CN101217114B - 一种解决半导体硅刻蚀工艺偏移的方法 - Google Patents

一种解决半导体硅刻蚀工艺偏移的方法 Download PDF

Info

Publication number
CN101217114B
CN101217114B CN200710063232A CN200710063232A CN101217114B CN 101217114 B CN101217114 B CN 101217114B CN 200710063232 A CN200710063232 A CN 200710063232A CN 200710063232 A CN200710063232 A CN 200710063232A CN 101217114 B CN101217114 B CN 101217114B
Authority
CN
China
Prior art keywords
flow
feed
etching
controlled
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200710063232A
Other languages
English (en)
Other versions
CN101217114A (zh
Inventor
王娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing North Microelectronics Co Ltd
Original Assignee
Beijing North Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing North Microelectronics Co Ltd filed Critical Beijing North Microelectronics Co Ltd
Priority to CN200710063232A priority Critical patent/CN101217114B/zh
Publication of CN101217114A publication Critical patent/CN101217114A/zh
Application granted granted Critical
Publication of CN101217114B publication Critical patent/CN101217114B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

本发明提供了一种解决半导体硅刻蚀工艺偏移的方法,该方法采用七步骤通过反应气体对至少两片硅片进行刻蚀,其能够很好的将腔室内部聚焦环等部件进行聚合物的去除,并能起到去除颗粒的作用。该方法是将暖机工艺和干法清洗工艺进行了结合,节省了步骤,提高产率和良率,并且解决了腔室切换工艺时刻蚀工艺漂移的问题。

