CN101213318A - 用于生长单晶金属的方法和装置 - Google Patents

用于生长单晶金属的方法和装置 Download PDF

Info

Publication number
CN101213318A
CN101213318A CNA2006800243420A CN200680024342A CN101213318A CN 101213318 A CN101213318 A CN 101213318A CN A2006800243420 A CNA2006800243420 A CN A2006800243420A CN 200680024342 A CN200680024342 A CN 200680024342A CN 101213318 A CN101213318 A CN 101213318A
Authority
CN
China
Prior art keywords
metal sample
heating
metal
sample
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800243420A
Other languages
English (en)
Other versions
CN101213318B (zh
Inventor
J·R·丘利克
E·M·塔尔夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Texas System
Original Assignee
TAXAS SYSTEM, University of, Regents of
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAXAS SYSTEM, University of, Regents of filed Critical TAXAS SYSTEM, University of, Regents of
Publication of CN101213318A publication Critical patent/CN101213318A/zh
Application granted granted Critical
Publication of CN101213318B publication Critical patent/CN101213318B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/04Isothermal recrystallisation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/20Heating of the molten zone by induction, e.g. hot wire technique
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/02Production of homogeneous polycrystalline material with defined structure directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

公开了生长金属大单晶的方法。最初在非氧化性环境中将多晶态的金属样品加热。然后将最小塑性应变施加于加热的金属样品,以引发加热的金属样品内选择的晶粒生长。随后将另外的塑性应变施加于加热的金属样品,以使选择的晶粒蔓延生长,变成大单晶。

