CN101216354A - Photonic Crystal Fiber Refractive Index Temperature Sensor and Measurement System - Google Patents
Photonic Crystal Fiber Refractive Index Temperature Sensor and Measurement System Download PDFInfo
- Publication number
- CN101216354A CN101216354A CNA2008100651755A CN200810065175A CN101216354A CN 101216354 A CN101216354 A CN 101216354A CN A2008100651755 A CNA2008100651755 A CN A2008100651755A CN 200810065175 A CN200810065175 A CN 200810065175A CN 101216354 A CN101216354 A CN 101216354A
- Authority
- CN
- China
- Prior art keywords
- temperature sensor
- refractive index
- photonic crystal
- optical fibre
- crystal optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004038 photonic crystal Substances 0.000 title abstract description 56
- 238000005259 measurement Methods 0.000 title abstract description 10
- 239000000835 fiber Substances 0.000 claims abstract description 73
- 230000035945 sensitivity Effects 0.000 claims abstract description 6
- 239000013307 optical fiber Substances 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims 17
- 238000007598 dipping method Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 14
- 230000005540 biological transmission Effects 0.000 abstract description 8
- 238000005253 cladding Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本发明提供一种光子晶体光纤折射率温度传感器测量系统,其包括光源,光子晶体光纤折射率温度传感器以及光功率计,所述的光源发出的光耦合到该光子晶体光纤折射率温度传感器中,该光子晶体光纤折射率温度传感器对光线进行折射,该光功率计测量该光子晶体光纤折射率温度传感器中的出光的光强,通过光子晶体光纤折射率温度传感器的光强变化来测量温度。该光子晶体光纤折射率温度传感器测量是在光子晶体光纤中通过填充折射率温度敏感的介质,当温度变化时光子晶体光纤中光场强度分布发生变化,引起光的传输损耗变化,通过光纤输出的光功率的改变来测量温度,大大提高了光子晶体光纤折射率温度传感器的灵敏度。
The invention provides a photonic crystal fiber refractive index temperature sensor measurement system, which includes a light source, a photonic crystal fiber refractive index temperature sensor and an optical power meter, the light emitted by the light source is coupled into the photonic crystal fiber refractive index temperature sensor, The photonic crystal fiber refractive index temperature sensor refracts light, the optical power meter measures the light intensity of the light emitted by the photonic crystal fiber refractive index temperature sensor, and measures temperature through the light intensity change of the photonic crystal fiber refractive index temperature sensor. The measurement of the photonic crystal fiber refractive index temperature sensor is to fill the photonic crystal fiber with a temperature-sensitive medium of refractive index. When the temperature changes, the light field intensity distribution in the photonic crystal fiber changes, causing the change of light transmission loss, and the output through the fiber Changing the optical power to measure the temperature greatly improves the sensitivity of the photonic crystal fiber refractive index temperature sensor.
Description
技术领域technical field
本发明涉及一种温度传感器,特别是涉及利用光子晶体光纤包层的折射率调制制成的光子晶体光纤折射率温度传感器。The invention relates to a temperature sensor, in particular to a photonic crystal fiber refractive index temperature sensor made by utilizing the refractive index modulation of the photonic crystal fiber cladding.
背景技术Background technique
光纤纤芯和包层的折射率差决定了数值孔径,控制光纤的损耗。光纤的数值孔径受到温度的调制,即光纤的集光能力受环境温度的调制,经光电检测系统解调后,即可得到被测物的温度值。折射率光纤温度传感器就是根据光纤包层折射率随温度变化会引起传输光能损耗变化的原理而制成的温度传感器,通过测量光纤输出的光功率的改变来测量温度。The difference between the refractive index of the fiber core and the cladding determines the numerical aperture and controls the loss of the fiber. The numerical aperture of the optical fiber is modulated by temperature, that is, the light-collecting ability of the optical fiber is modulated by the ambient temperature. After demodulation by the photoelectric detection system, the temperature value of the measured object can be obtained. The refractive index fiber optic temperature sensor is a temperature sensor made according to the principle that the refractive index of the fiber cladding changes with temperature, which will cause the loss of transmitted light energy to change. It measures the temperature by measuring the change of the optical power output by the fiber.
