CN101209404A - 纳米薄膜的制备方法 - Google Patents

纳米薄膜的制备方法 Download PDF

Info

Publication number
CN101209404A
CN101209404A CNA2006101579924A CN200610157992A CN101209404A CN 101209404 A CN101209404 A CN 101209404A CN A2006101579924 A CNA2006101579924 A CN A2006101579924A CN 200610157992 A CN200610157992 A CN 200610157992A CN 101209404 A CN101209404 A CN 101209404A
Authority
CN
China
Prior art keywords
nano
film
nano particle
preparation
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101579924A
Other languages
English (en)
Other versions
CN100591412C (zh
Inventor
张丽娜
张瑶俊
任意
姜开利
李群庆
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN200610157992A priority Critical patent/CN100591412C/zh
Priority to US11/982,487 priority patent/US9555562B2/en
Publication of CN101209404A publication Critical patent/CN101209404A/zh
Application granted granted Critical
Publication of CN100591412C publication Critical patent/CN100591412C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种纳米薄膜的制备方法,包括:配制一定浓度的纳米颗粒悬浊液,悬浊液包括有机溶剂和分散在有机溶剂内的纳米颗粒;及将纳米颗粒悬浊液滴入表面张力大、比纳米颗粒比重大、且与纳米颗粒不浸润的液体,在液体表面形成一层纳米颗粒薄膜。