Description

一种解决半导体硅刻蚀工艺偏移的方法
技术领域
本发明涉及一种半导体硅刻蚀工艺,具体地说,涉及一种解决半导体硅刻蚀工艺偏移的方法。
背景技术
在半导体行业大规模集成电路的工艺过程中,需要在硅片表面加工出具有细微尺寸的图形。要求在不同时间、不同状态时,一台刻蚀设备刻蚀硅片后得到的图形重复性一定要好,这直接影响着刻蚀设备机台的产率和良率。
目前,在维护腔室稳定状态的工艺方面,已经有一些经验,但是对恢复刻蚀设备到刻蚀状态这样的工艺也是依赖于刻蚀设备之前的环境。如果这种工艺不合适,将有可能导致产品硅片的刻蚀结果工艺和重复性都会比较差。
如果刻蚀后干法清洗的不彻底则很容易引起刻蚀结果的漂移,从而引起上面提到的各种问题。
当一台硅刻蚀设备长时间进行一种工艺的刻蚀,如果要转换到另一种工艺,很容易造成工艺结果的漂移,而目前的方法是先用干法清洗轰击腔室的侧壁,再进一步对腔室进行暖机。倘若这样处理后在切换不同工艺时仍会出现问题,则需要拆开腔室进行清洗,即用一些化学液体反复擦拭腔室侧壁,然后再重新安装调试。其目的是为了维护稳定的工艺环境,去掉残留在腔室侧壁上的聚合物对下一步刻蚀的影响。
上述方法一直在广泛应用,但是它最大的缺点在于每次需要对腔室进行清洗,需要耗费大量人力,物力以及时间。对腔室清洗虽是不能避免的,但是可以延长对腔室进行周期性维护的时间。还有,该方法并没有解决关于两种工艺结果进行切换时候的工艺结果漂移的问题(如图1、2所示),也就是说,在一台应用于半导体行业的刻蚀设备进行两种不同工艺切换的时候,以往最好的工艺结果会发生变化,找到的工艺窗口也会消失,造成已经找到的工艺结果需要重新进行调整。而且一般在腔室工艺转化时,需要先进行拆机,对关键件进行清洗,经重新安装后再进行腔室的工艺条件恢复,包含的工序繁多,很是麻烦。
因此,需要寻找更好解决刻蚀腔室切换工艺的时候刻蚀工艺漂移的问题。
发明内容
本发明的目的是提供一种可有效解决腔室切换工艺时刻蚀工艺漂移的方法,该方法不仅克服了腔室切换工艺时刻蚀工艺漂移的缺陷,而且还提高了产率和良率。
为了实现本发明目的,本发明的一种解决半导体硅刻蚀工艺偏移的方法,包括如下步骤:
第一步,控制腔室压力在40~90mT;源电极的功率控制在650~900w;通入含氟气体,流量在150~200sccm;通入氧气,流量采用15~30sccm;刻蚀时间20~40s;该步骤的目的是去除腔室内的无机物残留。
第二步,控制腔室压力在40~90mT;源电极的功率控制在650~900w;通入氧气,流量采用180~250sccm;刻蚀时间3~5s;
第三步,控制腔室压力在15~30mT;源电极的功率控制在650~900w;通入氧气,流量采用180~250sccm;刻蚀时间15~30s;该步骤的目的是去除腔室内的有机物残留。
第四步,控制腔室压力在0~15mT;通入甲烷气体,流量在30~80sccm;刻蚀时间5~15s;该步骤先通入气体为的是使气流稳定。
第五步,控制腔室压力在0~15mT;源电极功率控制在250~350w;下电极功率控制在30~90w;通入甲烷气体,流量在30~80sccm;刻蚀时间5~15s;该步骤对上一步通入的气体进行起辉。
第六步,控制腔室压力在0~30mT;通入氯气,流量在5~30sccm;通入含溴气体,流量在150~200sccm;通入惰性气体和氧气,二者流量在5~15sccm;刻蚀时间5~15s;该步骤先通入气体使气流稳定。
第七步,控制腔室压力在0~30mT;源电极功率控制在250~350w;下电极功率控制在30~90w;通入氯气,流量在5~30sccm;通入含溴气体,流量在150~200sccm;通入惰性气体和氧气,二者流量在5~15sccm;刻蚀时间40~80s;该步骤对上一步通入的气体进行起辉。
重复循环上述步骤至少两次。
其中,优选步骤为:第一步,控制腔室压力在60~80mT;源电极的功率控制在750~850w;通入含氟气体,流量在160~180sccm;通入氧气,流量采用15~25sccm;刻蚀时间30~35s;
第二步,控制腔室压力在60~80mT;源电极的功率控制在750~850w;通入氧气,流量采用180~210sccm;刻蚀时间3~5s;
第三步,控制腔室压力在15~20mT;源电极的功率控制在750~850w;通入氧气,流量采用200~220sccm;刻蚀时间20~30s;