Description

用于生长单晶金属的方法和装置
相关专利申请
本专利申请要求2005年5月12日提交的共同待审的美国临时申请序号60/680,273的优先权。
发明背景
1、技术领域
本发明总体涉及晶体生长,特别是涉及用于生长金属单晶的方法和装置。还更尤其是,本发明涉及通过塑性应变生长大单晶金属的方法和装置。
2、相关领域的描述
由于晶界的存在,多晶的金属经常具有有限的高温抗蠕变性和低温脆性。相反,由于不存在晶界,单晶金属经常具有良好的机械特性。因此,对于许多应用,相对于多晶的金属优选单晶金属。
当前用于制备单晶金属的技术主要基于以下五种基本方法之一:
(a)通过各种沉淀处理,缓慢生长薄膜单晶(目前在半导体工业中使用);
(b)使用晶种,从熔化金属缓慢生长大量的单晶(即Czochralski方法、Bridgman方法或改良的Czochralski方法和Bridgman方法);
(c)通过区域熔化缓慢产生大量的单晶(又称浮区法,在固化之后使用移动的加热区,以进行多晶金属的局部熔化);
(d)通过区域退火产生大量的单晶,其中加热区域沿多晶的金属传递以局部地产生单晶晶粒的再结晶、晶粒长大和晶界迁移;和
(e)通过掺杂(alloying)形成氧化物的元素,然后在低温下变形,和然后在超过1800℃的温度下退火,产生难熔金属的大量单晶。
在制备期间,所有的上述方法一般具有很慢的生成速率,和对于可以产生大单晶的那些方法,例如方法(b)-(e),通常需要很高的温度。因此,期望提供用于产生大单晶金属的改进方法,该方法具有更快的生成速率和比上述那些方法更低的温度。
发明概述
依照本发明优选的实施方案,最初在非氧化性环境中将多晶态的金属样品加热。然后将最小塑性应变施加于加热的金属样品,以引发加热的金属样品内选择的晶粒生长。随后将另外的塑性应变施加于加热的金属样品,以使选择的晶粒蔓延生长,变成大单晶金属。
在下面的详述中,本发明的全部特征和优点将变得显而易见。
附图简述
当结合附图阅读时,通过参考以下示例性的实施方案的详述,会很好地理解发明本身和优选的使用方式、进一步的目的及其优势,其中:
图1为依照本发明优选的实施方案,用于生长大单晶金属的装置简图;
图2为依照本发明优选的实施方案,使用图1的装置来生长大单晶金属的方法的高水平逻辑流程图。
图3为依照本发明优选的实施方案,用于生长单晶金属样品的微结构处理图;和
图4为依照本发明优选的实施方案产生的钼片样品的微结构照片。
优选的实施方案详述
现在参考附图,特别是参考图1,其中描绘了依照本发明优选的实施方案,用于生长大单晶金属的装置的简图。如所示,金属样品11位于热源12a和12b之间。另外,金属样品11的两个远端固定到能够向金属样品11施加塑性应变的机械装置(未显示)上。金属样品11优选为再结晶或处理条件下的多晶样品。金属样品11可为各种形式,例如片、棒、板、线、管等。金属样品11可为高纯度或工业纯度或可含有合金添加剂(alloying additions)。
现在参考图2,其中阐述了依照本发明优选的实施方案,使用图1的装置来生长大单晶金属的方法的高水平逻辑流程图。最初,通过热源12a-12b将金属样品11加热至金属样品11的熔融温度的约60%(即同系温度(homologous temperature)为0.6)或更高,如方框21所示。可以通过许多加热方法实现金属样品11的加热。例如,可由热源12a-12b通过辐射传热、传导传热或对流传热,来加热金属样品11。也可以通过辐射加热(例如用红外线灯)、感应加热或直接电阻加热(将电流穿过金属样品11)来将金属样品11加热。可在各种非氧化性环境,例如真空、惰性气体或还原性气氛中进行金属样品11的加热。
