algae sample into the rotating sample pool, fill it up and scrape it flat, and place it on the collection window of the integrating sphere to collect spectra. The copper algae sample was loaded and scanned 3 times, and the average value of the 3 scan spectra was taken as the original spectrum of the copper algae sample. The scanning results of 40 copper algae samples are shown in Fig. 2.
第四步,近红外光谱定量分析模型的建立与评价。The fourth step is the establishment and evaluation of the quantitative analysis model of near-infrared spectroscopy.
将第二步测定的纤维素含量数据与第三步得到的近红外光谱数据导入数值计算软件matlab 8.3中,采用光谱残差分析法剔除铜藻样本中的异常数据,光谱残差的计算公式为:Import the cellulose content data measured in the second step and the near-infrared spectral data obtained in the third step into the numerical calculation software matlab 8.3, and use the spectral residual analysis method to eliminate the abnormal data in the copper algae sample. The calculation formula of the spectral residual is: :
R=Y预-Y化 R = Y pre - Yylation
式中,Y预和Y化分别表示预测集的铜藻纤维素含量预测值矩阵与铜藻纤维素含量的湿化学分析数据矩阵,R表示预测集的铜藻纤维素含量残差矩阵,ri表示R中第i个样本的光谱残差值,f为PLS预测模型的主因子数。异常数据剔除结果如图3所示,由图3可知需要剔除2个铜藻样本数据。In the formula , Y and Y represent the predicted value matrix of the copper algae cellulose content in the prediction set and the wet chemical analysis data matrix of the copper algae cellulose content, R represents the residual matrix of the copper algae cellulose content in the prediction set, r i Indicates the spectral residual value of the i-th sample in R, and f is the number of principal factors of the PLS prediction model. The results of abnormal data elimination are shown in Figure 3. From Figure 3, it can be seen that the data of two copper algae samples need to be eliminated.
从剔除异常样本后的38个铜藻样本数据中,随机取出4个作为未知铜藻样本,剩余34个铜藻样本采用Kennard-Stone样本集划分法划分为校正集与验证集。From the 38 copper algae sample data after removing abnormal samples, 4 were randomly selected as unknown copper algae samples, and the remaining 34 copper algae samples were divided into a calibration set and a verification set by the Kennard-Stone sample set division method.
Kennard-Stone样本集划分法的具体实施步骤如下:The specific implementation steps of the Kennard-Stone sample set division method are as follows:
(1)计算采集的所有样本两两之间的欧氏距离dij,选择欧氏距离最大的两个样本(即样本1号与样本2号)进入校正集。(1) Calculate the Euclidean distance d ij between all collected samples, and select the two samples with the largest Euclidean distance (ie sample No. 1 and sample No. 2) to enter the calibration set.
(2)计算剩余34个样本中各样本与已选择的这两个样本1号和2号之间的欧氏距离,并各取最小值min(di,1号,di,2号),然后选取其中具有最大欧氏距离值max(min(di,1号,di,2号))的样本3号进入校正集。(2) Calculate the Euclidean distance between each of the remaining 34 samples and the two selected samples No. 1 and No. 2, and take the minimum value min(d i, No. 1 , d i, No. 2 ) , and then select sample No. 3 with the largest Euclidean distance value max(min(d i, No. 1 , d i, No. 2 )) to enter the calibration set.
(3)计算剩余33个样本中各样本与已选择的这三个样本1号、2号和3号之间的欧氏距离,并各取最小值min(di,1号,di,2号,di,3号),然后选取其中具有最大欧氏距离值max(min(di,1号,di,2号,di,3号))的样本4号进入校正集。(3) Calculate the Euclidean distance between each of the remaining 33 samples and the three selected samples No. 1, No. 2 and No. 3, and take the minimum value min(d i, No. 1 , d i, No. 2 , d i, No. 3 ), and then select sample No. 4 with the largest Euclidean distance value max(min(d i, No. 1 , d i, No. 2 , d i, No. 3 )) to enter the calibration set.