Description

纳米薄膜的制备方法
技术领域
本发明涉及一种纳米薄膜的制备方法,特别涉及一种由纳米量级的颗粒(晶粒)构成的纳米颗粒薄膜的制备方法。
背景技术
纳米薄膜是指尺寸在纳米量级的颗粒(晶粒)构成的薄膜或者层厚在纳米量级的单层或多层薄膜,通常也称作纳米颗粒薄膜和纳米多层薄膜。由于纳米薄膜具有独特的光学、力学、电磁学与气敏特性,其在重工业、轻工业、军事、石化等领域呈现了广泛的应用前景,主要应用于场发射电子源、光电和生物传感器、透明导电体、电池电极、吸波材料、水净化材料等器件中。目前,较为常用的制备纳米薄膜的方法为溶胶-凝胶法、L-B膜法、电化学沉积法、化学气相沉积、低能团簇沉积、真空蒸发法、溅射沉积法、分子与原子束外延、分子自组装等,但是,以上方法制备程较为复杂、效率较低;同时,在制备过程中纳米薄膜的厚度较难控制。
因此,有必要提供一种纳米薄膜的制备方法,该制备方法较为简单、效率较高且制备过程中纳米薄膜的厚度易于控制。
发明内容
下面将以实施例说明一种纳米薄膜的制备方法,该制备方法较为简单、效率较高且制备过程中纳米薄膜的厚度易于控制。
一种纳米薄膜的制备方法,包括:配制一定浓度的纳米颗粒悬浊液,悬浊液包括有机溶剂和分散在有机溶剂内的纳米颗粒;及将纳米颗粒悬浊液滴入表面张力大、比纳米颗粒比重大、且与纳米颗粒不浸润的液体,在液体表面形成一层纳米颗粒薄膜。
本实施例利用液体表面悬浮技术制备厚度可以控制的大面积纳米薄膜,方法较为简单且效率较高。
附图说明
图1是本发明实施例纳米薄膜的制备方法的流程示意图。
图2是本发明实施例获得的多壁碳纳米管薄膜的透射电子显微镜照片。
图3是本发明实施例获得的单壁碳纳米管薄膜的透射电子显微镜照片。
具体实施方式
以下将结合附图详细说明本实施例纳米薄膜的制备方法。
请参阅图1,本实施例纳米薄膜的制备方法主要包括以下步骤:
步骤(一),配制一定浓度的纳米颗粒悬浊液;
其中,纳米颗粒悬浊液包括有机溶剂和分散在有机溶剂内的纳米颗粒。有机溶剂为在纯水中有一定的溶解度或与纯水互溶、密度比纯水小、与纳米颗粒浸润的液体,例如,乙醇、丙酮、甲醇、异丙醇、乙酸乙酯等。纳米颗粒为与水不浸润的纳米材料,优选为碳纳米管或碳黑,碳纳米管可以为单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。纳米颗粒的长度优选为几微米至几十微米。该纳米颗粒悬浊液的配制过程为:将一定量的纳米颗粒放入有机溶剂中;超声分散至少5分钟即得到纳米颗粒均匀分散的纳米颗粒悬浊液。
步骤(二),将纳米颗粒悬浊液滴入表面张力大、比纳米颗粒比重大、且与纳米颗粒不浸润的液体,在液体表面形成一层纳米颗粒薄膜。
其中,比纳米颗粒比重大且与纳米颗粒不浸润的液体优选超纯水或者盐的超纯水溶液。
在上述步骤中,通过改变纳米颗粒悬浊液的浓度,可以控制形成的纳米薄膜的厚度。如,当纳米颗粒悬浊液中纳米颗粒的质量百分比浓度为0.1%~1%时,可以得到厚度为几十纳米的纳米薄膜;当纳米颗粒悬浊液中纳米颗粒的质量百分比浓度为1%~10%时,可以得到厚度为几百纳米至几微米的纳米薄膜。请参阅图2和图3,图2为由本实施例得到的多壁碳纳米管薄膜的透射电子显微镜照片,图3为本实施例得到的单壁碳纳米管薄膜的透射电子显微镜照片。以下为具体实验步骤:
实验一:
(1)取提纯后的单壁碳纳米管,其直径约为8纳米,长度约为几十微米,将单壁纳米管与无水乙醇配制成质量百分比浓度约为0.25%的单壁碳纳米管/乙醇悬浊液;
(2)将配制好的碳纳米管/乙醇悬浊液进行超声振荡分散,分散时间约为5分钟;
(3)将经过超声振荡的碳纳米管/乙醇悬浊液用滴管滴入超纯水中,滴入位置在水面上方、水面、水下均可;
(4)随着碳纳米管/乙醇悬浊液的滴入,悬浊液在超纯水中发生剧烈扩散运动,最终在水面形成单壁碳纳米管薄膜,形成的单壁碳纳米管薄膜厚度约为几十纳米,透光性好。
实验二:
(1)取碳黑,与无水乙醇配制成浓度5%的碳黑/乙醇悬浊液;
(2)将配制好的碳黑/乙醇悬浊液进行超声振荡,时间约为10分钟;
(3)将经过超声振荡的碳黑/乙醇悬浊液用滴管滴入超纯水中;
(4)随着碳黑/乙醇悬浊液的滴入,悬浊液在超纯水中的剧烈扩散运动,最终在水面形成碳黑薄膜,形成的碳黑薄膜厚度约几百纳米。
下面以单壁碳纳米管颗粒和乙醇为例,对本发明实施例形成纳米薄膜的原理进行简单说明:
将单壁碳纳米管颗粒放入乙醇中,由于乙醇对单壁碳纳米管是浸润的,在经过超声处理后,单壁碳纳米管与乙醇形成单壁碳纳米管悬浊液。在将单壁碳纳米管悬浊液滴入超纯水中时,乙醇带动单壁碳纳米管运动并由滴入点向四周扩散。在扩散过程中,由于单壁碳纳米管的比重小于超纯水,单壁碳纳米管浮在超纯水的表面,又由于单壁碳纳米管在超纯水中不浸润,在乙醇中分散的单壁碳纳米管因乙醇的扩散失去了原有的载体后重新聚集在一起,重新聚集的单壁碳纳米管因超纯水的表面张力形成一层单壁碳纳米管薄膜。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (7)

1.一种纳米薄膜的制备方法,包括:配制一定浓度的纳米颗粒悬浊液,悬浊液包括有机溶剂和分散在有机溶剂内的纳米颗粒;以及,将纳米颗粒悬浊液滴入表面张力大、比纳米颗粒比重大、且与纳米颗粒不浸润的液体,在液体表面形成一层面积均匀的纳米颗粒薄膜。
2.如权利要求1所述的纳米薄膜的制备方法,其特征在于:所述的纳米颗粒为碳纳米管或碳墨。
3.如权利要求2所述的纳米薄膜的制备方法,其特征在于:所述的碳纳米管为单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。
4.如权利要求1所述的纳米薄膜的制备方法,其特征在于:所述的纳米颗粒悬浊液的配制过程为:将一定量的纳米颗粒放入有机溶剂中;以及,超声分散至少5分钟即得到纳米颗粒均匀分散的纳米颗粒悬浊液。
5.如权利要求4所述的纳米薄膜的制备方法,其特征在于:所述的纳米颗粒悬浊液中纳米颗粒的质量百分比浓度为0.1%~10%。
6.如权利要求4所述的纳米薄膜的制备方法,其特征在于:所述有机溶剂为乙醇、丙酮、甲醇、异丙醇或乙酸乙酯。
7.如权利要求1所述的纳米薄膜的制备方法,其特征在于:所述的比纳米颗粒比重大且与纳米颗粒不浸润的液体为超纯水或盐的超纯水溶液。
CN200610157992A 2006-12-27 2006-12-27 纳米薄膜的制备方法 Active CN100591412C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200610157992A CN100591412C (zh) 2006-12-27 2006-12-27 纳米薄膜的制备方法
US11/982,487 US9555562B2 (en) 2006-12-27 2007-11-02 Method for making nano-scale film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200610157992A CN100591412C (zh) 2006-12-27 2006-12-27 纳米薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN101209404A true CN101209404A (zh) 2008-07-02
CN100591412C CN100591412C (zh) 2010-02-24