传统的折射率光纤温度传感器通常是先将石英包层腐蚀掉,换以折射率温度敏感的材料替代包层,制作光纤温度传感头(张鸿安,沈为民,光纤温度传感器高聚物传感介质的研究,光电子·激光,1996,7(6):337-340),其缺点是腐蚀工艺复杂,腐蚀深度难以控制;或者将二根光纤熔接在一起制作光纤温度传感头,如实用新型专利(申请号:92229667.7),是采用一种和光纤折射率相匹配的高分子温敏材料涂覆在二根熔接在一起的光纤外面,使光能由一根光纤输入该反射面后由另一根光纤输出。由于是将两根光纤熔接在一起,也需要对光纤进行破坏,传感器的一致性很难控制。The traditional refractive index fiber optic temperature sensor usually first corrodes the quartz cladding, replaces the cladding with a temperature sensitive material of refractive index, and makes the fiber optic temperature sensing head (Zhang Hongan, Shen Weimin, Optical fiber temperature sensor High polymer sensing medium Research, Optoelectronics·Laser, 1996, 7(6): 337-340), its disadvantage is that the corrosion process is complicated, and the corrosion depth is difficult to control; or two optical fibers are welded together to make an optical fiber temperature sensor head, such as the utility model patent ( Application number: 92229667.7), is to use a polymer temperature-sensitive material that matches the refractive index of the optical fiber to coat the outside of two fused optical fibers, so that the light energy is input from one optical fiber to the reflective surface and then transmitted by the other. Optical output. Since two optical fibers are fused together, the optical fibers need to be destroyed, so the consistency of the sensor is difficult to control.
发明内容Contents of the invention
本发明为了克服上述现有技术的不足,提供了一种基于通过测量光学信息来测量温度的光子晶体光纤折射率温度传感器。In order to overcome the deficiencies of the above-mentioned prior art, the present invention provides a photonic crystal fiber refractive index temperature sensor based on measuring optical information to measure temperature.
本发明为了克服上述现有技术的不足,提供了一种基于通过测量光学信息来测量温度的光子晶体光纤折射率温度传感器测量系统。In order to overcome the deficiencies of the above-mentioned prior art, the present invention provides a photonic crystal fiber refractive index temperature sensor measurement system based on measuring optical information to measure temperature.
本发明解决其技术问题所采用的技术方案是:提供一种光子晶体光纤,其包括纤芯以及在纤芯周围沿着轴向排列微小气孔,该微小气孔中填充有折射率温度敏感物质。The technical solution adopted by the present invention to solve the technical problem is to provide a photonic crystal fiber, which includes a core and axially arranged tiny air holes around the core, and the tiny air holes are filled with a temperature-sensitive substance of refractive index.
本发明解决进一步技术问题的方案是:所述的微小气孔排列结构以及其内部填充的物质的折射率随测试要求设置。The solution of the present invention to solve the further technical problem is: the refractive index of the microscopic pore arrangement structure and the material filled in it is set according to the test requirements.
本发明解决其技术问题所采用的技术方案是:提供一种光子晶体光纤折射率温度传感器测量系统,其包括光源,光子晶体光纤折射率温度传感器以及光功率计,所述的光源发出的光耦合到该光子晶体光纤折射率温度传感器中,该光子晶体光纤折射率温度传感器对光线进行折射,该光功率计测量该光子晶体光纤折射率温度传感器中的出光的光强,通过光子晶体光纤折射率温度传感器的光强变化来测量温度。The technical solution adopted by the present invention to solve the technical problem is: provide a photonic crystal fiber refractive index temperature sensor measurement system, which includes a light source, a photonic crystal fiber refractive index temperature sensor and an optical power meter, and the optical coupling emitted by the light source In the photonic crystal fiber refractive index temperature sensor, the photonic crystal fiber refractive index temperature sensor refracts light, the optical power meter measures the light intensity of the light in the photonic crystal fiber refractive index temperature sensor, and passes through the photonic crystal fiber refractive index temperature sensor. The temperature sensor measures the temperature by changing the light intensity.
本发明解决进一步技术问题的方案是:光源可以选用激光器或发光二极管。The solution of the present invention to solve the further technical problem is: the light source can be a laser or a light emitting diode.
本发明解决进一步技术问题的方案是:所述的光子晶体光纤折射率温度传感器包括纤芯以及在纤芯周围沿着轴向排列微小气孔。The solution of the present invention to solve the further technical problem is: the photonic crystal fiber refraction index temperature sensor includes a fiber core and micro air holes arranged axially around the fiber core.
本发明解决进一步技术问题的方案是:该微小气孔中的填充有折射率温度敏感物质。The solution of the present invention to solve the further technical problem is: the tiny pores are filled with a temperature-sensitive material of refractive index.