(4)重复上述过程,直至选中22个校正样本。(4) Repeat the above process until 22 calibration samples are selected.
校正集和验证集的数据统计结果如表2所示。The statistical results of the calibration set and validation set are shown in Table 2.
表2Table 2
根据校正集中的铜藻样本纤维素含量实测值和近红外光谱数据,采用多元校正法建立铜藻纤维素含量的近红外光谱定量分析模型,其中多元校正法采用偏最小二乘法,最佳主因子数为3。According to the measured value of cellulose content and near-infrared spectrum data of copper algae samples in the calibration set, the near-infrared spectral quantitative analysis model of copper algae cellulose content was established by using the multivariate calibration method. The number is 3.
利用验证集进行近红外光谱定量分析模型的外部验证,优选的光谱预处理法为Savitzky-Golay卷积二阶求导算法,差分宽度为5,多项式拟合阶数为3;优选的特征波段选取法为间隔偏最小二乘法,所选特征波段为6883cm-1至10826cm-1,特征波段选取结果如图4所示。The verification set is used for external verification of the near-infrared spectrum quantitative analysis model. The preferred spectral preprocessing method is the Savitzky-Golay convolution second-order derivation algorithm, the difference width is 5, and the polynomial fitting order is 3; the preferred feature band selection The method is the interval partial least squares method, and the selected characteristic bands are from 6883cm -1 to 10826cm -1 , and the selection results of the characteristic bands are shown in Fig. 4 .
对于验证集,铜藻纤维素含量红外光谱定量分析模型的预测效果如图5所示。For the verification set, the prediction effect of the infrared spectroscopy quantitative analysis model for the cellulose content of copper algae is shown in Figure 5.
选择校正集留一交互验证标准偏差RMSECV、预测相关系数R、预测标准偏差SEP和相对分析误差RPD等模型评价参数对近红外光谱定量分析模型进行性能评价,各模型评价参数的具体计算公式见下文。Select calibration set leave-one-out interactive verification standard deviation RMSECV, prediction correlation coefficient R, prediction standard deviation SEP and relative analysis error RPD and other model evaluation parameters to evaluate the performance of the near-infrared spectroscopy quantitative analysis model. The specific calculation formula of each model evaluation parameter is shown below .
留一交互验证标准偏差(RMSECV):Leave-one-out cross-validation standard deviation (RMSECV):
式中,yi,actual表示校正集中的第i个铜藻样本的纤维素含量化学分析值,yi,predicted表示校正集中的第i个铜藻样本纤维素含量的模型预测值,n表示校正集的样本总数。若标准偏差数值越大,则表明校正集中存在异常数据的可能性越大。In the formula, y i,actual represents the chemical analysis value of the cellulose content of the i-th copper algae sample in the calibration set, y i,predicted represents the model predicted value of the cellulose content of the i-th copper algae sample in the calibration set, and n represents the calibration The total number of samples in the set. The larger the standard deviation value, the greater the possibility of abnormal data in the calibration set.
相关系数(R):Correlation coefficient (R):
式中,yi,actual表示第i个铜藻样本的纤维素含量化学分析值,表示铜藻纤维素含量化学分析值的平均值,yi,predicted表示校正集或验证集中第i个铜藻样本的纤维素含量模型预测值,n表示样本总数。In the formula, y i,actual represents the chemical analysis value of the cellulose content of the i-th copper algae sample, Indicates the average value of the chemical analysis value of copper algae cellulose content, y i,predicted indicates the predicted value of the cellulose content model of the i-th copper algae sample in the calibration set or validation set, and n indicates the total number of samples.
预测标准偏差(SEP):Standard Deviation of Prediction (SEP):
式中,yi,actual表示第i个铜藻样本的纤维素含量化学分析值,yi,predicted表示验证集中第i个铜藻样本的纤维素含量模型预测值,m表示校正集的样本总数。预测标准偏差越接近零,则表明模型的预测精确越高。In the formula, y i,actual represents the chemical analysis value of the cellulose content of the i-th copper algae sample, y i,predicted represents the predicted value of the cellulose content model of the i-th copper algae sample in the verification set, and m represents the total number of samples in the calibration set . The closer the prediction standard deviation is to zero, the more accurate the model's predictions are.