然后,通过机械装置将最小的初始塑性应变施加于加热的金属样品11,如方框22所描述。需要最小的初始塑性应变以引发金属样品11内的选择的晶粒生长。最小的初始塑性应变量为金属样品11的温度、微结构和合金组成的函数。最小初始塑性应变的范围优选在约4%至40%之间。
随后将另外的塑性应变施加于加热的金属样品11,以使选择的晶粒蔓延生长,形成大单晶,如方框23所示。需要另外的塑性应变以驱使选择的晶粒生长前沿消耗被处理的多晶样品。另外的塑性应变的速率可以覆盖宽范围,但真应变速率优选大于10-5s-1并小于10-1s-1
机械装置能够以控制的方式,拉伸加热的金属样品11。导致塑性应变所需要的在金属样品11上的应力取决于金属样品11的期望塑性应变速率、温度、微结构和合金组成。
也可以通过向金属样品11的两个远端施加位移,因此以期望速率拉伸金属样品11来产生塑性应变。通过以快于另一端的速率移动金属样品11的一端,可以连续将样品材料进料通过加工区。通过以这样的方式处理,可以使生长前沿沿着金属样品11的长度传递,以产生长单晶。
现在参考图3,其中图示依照本发明优选的实施方案,用于生长单晶金属样品的微结构处理。高温下,在塑性应变下选择的单晶晶粒(即晶体)消耗样品的宽度和厚度。然后单晶晶粒的边界(即生长前沿)沿着金属样品的长度发展,消耗多晶材料。高温下,通过塑性应变驱动生长前沿的运动。留在后面的材料是单晶,该单晶从预先选择的晶粒生长。如前所述,驱动选择的晶粒的生长前沿所需要的另外应变量为金属样品的温度、微结构和合金组成的函数。
生长成为最终单晶的晶粒的选择,可以通过许多机制发生。最简单的是自然选择方法,通过该方法,多晶样品内的有利取向的单晶晶粒比周围的晶粒以更快的速率生长。通过多晶样品中晶体结构的演变可以影响这样的自然选择过程。附着于多晶样品的晶种,例如通过以选择的方向将多晶样品熔接到晶种上,可作为选择的晶粒,由该选择的晶粒生长单晶金属。最终的单晶金属的晶体取向由选择的晶粒控制,由该选择的晶粒生长该单晶金属。
一旦选择的晶粒的生长前沿通过期望的金属样品长度,单晶金属的生成就结束了。因为在处理期间,生成的单晶可以塑性变形,所以生成的单晶可包含一些位错密度和一些位错结构,例如亚晶粒。这样的缺陷不会显著影响单晶的大多数期望的性质。大多数缺陷可通过在高温下退火来消除。
已通过将片状工业纯钼在1400℃-1800℃的高温下加热,同时以每秒1.0×10-6至1.0×10-4的真应变速率机械拉伸,成功地证明了本发明的方法。在上述温度范围和上述应变速率范围内进行的试验中,在累积应变为4%至40%之后,产生了单晶从多晶钼片的生长。
现在参考图4,其中描述了依照本发明优选的实施方案,在1640℃下,以1×10-4s-1的塑性真应变速率处理的钼片样品的微结构照片。如所示,钼片样品表现为从具有平均粒径小于70μm的晶粒的多晶片生长的大单晶(约5mm宽,15mm长)。单晶(左侧)终止于较宽的多晶区域(右侧)。虽然只使用了片状钼来阐述本发明,但是本领域的技术人员可以理解,本发明的方法也适用于任何其它形式的其它金属。
如所述,本发明提供生长大单晶金属的方法和装置。本发明的方法允许使用常规设备,以有成本效益的方式产生大单晶金属。相对于当前的制备技术,本发明的方法具有简单和快速的优点。本发明的方法也能够确保比其它现有方法更低温度的大量的单晶制备。
虽然已经参考优选的实施方案具体显示和描述了本发明,但本领域的技术人员可以理解,可在形式和细节上进行各种变化,而不背离本发明的宗旨和范围。