本发明解决进一步技术问题的方案是:所述的微小气孔排列结构以及其内部填充的物质随测试要求设置。The solution of the present invention to solve the further technical problem is: the micro-pore arrangement structure and the substance filled in it are set according to the test requirements.
本发明解决进一步技术问题的方案是:所述的光子晶体光纤折射率温度传感器内填充折射率温度敏感的物质,改变光子晶体光纤折射率温度传感器的温度特性,提高光子晶体光纤折射率温度传感器的灵敏度。The solution of the present invention to solve the further technical problem is: the photonic crystal fiber refractive index temperature sensor is filled with a material sensitive to the temperature of the refractive index, the temperature characteristic of the photonic crystal fiber refractive index temperature sensor is changed, and the temperature of the photonic crystal fiber refractive index temperature sensor is improved. sensitivity.
相较于现有技术,该光子晶体光纤折射率温度传感器是在光子晶体光纤中通过填充折射率温度敏感的介质,根据光子晶体光纤中光的传输特性与温度的关系,利用填充物折射率的温度系数与光子晶体光纤材料不同,当温度变化时光子晶体光纤中光场强度分布发生变化,引起光的传输损耗变化,通过光纤输出的光功率的改变来测量温度,大大提高了光子晶体光纤折射率温度传感器的灵敏度。Compared with the prior art, the photonic crystal fiber refractive index temperature sensor is filled with a temperature-sensitive medium of refractive index in the photonic crystal fiber, and according to the relationship between the light transmission characteristics and temperature in the photonic crystal fiber, the refractive index of the filler is used The temperature coefficient is different from that of the photonic crystal fiber material. When the temperature changes, the light field intensity distribution in the photonic crystal fiber changes, causing the change of the transmission loss of light. The temperature is measured by the change of the optical power output by the fiber, which greatly improves the refraction of the photonic crystal fiber. rate temperature sensor sensitivity.
附图说明Description of drawings
图1是本发明的光子晶体光纤折射率温度传感器的结构示意图。Fig. 1 is a structural schematic diagram of the photonic crystal fiber refractive index temperature sensor of the present invention.
图2是本发明的光子晶体光纤折射率温度传感器测量系统的结构示意图。Fig. 2 is a structural schematic diagram of the photonic crystal fiber refractive index temperature sensor measurement system of the present invention.
具体实施方式Detailed ways
本发明提供一种光子晶体光纤折射率温度传感器,其是在光子晶体光纤微孔中填充折射率温度敏感的介质,当温度变化时光子晶体光纤中光场强度分布发生变化,引起光的传输损耗变化,通过测量光学信息来测量温度的一种光纤温度传感器。The invention provides a photonic crystal fiber refractive index temperature sensor, which is filled with a temperature-sensitive medium of refractive index in the photonic crystal fiber microhole, and when the temperature changes, the light field intensity distribution in the photonic crystal fiber changes, causing light transmission loss A fiber optic temperature sensor that measures temperature by measuring optical information.
请参阅图1,是本发明的光子晶体光纤折射率温度传感器的光纤截面原理示意图。Please refer to FIG. 1 , which is a schematic diagram of the optical fiber section principle of the photonic crystal optical fiber refractive index temperature sensor of the present invention.
所述的光子晶体光纤折射率温度传感器,其包括纤芯11以及在纤芯周围沿着轴向规则排列微小气孔21。通过这些微小气孔21对光的约束,实现光在光纤中的传导。光子晶体光纤折射率温度传感器与普通光纤温度传感器在结构上的差别决定了其单模特性、色散特性和非线性特性等方面与普通光纤有着显著的差异。该光子晶体光纤折射率温度传感器的另外一个重要特性是,由于可以在光子晶体光纤中的微小气孔中的填充折射率温度敏感的物质,这样可以增加传输光与气体或液体的作用长度,并且可以根据需要调整光子晶体光纤的结构参数,对光子晶体光纤折射率温度传感器进行自由设计。本发明是在光子晶体光纤折射率温度传感器填充折射率温度敏感的物质,改变光子晶体光纤的温度特性,提高光纤温度传感器的灵敏度。The photonic crystal fiber refractive index temperature sensor includes a
请参阅图2,是本发明的光子晶体光纤折射率温度传感器测量系统结构示意图。Please refer to FIG. 2 , which is a schematic structural diagram of the photonic crystal fiber refractive index temperature sensor measurement system of the present invention.