相对分析误差(RPD):Relative Analytical Error (RPD):
式中,SDV表示验证集中所有铜藻样本纤维素含量的标准偏差。验证集样本的性质分布越宽越均匀,则SEP越小,RPD值越大。In the formula, SD V represents the standard deviation of the cellulose content of all copper algae samples in the validation set. The wider and more uniform the property distribution of the validation set samples, the smaller the SEP and the larger the RPD value.
对于验证集,铜藻纤维素含量近红外光谱定量分析模型的模型评价参数结果如表3所示。For the verification set, the model evaluation parameter results of the near-infrared spectroscopy quantitative analysis model for cellulose content in copper algae are shown in Table 3.
表3table 3
由表3可知,留一交互验证标准偏差(RMSECV)为1.0097,预测标准偏差(SEP)为1.0288,数值距零的偏差相对较小,说明剔除异常样本后的模型不仅具有较佳的稳定性,而且对于验证集,铜藻样本的纤维素含量预测结果与实际值偏差较小,相关系数(R)为0.9404,十分接近1且相对分析误差(RPD)为2.94大于2,表明模型整体预测效果较好。It can be seen from Table 3 that the standard deviation of leave-one-out interactive verification (RMSECV) is 1.0097, and the standard deviation of prediction (SEP) is 1.0288. The deviation from zero is relatively small, indicating that the model after removing abnormal samples not only has better stability, Moreover, for the verification set, the deviation between the predicted cellulose content of copper algae samples and the actual value is small, the correlation coefficient (R) is 0.9404, which is very close to 1, and the relative analysis error (RPD) is 2.94 greater than 2, indicating that the overall prediction effect of the model is relatively good. it is good.
第五步,近红外光谱定量分析模型的应用。The fifth step is the application of the quantitative analysis model of near-infrared spectroscopy.
利用第四步所建立的铜藻纤维素含量近红外光谱定量分析模型,对4个铜藻样本的纤维素含量进行预测,并给出模型评价参数结果。未知铜藻样本的纤维素含量预测结果如表4所示,相应的模型评价参数结果如表5所示。由表4和表5可知,铜藻纤维素含量近红外光谱定量分析模型的实际应用取得了成功。Using the near-infrared spectroscopy quantitative analysis model of copper algae cellulose content established in the fourth step, the cellulose content of four copper algae samples was predicted, and the model evaluation parameter results were given. The prediction results of cellulose content of unknown copper algae samples are shown in Table 4, and the corresponding model evaluation parameter results are shown in Table 5. It can be seen from Table 4 and Table 5 that the practical application of the near-infrared spectroscopy quantitative analysis model for cellulose content in copper algae has been successful.
表4Table 4
表5table 5
最后需要说明的是,以上优选实施例仅为本发明的实施方式更易于理解,而非用以限定本发明。尽管通过上述优选实施例已经对本发明进行了详细的描述,但任何本发明所属技术领域内的技术人员应当理解,可以在实施的形式上及细节上作任何的修改与变化,而不偏离本发明权利要求书所限定的范围。Finally, it should be noted that the above preferred embodiments are only implementation modes of the present invention for easier understanding, rather than limiting the present invention. Although the present invention has been described in detail through the above-mentioned preferred embodiments, any person skilled in the art to which the present invention belongs should understand that any modification and change can be made in the form and details of implementation without departing from the present invention. The scope defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711361539.XA CN108181262A (en) | 2017-12-18 | 2017-12-18 | Method for rapidly determining content of sargassum horneri cellulose by utilizing near infrared spectrum technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711361539.XA CN108181262A (en) | 2017-12-18 | 2017-12-18 | Method for rapidly determining content of sargassum horneri cellulose by utilizing near infrared spectrum technology |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108181262A true CN108181262A (en) | 2018-06-19 |
Family
ID=62546313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711361539.XA Pending CN108181262A (en) | 2017-12-18 | 2017-12-18 | Method for rapidly determining content of sargassum horneri cellulose by utilizing near infrared spectrum technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108181262A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108982409A (en) * | 2018-08-08 | 2018-12-11 | 浙江工业大学 | A method of quickly detecting three constituent content of kelp lignocellulosic based near infrared spectrum |