Claims (20)

1.一种用于生长大单晶金属的方法,所述方法包括:
在非氧化性环境中加热多晶态的金属样品;
将最小塑性应变施加于所述加热的金属样品,以引发所述加热的金属样品内选择的晶粒生长;和
将另外的塑性应变施加于所述加热的金属样品,以使所述选择的晶粒蔓延生长,形成大单晶金属。
2.权利要求1的方法,其中所述金属样品为选自钼、钨、铌或钽的难熔金属。
3.权利要求1的方法,其中所述金属样品为含有合金添加剂的难熔金属。
4.权利要求1的方法,其中所述非氧化性环境为真空、惰性气体或还原性气氛。
5.权利要求1的方法,其中所述加热通过外部热源经辐射、传导或对流提供。
6.权利要求1的方法,其中所述加热通过红外线灯辐射加热、感应加热或将电流通过所述金属样品经直接电阻加热提供。
7.权利要求1的方法,其中所述金属样品在约0.55至0.8Tm之间加热,其中Tm为所述金属样品的熔融温度。
8.权利要求1的方法,其中所述塑性应变在张力、压力、剪切力或其组合下。
9.权利要求1的方法,其中所述选择的晶粒自然选自再结晶微结构、织构微结构或晶种。
10.权利要求1的方法,其中所述方法还包括为了以连续的方式产生所述金属样品的长单晶,在应变期间将所述金属样品通过加热区或将加热区沿着所述金属样品传递。
11.权利要求1的方法,其中所述金属样品为钼,且在1400℃℃至1800℃的温度下所述塑性应变大于4%。
12.一种用于生长大单晶金属的装置,所述装置包含:
用于在非氧化性环境中加热多晶态的金属样品的加热手段;和
机械装置,该装置用于将最小塑性应变施加于所述加热的金属样品,以引发所述加热的金属样品内选择的晶粒生长,并用于将另外的塑性应变施加于所述加热的金属样品,以使选择的晶粒蔓延生长,形成大单晶金属。
13.权利要求12的装置,其中所述金属样品为选自钼、钨、铌或钽的难熔金属。
14.权利要求12的装置,其中所述金属样品为含有合金添加剂的难熔金属。
15.权利要求12的装置,其中所述非氧化性环境为真空、惰性气体或还原性气氛。
16.权利要求12的装置,其中所述加热手段通过辐射、传导或对流向所述金属样品提供热量。
17.权利要求12的装置,其中所述加热手段为红外线灯。
18.权利要求12的装置,其中所述金属样品在约0.55至0.8Tm之间加热,其中Tm为所述金属样品的熔融温度。
19.权利要求12的装置,其中所述塑性应变在张力、压力、剪切力或其组合下。
20.权利要求12的装置,其中所述选择的晶粒自然选自再结晶微结构、织构微结构或晶种。
CN2006800243420A 2005-05-12 2006-05-03 用于生长单晶金属的方法和装置 Expired - Fee Related CN101213318B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US68027305P 2005-05-12 2005-05-12
US60/680,273 2005-05-12
PCT/US2006/016771 WO2006124266A2 (en) 2005-05-12 2006-05-03 Method and apparatus for growing single-crystal metals