第四步,控制腔室压力在10~15mT;通入甲烷气体,流量在30~50sccm;刻蚀时间8~13s;
第五步,控制腔室压力在10~15mT;源电极功率控制在300~350w;下电极功率控制在30~50w;通入甲烷气体,流量在30~50sccm;刻蚀时间8~13s;
第六步,控制腔室压力在10~20mT;通入氯气,流量在10~15sccm;通入含溴气体,流量在150~200sccm;通入惰性气体和氧气,二者流量在10~15sccm;刻蚀时间10~15s;
第七步,控制腔室压力在10~20mT;源电极功率控制在250~350w;下电极功率控制在30~90w;通入氯气,流量在5~30sccm;通入含溴气体HBr,流量在180~200sccm;通入惰性气体和氧气,二者流量在10~15sccm;刻蚀时间40~50s。重复循环上述步骤至少两次。
采用本发明的方法时,使用的硅片要视情况而定:倘若要转换成多晶硅的刻蚀工艺,则硅片为多晶硅的空白片;倘若要转换成钨栅的刻蚀工艺,则工艺为硅化钨的空白片。
本发明的方法中,采用了含氟气体,氧气,氯气,甲烷,溴化氢,惰性气体等进行刻蚀。
所述的含氟气体为SF6或CF4,所述的惰性气体为He、Ne或Ar。
在不同工艺转换的过程中,之所以刻蚀结果容易发生漂移,是因为刻蚀过程中产生的各种聚合物比较多,去除不好的话就会非常影响工艺结果。所以针对工艺过程中会产生含硅和含碳的聚合物,在本发明的工艺中加入含氟气体是因为含氟气体能与硅的化合物发生如下反应,而氧气可与碳的化合物发生反应,这样就能够很好的将腔室内部聚焦环等部件进行聚合物的去除,并能起到去除颗粒的作用。
具体反应式如下:
Si+4F→SiF4(g)↑
C+xF→CFx(g)↑
C+xO→CO or CO2(g)↑
采用本发明的工艺方法,无需中间添加干法清洗步骤,将干法清洗和暖机工艺进行了合并组合,减少了步骤,一般来说,所述的七步骤为一套暖机工艺的完整流程,需要对此工艺进行重复操作,重复操作的次数取决于腔室的状态(腔室之前的工艺条件,空闲的时间等)。当工艺转换时,腔室空闲10小时以上,采用刻蚀10片硅片;当空闲5~10小时,采用刻蚀5~10片硅片;当空闲5小时以下,采用刻蚀2~5片硅片。
本发明所述的解决半导体硅刻蚀工艺偏移的方法,在现有的暖机工艺和干法清洗工艺的基础上,进行了改进,将两个工艺段进行了结合,节省了步骤,提高产率和良率,并且解决了腔室切换工艺时刻蚀工艺漂移的问题。
附图说明
图1为采用现有方法当工艺改变时对多晶硅刻蚀速率的工艺漂移曲线;
图2为工艺漂移导致刻蚀线条不好的效果图;
图3为采用本发明方法当工艺改变时对多晶硅刻蚀速率工艺漂移曲线;
图4为采用本发明的方法转换工艺后的刻蚀效果。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本例使用的设备是北方微电子基地设备工艺研究中心的180nm硅片刻蚀机。
当刻蚀设备需要更换工艺时,采用暖机工艺和干法清洗相结合的工艺,对腔室进行处理,具体步骤如下:
Figure G2007100632321D00051
工艺转换时,腔室空闲24小时,采用刻蚀10片硅片,刻蚀1片重复一次上述步骤,便可实现暖机的目的。
采用本实验例进行暖机,可见刻蚀速率、刻蚀均匀性等参数不发生漂移(图3)。并可见刻蚀后的硅栅线条有比较好的截面形貌(图4)。并且这种工艺结合了现有的暖机工艺和干法清洗工艺,还能起到提高产率的目的。
实施例2
基本步骤同实施例1,不同的是具体工艺条件如下:
Figure G2007100632321D00061
工艺转换时,腔室空闲5小时,采用刻蚀5片硅片,刻蚀1片重复一次上述步骤,便可实现暖机的目的。
实施例3
Figure G2007100632321D00062
工艺转换时,腔室空闲20小时,采用刻蚀10片硅片,刻蚀1片重复一次上述步骤,便可实现暖机的目的。
实施例4
工艺转换时,腔室空闲3小时,采用刻蚀4片硅片,刻蚀1片重复一次上述步骤,便可实现暖机的目的。
实施例5
Figure G2007100632321D00072
工艺转换时,腔室空闲8小时,采用刻蚀8片硅片,刻蚀1片重复一次上述步骤,便可实现暖机的目的。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (9)