CN109116005A (en) * | 2018-08-31 | 2019-01-01 | 中国林业科学研究院林业研究所 | A kind of larch-tree wood chemistry character detection method |
CN109187392A (en) * | 2018-09-26 | 2019-01-11 | 中南大学 | A kind of zinc liquid trace metal ion concentration prediction method based on two-zone model |
CN109669023A (en) * | 2018-12-05 | 2019-04-23 | 浙江大学 | A kind of soil attribute prediction technique based on Multi-sensor Fusion |
CN109709064A (en) * | 2019-01-03 | 2019-05-03 | 云南中烟工业有限责任公司 | Tobacco leaf hot-water solubles measuring method based on the activation of regression coefficient quadratic function |
CN109709042A (en) * | 2019-03-15 | 2019-05-03 | 山东农业大学 | A kind of information acquisition device and determination method for soil property determination |
CN109799207A (en) * | 2019-01-15 | 2019-05-24 | 上海交通大学 | The quantitative detecting method of talcum powder is mixed in the root of Dahurain angelica based on near-infrared spectrum analysis |
CN112179871A (en) * | 2020-10-22 | 2021-01-05 | 南京农业大学 | Method for nondestructive detection of caprolactam content in sauce food |
CN114166792A (en) * | 2020-09-11 | 2022-03-11 | 中国石油化工股份有限公司 | A kind of method for measuring ethanol content in gasoline |
CN115656096A (en) * | 2022-09-20 | 2023-01-31 | 中山海关技术中心 | Qualitative identification test method for textile fibers |
CN117690519A (en) * | 2023-12-13 | 2024-03-12 | 北京理工大学 | Improved dung beetle algorithm near-infrared model transfer method of methenamine-acetic acid solution |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105158195A (en) * | 2015-09-29 | 2015-12-16 | 中国林业科学研究院林产化学工业研究所 | Method for rapidly determining holocellulose content of pulping material based on near-infrared spectrum technology |
CN107314985A (en) * | 2017-06-12 | 2017-11-03 | 华中农业大学 | A kind of method that utilization near infrared spectrum detects rape stem content of cellulose |
-
2017
- 2017-12-18 CN CN201711361539.XA patent/CN108181262A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105158195A (en) * | 2015-09-29 | 2015-12-16 | 中国林业科学研究院林产化学工业研究所 | Method for rapidly determining holocellulose content of pulping material based on near-infrared spectrum technology |
CN107314985A (en) * | 2017-06-12 | 2017-11-03 | 华中农业大学 | A kind of method that utilization near infrared spectrum detects rape stem content of cellulose |
Non-Patent Citations (2)
Title |
---|
王会: "《生物质计量测试基础》", 31 March 2017, 浙江大学出版社 * |
肖爱平 等: "苎麻纤维素含量近红外预测模型的建立与探讨", 《中国麻业科学》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108982409A (en) * | 2018-08-08 | 2018-12-11 | 浙江工业大学 | A method of quickly detecting three constituent content of kelp lignocellulosic based near infrared spectrum |
CN109116005A (en) * | 2018-08-31 | 2019-01-01 | 中国林业科学研究院林业研究所 | A kind of larch-tree wood chemistry character detection method |
CN109187392A (en) * | 2018-09-26 | 2019-01-11 | 中南大学 | A kind of zinc liquid trace metal ion concentration prediction method based on two-zone model |
CN109669023A (en) * | 2018-12-05 | 2019-04-23 | 浙江大学 | A kind of soil attribute prediction technique based on Multi-sensor Fusion |
CN109709064A (en) * | 2019-01-03 | 2019-05-03 | 云南中烟工业有限责任公司 | Tobacco leaf hot-water solubles measuring method based on the activation of regression coefficient quadratic function |
CN109799207A (en) * | 2019-01-15 | 2019-05-24 | 上海交通大学 | The quantitative detecting method of talcum powder is mixed in the root of Dahurain angelica based on near-infrared spectrum analysis |
CN109709042A (en) * | 2019-03-15 | 2019-05-03 | 山东农业大学 | A kind of information acquisition device and determination method for soil property determination |