该光子晶体光纤折射率温度传感器测量系统包括光源21,光子晶体光纤折射率温度传感器22以及光探测器23。The photonic crystal fiber refractive index temperature sensor measurement system includes a
工作时,将填充了折射率温度敏感物质的光子晶体光纤置于温度场中,如图中的箭头所示,光源21发出的光经耦合到光子晶体光纤折射率温度传感器22中,用光探测器23测量光的强度,温度的变化会引起光的传输损耗变化,从而实现对温度的测量。When working, put the photonic crystal fiber filled with the temperature-sensitive material of refractive index in the temperature field, as shown by the arrow in the figure, the light emitted by the
本发明的有益效果是,该光子晶体光纤折射率温度传感器以及测量系统是在光子晶体光纤中通过填充折射率温度敏感的介质,根据光子晶体光纤中光的传输特性与温度的关系,利用填充物折射率的温度系数与光子晶体光纤材料不同,当温度变化时光子晶体光纤中光场强度分布发生变化,引起光的传输损耗变化,通过光纤输出的光功率的改变来测量温度。The beneficial effect of the present invention is that the photonic crystal fiber refractive index temperature sensor and the measurement system are filled with a temperature-sensitive medium of refractive index in the photonic crystal fiber, and according to the relationship between the light transmission characteristics and the temperature in the photonic crystal fiber, the filler is used The temperature coefficient of the refractive index is different from that of the photonic crystal fiber material. When the temperature changes, the optical field intensity distribution in the photonic crystal fiber changes, causing the change of the transmission loss of light. The temperature is measured by the change of the optical power output by the fiber.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deduction or replacement can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100651755A CN101216354A (en) | 2008-01-11 | 2008-01-11 | Photonic Crystal Fiber Refractive Index Temperature Sensor and Measurement System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100651755A CN101216354A (en) | 2008-01-11 | 2008-01-11 | Photonic Crystal Fiber Refractive Index Temperature Sensor and Measurement System |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101216354A true CN101216354A (en) | 2008-07-09 |
Family
ID=39622832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100651755A Pending CN101216354A (en) | 2008-01-11 | 2008-01-11 | Photonic Crystal Fiber Refractive Index Temperature Sensor and Measurement System |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101216354A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101852656A (en) * | 2010-06-02 | 2010-10-06 | 中国计量学院 | Highly sensitive temperature sensor and device based on partially perfused HiBi-PCF-FLM |
CN102183815A (en) * | 2011-06-14 | 2011-09-14 | 华北电力大学(保定) | Photonic crystal filled with material with refractive index sensitive to temperature and manufacturing method thereof |
CN102243113A (en) * | 2011-06-22 | 2011-11-16 | 天津大学 | Photonic crystal fiber grating temperature sensor with tunable wavelength |
CN102252777A (en) * | 2011-04-21 | 2011-11-23 | 上海理工大学 | Optical fiber temperature detector based on one-dimensional photonic crystal defect mode |
CN102410886A (en) * | 2011-08-30 | 2012-04-11 | 深圳大学 | Fiber temperature sensor and measuring system thereof and signal processing method of system |
CN102466528A (en) * | 2010-11-11 | 2012-05-23 | 香港理工大学 | Method for measuring refractive index and temperature, optical fiber sensor and corresponding manufacturing method |
CN102590932A (en) * | 2012-03-14 | 2012-07-18 | 天津理工大学 | Liquid crystal doped photonic crystal fiber sensing model with novel structure |
CN103149176A (en) * | 2013-02-27 | 2013-06-12 | 大连理工大学 | Multichannel refractive index sensor with integration of chirp two-dimensional photonic crystal waveguide and micro-flow channel |
CN107907237A (en) * | 2017-11-15 | 2018-04-13 | 江西师范大学 | Optical absorption type temperature sensor |
CN113138035A (en) * | 2021-04-22 | 2021-07-20 | 东北大学 | Temperature sensor and temperature measurement system based on optical fiber dispersion wave |
-
2008
- 2008-01-11 CN CNA2008100651755A patent/CN101216354A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101852656A (en) * | 2010-06-02 | 2010-10-06 | 中国计量学院 | Highly sensitive temperature sensor and device based on partially perfused HiBi-PCF-FLM |
CN101852656B (en) * | 2010-06-02 | 2012-04-25 | 中国计量学院 | Temperature sensor based on partially perfused HiBi-PCF-FLM |
CN102466528A (en) * | 2010-11-11 | 2012-05-23 | 香港理工大学 | Method for measuring refractive index and temperature, optical fiber sensor and corresponding manufacturing method |