1.一种解决半导体硅刻蚀工艺偏移的方法,其特征在于包括如下步骤:
第一步,控制腔室压力在40~90mT;源电极的功率控制在650~900w;通入含氟气体,流量在150~200sccm;通入氧气,流量采用15~30sccm;刻蚀时间20~40s;
第二步,控制腔室压力在40~90mT;源电极的功率控制在650~900w;通入氧气,流量采用180~250sccm;刻蚀时间3~5s;
第三步,控制腔室压力在15~30mT;源电极的功率控制在650~900w;通入氧气,流量采用180~250sccm;刻蚀时间15~30s;
第四步,控制腔室压力在0~15mT;通入甲烷气体,流量在30~80sccm;刻蚀时间5~15s;
第五步,控制腔室压力在0~15mT;源电极功率控制在250~350w;下电极功率控制在30~90w;通入甲烷气体,流量在30~80sccm;刻蚀时间5~15s;
第六步,控制腔室压力在0~30mT;通入氯气,流量在5~30sccm;通入含溴气体,流量在150~200sccm;通入惰性气体和氧气,二者流量在5~15sccm;刻蚀时间5~15s;
第七步,控制腔室压力在0~30mT;源电极功率控制在250~350w;下电极功率控制在30~90w;通入氯气,流量在5~30sccm;通入含溴气体,流量在150~200sccm;通入惰性气体和氧气,二者流量在5~15sccm;刻蚀时间40~80s;
重复循环上述步骤至少两次。
2.根据权利要求1所述的方法,其特征在于包括如下步骤:
第一步,控制腔室压力在60~80mT;源电极的功率控制在750~850w;通入含氟气体,流量在160~180sccm;通入氧气,流量采用15~25sccm;刻蚀时间30~35s;
第二步,控制腔室压力在60~80mT;源电极的功率控制在750~850w;通入氧气,流量采用180~210sccm;刻蚀时间3~5s;
第三步,控制腔室压力在15~20mT;源电极的功率控制在750~850w;通入氧气,流量采用200~220sccm;刻蚀时间20~30s;
第四步,控制腔室压力在10~15mT;通入甲烷气体,流量在30~50sccm;刻蚀时间8~13s;
第五步,控制腔室压力在10~15mT;源电极功率控制在300~350w;下电极功率控制在30~50w;通入甲烷气体,流量在30~50sccm;刻蚀时间8~13s;
第六步,控制腔室压力在10~20mT;通入氯气,流量在10~15sccm;通入含溴气体,流量在150~200sccm;通入惰性气体和氧气,二者流量在10~15sccm;刻蚀时间10~15s;
第七步,控制腔室压力在10~20mT;源电极功率控制在250~350w;下电极功率控制在30~90w;通入氯气,流量在5~30sccm;通入含溴气体HBr,流量在180~200sccm;通入惰性气体和氧气,二者流量在10~15sccm;刻蚀时间40~50s;
重复循环上述步骤至少两次。
3.根据权利要求1或2所述的方法,其特征在于当转换成多晶硅的刻蚀工艺时,硅片为多晶硅的空白片;当转换成钨栅的刻蚀工艺时,则硅片为硅化钨的空白片。
4.根据权利要求3所述的方法,其特征在于当工艺转换时,腔室空闲10小时以上,采用刻蚀10片硅片;当空闲5~10小时,采用刻蚀5~10片硅片;当空闲5小时以下,采用刻蚀2~5片硅片。
5.根据权利要求1或2所述的方法,其特征在于当工艺转换时,腔室空闲10小时以上,采用刻蚀10片硅片;当空闲5~10小时,采用刻蚀5~10片硅片;当空闲5小时以下,采用刻蚀2~5片硅片。
6.根据权利要求1或2所述方法,其特征在于所述的含氟气体为SF6或CF4,所述的惰性气体为He、Ne或Ar。
7.根据权利要求3所述方法,其特征在于所述的含氟气体为SF6或CF4,所述的惰性气体为He、Ne或Ar。
8.根据权利要求4所述方法,其特征在于所述的含氟气体为SF6或CF4,所述的惰性气体为He、Ne或Ar。
9.根据权利要求5所述方法,其特征在于所述的含氟气体为SF6或CF4,所述的惰性气体为He、Ne或Ar。
CN200710063232A 2007-01-04 2007-01-04 一种解决半导体硅刻蚀工艺偏移的方法 Active CN101217114B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710063232A CN101217114B (zh) 2007-01-04 2007-01-04 一种解决半导体硅刻蚀工艺偏移的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710063232A CN101217114B (zh) 2007-01-04 2007-01-04 一种解决半导体硅刻蚀工艺偏移的方法