Publications (2)

Publication Number Publication Date
CN101213318A true CN101213318A (zh) 2008-07-02
CN101213318B CN101213318B (zh) 2012-10-17

Family

ID=37431776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800243420A Expired - Fee Related CN101213318B (zh) 2005-05-12 2006-05-03 用于生长单晶金属的方法和装置

Country Status (6)

Country Link
US (1) US7922812B2 (zh)
EP (1) EP1888802B1 (zh)
JP (1) JP5106387B2 (zh)
KR (1) KR101009314B1 (zh)
CN (1) CN101213318B (zh)
WO (1) WO2006124266A2 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038016A (zh) * 2010-05-21 2013-04-10 伊利诺斯工具制品有限公司 包括感应加热系统的焊接系统、感应加热系统、和对焊接或切割工件加热的方法
US9913320B2 (en) 2014-05-16 2018-03-06 Illinois Tool Works Inc. Induction heating system travel sensor assembly
US10244588B2 (en) 2014-10-14 2019-03-26 Illinois Tool Works Inc. Hybrid induction heating/welding assembly
US10462853B2 (en) 2013-05-28 2019-10-29 Illinois Tool Works Inc. Induction pre-heating and butt welding device for adjacent edges of at least one element to be welded
US10638554B2 (en) 2014-12-23 2020-04-28 Illinois Tool Works Inc. Systems and methods for interchangeable induction heating systems
US10863591B2 (en) 2014-05-16 2020-12-08 Illinois Tool Works Inc. Induction heating stand assembly
US11076454B2 (en) 2014-05-16 2021-07-27 Illinois Tool Works Inc. Induction heating system temperature sensor assembly
US11197350B2 (en) 2014-05-16 2021-12-07 Illinois Tool Works Inc. Induction heating system connection box
US11510290B2 (en) 2014-05-16 2022-11-22 Illinois Tool Works Inc. Induction heating system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006124266A2 (en) * 2005-05-12 2006-11-23 The Board Of Regents, The University Of Texas System Method and apparatus for growing single-crystal metals
KR101878465B1 (ko) * 2016-07-12 2018-07-13 기초과학연구원 단결정 금속포일, 및 이의 제조방법
WO2018012864A1 (ko) * 2016-07-12 2018-01-18 기초과학연구원 단결정 금속포일, 및 이의 제조방법
KR102396215B1 (ko) * 2017-11-28 2022-05-10 기초과학연구원 단결정 금속포일 및 이의 제조방법
CN108950684B (zh) * 2018-06-08 2022-02-11 中国科学院物理研究所 一种制备单晶金属箔的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3435668A (en) * 1966-08-26 1969-04-01 Us Interior Method of determining preferred orientation in metals
US3507616A (en) * 1967-08-14 1970-04-21 Westinghouse Electric Corp Preparation of large crystal refractory metal monocarbides
DE2749836C3 (de) * 1977-11-08 1980-07-03 Dornier System Gmbh, 7990 Friedrichshafen Zerstörungsfreie Prüfung der Ermüdung von Bauteilen
US4487651A (en) * 1983-04-06 1984-12-11 Duracell Inc. Method for making irregular shaped single crystal particles and the use thereof in anodes for electrochemical cells
US5654246A (en) * 1985-02-04 1997-08-05 Lanxide Technology Company, Lp Methods of making composite ceramic articles having embedded filler
US5340655A (en) * 1986-05-08 1994-08-23 Lanxide Technology Company, Lp Method of making shaped ceramic composites with the use of a barrier and articles produced thereby
US5205872A (en) * 1988-12-10 1993-04-27 Kawasaki Steel Corporation Method of producing crystal bodies having controlled crystalline orientation
US5221558A (en) * 1990-01-12 1993-06-22 Lanxide Technology Company, Lp Method of making ceramic composite bodies
JP3523986B2 (ja) * 1997-07-02 2004-04-26 シャープ株式会社 多結晶半導体の製造方法および製造装置
US20040047758A1 (en) * 2000-01-05 2004-03-11 Northwestern University Method for enhancement of grain boundary cohesion in crystalline materials and compositions of matter therefor
EP1391942A4 (en) * 2001-05-31 2007-08-15 Nat Inst Of Advanced Ind Scien TUNNEL MAGNETIC RESISTANCE ELEMENT
RU2213149C2 (ru) * 2001-10-25 2003-09-27 Марков Геннадий Александрович Способ изготовления монокристаллической металлической проволоки
WO2003040422A1 (en) * 2001-11-05 2003-05-15 Johns Hopkins University Alloy and method of producing the same
US6875661B2 (en) * 2003-07-10 2005-04-05 International Business Machines Corporation Solution deposition of chalcogenide films
CN100490205C (zh) * 2003-07-10 2009-05-20 国际商业机器公司 淀积金属硫族化物膜的方法和制备场效应晶体管的方法
WO2006124266A2 (en) * 2005-05-12 2006-11-23 The Board Of Regents, The University Of Texas System Method and apparatus for growing single-crystal metals
US20090011925A1 (en) * 2007-07-06 2009-01-08 Larry Gordon Felix Method for producing catalytically active glass-ceramic materials, and glass-ceramics produced thereby
GB0813112D0 (en) * 2008-07-18 2008-08-27 Rolls Royce Plc Metal casting

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072035B2 (en) 2010-05-21 2021-07-27 Illinois Tool Works Inc. Auxiliary welding heating system
CN103038016B (zh) * 2010-05-21 2015-12-09 伊利诺斯工具制品有限公司 包括感应加热系统的焊接系统、感应加热系统、和对焊接或切割工件加热的方法
CN103038016A (zh) * 2010-05-21 2013-04-10 伊利诺斯工具制品有限公司 包括感应加热系统的焊接系统、感应加热系统、和对焊接或切割工件加热的方法
US10462853B2 (en) 2013-05-28 2019-10-29 Illinois Tool Works Inc. Induction pre-heating and butt welding device for adjacent edges of at least one element to be welded
US9913320B2 (en) 2014-05-16 2018-03-06 Illinois Tool Works Inc. Induction heating system travel sensor assembly
US11510290B2 (en) 2014-05-16 2022-11-22 Illinois Tool Works Inc. Induction heating system
US11197350B2 (en) 2014-05-16 2021-12-07 Illinois Tool Works Inc. Induction heating system connection box
US10863591B2 (en) 2014-05-16 2020-12-08 Illinois Tool Works Inc. Induction heating stand assembly
US11076454B2 (en) 2014-05-16 2021-07-27 Illinois Tool Works Inc. Induction heating system temperature sensor assembly
US10244588B2 (en) 2014-10-14 2019-03-26 Illinois Tool Works Inc. Hybrid induction heating/welding assembly
US11172549B2 (en) 2014-10-14 2021-11-09 Illinois Tool Works Inc. High-productivity hybrid induction heating/welding assembly
US10440784B2 (en) 2014-10-14 2019-10-08 Illinois Tool Works Inc. Reduced-distortion hybrid induction heating/welding assembly
US10638554B2 (en) 2014-12-23 2020-04-28 Illinois Tool Works Inc. Systems and methods for interchangeable induction heating systems