CN102252777A (en) * | 2011-04-21 | 2011-11-23 | 上海理工大学 | Optical fiber temperature detector based on one-dimensional photonic crystal defect mode |
CN102252777B (en) * | 2011-04-21 | 2012-12-05 | 上海理工大学 | Optical fiber temperature detector based on one-dimensional photonic crystal defect mode |
CN102183815A (en) * | 2011-06-14 | 2011-09-14 | 华北电力大学(保定) | Photonic crystal filled with material with refractive index sensitive to temperature and manufacturing method thereof |
CN102243113A (en) * | 2011-06-22 | 2011-11-16 | 天津大学 | Photonic crystal fiber grating temperature sensor with tunable wavelength |
CN102410886A (en) * | 2011-08-30 | 2012-04-11 | 深圳大学 | Fiber temperature sensor and measuring system thereof and signal processing method of system |
CN102410886B (en) * | 2011-08-30 | 2014-02-05 | 深圳大学 | Fiber temperature sensor and measuring system thereof and signal processing method of system |
CN102590932A (en) * | 2012-03-14 | 2012-07-18 | 天津理工大学 | Liquid crystal doped photonic crystal fiber sensing model with novel structure |
CN103149176A (en) * | 2013-02-27 | 2013-06-12 | 大连理工大学 | Multichannel refractive index sensor with integration of chirp two-dimensional photonic crystal waveguide and micro-flow channel |
CN103149176B (en) * | 2013-02-27 | 2014-10-15 | 大连理工大学 | A chirped two-dimensional photonic crystal waveguide integrated microchannel multi-channel refractive index sensor |
CN107907237A (en) * | 2017-11-15 | 2018-04-13 | 江西师范大学 | Optical absorption type temperature sensor |
CN113138035A (en) * | 2021-04-22 | 2021-07-20 | 东北大学 | Temperature sensor and temperature measurement system based on optical fiber dispersion wave |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101216354A (en) | Photonic Crystal Fiber Refractive Index Temperature Sensor and Measurement System | |
Lu et al. | Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid | |
CN102226725B (en) | Inner-wall waveguide long-time cycle fiber grating sensor | |
CN102269700B (en) | Capillary fiber refractive index sensor | |
CN103293131A (en) | Quick-response conical micro-nano optical fiber humidity sensor and preparation method thereof | |
Bozolan et al. | Temperature sensing using colloidal-core photonic crystal fiber | |
CN205861241U (en) | A kind of based on spherical structure with the fibre optic temperature sensor of hollow optic fibre | |
CN208091588U (en) | Micro-nano long period fiber-optical grating temperature sensor based on glass capillary encapsulation | |
CN205262638U (en) | A two core photonic crystal optical fiber sensor for being directed at temperature and simultaneous measurement of meeting an emergency | |
CN104614092A (en) | Modular interface temperature sensor of liquid-core optical fiber | |
CN113324570B (en) | Sensing device based on balloon-shaped optical fiber MZI and manufacturing method of balloon-shaped optical fiber MZI sensor | |
CN101614661A (en) | Microprobe type hygrometer based on Fabry-Perot interferometer and its manufacturing method | |
CN203587177U (en) | Optical fiber liquid level sensor | |
CN216815793U (en) | An efficient grating temperature measuring instrument | |
CN108333144A (en) | A kind of self-reference micron plastic optical fiber liquid refractive index sensor of coupled structure | |
CN202041222U (en) | A waveguide long-period fiber grating sensor in the wall | |
CN110207846A (en) | A kind of capillary fiber temperature sensor | |
CN102944328A (en) | Preparation method and measurement device for temperature sensor insensitive to refractive index | |
Li et al. | Dual-parameter optical fiber sensor for temperature and humidity based on PMMA-microsphere and FBG composite structure | |
CN202041465U (en) | A Capillary Optical Fiber Refractive Index Sensor | |
CN209802407U (en) | Three-core optical fiber magnetic field and temperature sensing structure with magnetic fluid and side surface decovering layers | |
CN108318452A (en) | A kind of cone of intensity modulation type four light fibre humidity transducer | |
CN105181170B (en) | A kind of temperature sensor of the photonic crystal fiber Mach-Zehnder interferometer based on corrosion treatment | |
Yuan et al. | A twin-core and dual-hole fiber design and fabrication | |
Wang et al. | High-sensitivity liquid level sensor based on the balloon-shaped fiber optic MZI |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20080709 |