Publications (2)

Publication Number Publication Date
CN101217114A CN101217114A (zh) 2008-07-09
CN101217114B true CN101217114B (zh) 2010-05-19

Family

ID=39623518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710063232A Active CN101217114B (zh) 2007-01-04 2007-01-04 一种解决半导体硅刻蚀工艺偏移的方法

Country Status (1)

Country Link
CN (1) CN101217114B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911559B2 (en) * 2008-09-22 2014-12-16 Taiwan Semiconductor Manufacturing Company, Ltd. Method to pre-heat and stabilize etching chamber condition and improve mean time between cleaning
CN102044429B (zh) * 2009-10-23 2012-10-31 北京北方微电子基地设备工艺研究中心有限责任公司 一种硅片的刻蚀方法
CN103515176A (zh) * 2012-06-19 2014-01-15 北京北方微电子基地设备工艺研究中心有限责任公司 一种暖机方法及刻蚀方法
CN106504996B (zh) * 2015-09-07 2020-10-13 北京北方华创微电子装备有限公司 暖机方法及基片的刻蚀方法
CN110400733B (zh) * 2019-08-16 2022-02-22 北京北方华创微电子装备有限公司 智能暖机方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447397A (zh) * 2001-12-11 2003-10-08 联华电子股份有限公司 减少反应室杂质含量的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447397A (zh) * 2001-12-11 2003-10-08 联华电子股份有限公司 减少反应室杂质含量的方法

Also Published As

Publication number Publication date
CN101217114A (zh) 2008-07-09

Similar Documents

Publication Publication Date Title
CN100378911C (zh) 氮化钛去除方法
CN100377314C (zh) 一种去除多晶硅刻蚀工艺中残留聚合物的方法
CN101217114B (zh) 一种解决半导体硅刻蚀工艺偏移的方法
CN100571904C (zh) 一种石英材料零件的清洗方法
CN102082089B (zh) 光刻胶的去除方法
WO2012154429A2 (en) Methods of dry stripping boron-carbon films
WO2008024792B1 (en) Low-k damage avoidance during bevel etch processing
CN101204701A (zh) 一种阳极氧化零件表面的清洗方法
CN101214487B (zh) 一种半导体刻蚀设备腔室的清洗方法
CN101233072B (zh) 加工衬底的方法
CN102044429B (zh) 一种硅片的刻蚀方法
CN103545163B (zh) 具有氟残留或氯残留的半导体结构的处理方法
CN111261555B (zh) 半导体设备恢复方法
EP1988069A1 (en) Method of dry etching, method of microstructure formation, mold and process for producing the same
JP2012156554A (ja) 基材の処理方法
CN107316797A (zh) 一种干法清洗工艺腔的方法
CN101252083B (zh) 多晶硅栅表面的清洗方法
JP2009147310A (ja) インシチュでのチャンバ洗浄方法
CN101440498A (zh) 一种在沉积前预清洁薄膜表面氧化物的方法
CN100362633C (zh) 一种去除刻蚀工艺后硅片表面颗粒的等离子体清洗方法
CN101752207B (zh) 消除干法刻蚀中溴化氢浓缩残留方法
JP2009266884A (ja) プラズマ成膜装置のクリーニング方法
CN100393913C (zh) 一种多晶硅刻蚀中的干法清洗工艺
Allgood Fluorocarbon process gases in microelectronics
CN102610562A (zh) 含碳薄膜中碳元素的去除方法以及SiOC控挡片的再生方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 100176 8 Wenchang Avenue, Beijing economic and Technological Development Zone, Beijing

Patentee after: Beijing North China microelectronics equipment Co Ltd

Address before: 100016 Jiuxianqiao East Road, Chaoyang District, Chaoyang District, Beijing

Patentee before: Beifang Microelectronic Base Equipment Proces Research Center Co., Ltd., Beijing