Also Published As

Publication number Publication date
JP2008540319A (ja) 2008-11-20
EP1888802A2 (en) 2008-02-20
WO2006124266A3 (en) 2007-02-08
KR20080019224A (ko) 2008-03-03
JP5106387B2 (ja) 2012-12-26
US7922812B2 (en) 2011-04-12
CN101213318B (zh) 2012-10-17
EP1888802B1 (en) 2013-12-18
EP1888802A4 (en) 2009-07-01
US20090120351A1 (en) 2009-05-14
WO2006124266A2 (en) 2006-11-23
KR101009314B1 (ko) 2011-01-18

Similar Documents

Publication Publication Date Title
CN101213318B (zh) 用于生长单晶金属的方法和装置
CN101305116B (zh) 晶体生长的系统和方法
JP2008540319A5 (zh)
US20110259262A1 (en) Systems and methods for growing monocrystalline silicon ingots by directional solidification
CN102268732B (zh) 单晶及其制造方法
CN101796227B (zh) 碳化硅单晶的生长方法
Fujiwara et al. In-situ observations of melt growth behavior of polycrystalline silicon
CN109112349A (zh) 一种CuAlMn形状记忆合金及其制备方法
JP2018052811A (ja) 溶融体から水平リボンを成長させ、溶融体からの第1材料のリボンを形成する方法
Boiton et al. Bridgman crystal growth and defect formation in GaSb
Harman et al. Preparation and Some Characteristics of Single‐Crystal Indium Phosphide
CN104818519A (zh) 一种改善非线性光学晶体ZnGeP2性能的方法
Wagner et al. Si1− xGex (x≥ 0.2) crystal growth in the absence of a crucible
Vishnuwaran et al. Effect of titanium carbide heat exchanger block and retort on oxygen impurities in Mc-silicon: Numerical modelling
Novoselov Growth of large sapphire crystals: Lessons learned
Crone Compositional variation and precipitate structures of copper–beryllium single crystals grown by the Bridgman technique
US3771970A (en) Method of producing cadmium telluride crystals
JPH11274537A (ja) 大粒径多結晶シリコンの製造法
Shimanskii et al. Effect of Crystallization Front Shape on the Dislocation Density in Germanium Single Crystals
Adámek et al. Melt growth of non-isoaxial bicrystals of an Fe–3% Si alloy
He et al. A facile method to pull crystals
CN117684250A (zh) 一种实现窄峰型温场生长CdZnTe单晶体的装置及方法
JPH06211599A (ja) βーBaB2O4単結晶の製造方法
Huang et al. Vertical Bridgman growth of AlxGa1− xSb single crystals
Wang et al. Effects of the Mushy Zone on the Temperature Field and the Flow Field During Gainsb Crystal Growth with the Traveling Heater Method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: INTELLECTUAL VENTURES HOLDING

Free format text: FORMER OWNER: TEXAS SYSTEM UNIVERSITY COUNCIL

Effective date: 20101130

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: TEXAS, USA TO: NEVADA, USA

TA01 Transfer of patent application right

Effective date of registration: 20101130

Address after: Nevada

Applicant after: BOARD OF REGENTS OF THE University OF TEXAS

Address before: Texas, USA

Applicant before: BOARD OF REGENTS THE University OF TEXAS SYSTEM

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121017

CF01 Termination of patent right due to non-payment of annual fee