CN114166792A (en) * | 2020-09-11 | 2022-03-11 | 中国石油化工股份有限公司 | A kind of method for measuring ethanol content in gasoline |
CN112179871A (en) * | 2020-10-22 | 2021-01-05 | 南京农业大学 | Method for nondestructive detection of caprolactam content in sauce food |
CN112179871B (en) * | 2020-10-22 | 2022-10-18 | 南京农业大学 | A method for nondestructive detection of caprolactam content in sauce food |
CN115656096A (en) * | 2022-09-20 | 2023-01-31 | 中山海关技术中心 | Qualitative identification test method for textile fibers |
CN117690519A (en) * | 2023-12-13 | 2024-03-12 | 北京理工大学 | Improved dung beetle algorithm near-infrared model transfer method of methenamine-acetic acid solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108181262A (en) | Method for rapidly determining content of sargassum horneri cellulose by utilizing near infrared spectrum technology | |
Triolo et al. | Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass | |
CN108982409A (en) | A method of quickly detecting three constituent content of kelp lignocellulosic based near infrared spectrum | |
Lu et al. | Quantitative determination and characteristic wavelength selection of available nitrogen in coco-peat by NIR spectroscopy | |
Véstia et al. | Predicting calcium in grape must and base wine by FT-NIR spectroscopy | |
Jiang et al. | Rapid determination of pH in solid-state fermentation of wheat straw by FT-NIR spectroscopy and efficient wavelengths selection | |
CN107515203A (en) | Quantitative analysis of rice single grain amylose content by near-infrared technology | |
CN107421911A (en) | A kind of preprocess method of the soil nitrogen detection based on portable near infrared spectrometer | |
CN107655851A (en) | A kind of method based on near-infrared spectrum technique quick detection lysine content | |
Wang et al. | Onsite nutritional diagnosis of tea plants using micro near-infrared spectrometer coupled with chemometrics | |
Wang et al. | Tea Analyzer: A low-cost and portable tool for quality quantification of postharvest fresh tea leaves | |
CN105758819A (en) | Method for detecting organic components of soil by utilizing near infrared spectrum | |
CN106932365A (en) | Method for detecting components of corn straws by using near-infrared instrument | |
CN108982407A (en) | A method of probing into the soil optimum moisture content of detection soil nitrogen using near infrared spectrum | |
CN105158195A (en) | Method for rapidly determining holocellulose content of pulping material based on near-infrared spectrum technology | |
Cai et al. | Soil nutrient information extraction model based on transfer learning and near infrared spectroscopy | |
Che et al. | Quantification of photosynthetic pigments in Neopyropia yezoensis using hyperspectral imagery | |
CN104266997A (en) | Near-infrared analysis method for content of lignin in rapeseeds | |
CN112362812A (en) | Remote sensing inversion model and method for rice leaf chlorophyll carotenoid content ratio based on Lars algorithm | |
CN102288569A (en) | Method for rapidly analyzing fiber biomass | |
CN105223102A (en) | A kind of method utilizing Near Infrared Spectroscopy for Rapid slurrying material basic density | |
Fang et al. | Prediction Models for the Content of Calcium, Boron and Potassium in the Fruit of ‘Huangguan’Pears Established by Using Near-Infrared Spectroscopy | |
CN103728269A (en) | Method for near infrared rapid detection of physical and chemical indicators in wine stock | |
CN103575680A (en) | Spectroscopic method for evaluating quality indexes of organic fertilizer | |
Huang et al. | NIRS prediction of the protein, fat, and ash of Sargassum fusiforme at different growth stages: A quality control approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180619 |
|
RJ01 | Rejection of invention patent application after publication |