Family

ID=39582784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610157992A Active CN100591412C (zh) 2006-12-27 2006-12-27 纳米薄膜的制备方法

Country Status (2)

Country Link
US (1) US9555562B2 (zh)
CN (1) CN100591412C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956261A (zh) * 2018-09-07 2018-12-07 香港理工大学 一种沥青薄膜的制备方法
CN110406140A (zh) * 2019-08-07 2019-11-05 电子科技大学 基于液膜破裂自组装的柔性电致变色图形化薄膜的制备方法和薄膜
CN110589804A (zh) * 2019-09-04 2019-12-20 北京华碳元芯电子科技有限责任公司 一种提拉法制备碳纳米管薄膜的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107163268B (zh) * 2017-06-13 2020-11-20 中国科学院宁波材料技术与工程研究所 一种空心碗状纳米二氧化硅二维阵列结构及其制备和应用
CN114621621A (zh) * 2020-12-14 2022-06-14 清华大学 光吸收体预制液及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2729549A (en) * 1950-09-29 1956-01-03 Shell Dev Method and apparatus for contacting and separating liquid phases by settling
US3148140A (en) * 1962-10-10 1964-09-08 Dresser Ind Process for removing carbon particles from water
US4728576A (en) * 1987-04-10 1988-03-01 Hoechst Celanese Corporation Langmuir-Blodgett coating process
CN1164486C (zh) * 2002-04-12 2004-09-01 上海交通大学 操纵碳纳米管选择性取向排布于基底表面的方法
CN100591811C (zh) 2004-04-15 2010-02-24 清华大学 纺丝方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956261A (zh) * 2018-09-07 2018-12-07 香港理工大学 一种沥青薄膜的制备方法
CN110406140A (zh) * 2019-08-07 2019-11-05 电子科技大学 基于液膜破裂自组装的柔性电致变色图形化薄膜的制备方法和薄膜
CN110406140B (zh) * 2019-08-07 2021-08-03 电子科技大学 基于液膜破裂自组装的柔性电致变色图形化薄膜的制备方法和薄膜
CN110589804A (zh) * 2019-09-04 2019-12-20 北京华碳元芯电子科技有限责任公司 一种提拉法制备碳纳米管薄膜的方法

Also Published As

Publication number Publication date
CN100591412C (zh) 2010-02-24
US9555562B2 (en) 2017-01-31
US20080157435A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
Deline et al. Influence of oxygen-containing functional groups on the environmental properties, transformations, and toxicity of carbon nanotubes
Sajjad et al. Study of graphene oxide structural features for catalytic, antibacterial, gas sensing, and metals decontamination environmental applications
Giubileo et al. Field emission from carbon nanostructures
Lawal Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors
Han et al. Clay minerals affect the stability of surfactant-facilitated carbon nanotube suspensions
Zhang et al. Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media
Hyung et al. Natural organic matter stabilizes carbon nanotubes in the aqueous phase
Grossiord et al. Time-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV− Visible spectroscopy
Jeong et al. A sonochemical route to single-walled carbon nanotubes under ambient conditions
Cho et al. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes
Lin et al. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions
Endo et al. Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers
Peng et al. Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes
Stadermann et al. Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays
Manivannan et al. Dispersion of single-walled carbon nanotubes in aqueous and organic solvents through a polymer wrapping functionalization
CN100591412C (zh) 纳米薄膜的制备方法
Shrestha et al. Surfactant-triggered nanoarchitectonics of fullerene C60 crystals at a liquid–liquid interface
Zhu et al. Supermolecular self-assembly of graphene sheets: Formation of tube-in-tube nanostructures
Wang et al. Single-crystal mesoporous ZnO thin films composed of nanowalls
Johnson et al. Controlled vapor− liquid− solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport
Zhang et al. Isolating single-wall carbon nanohorns as small aggregates through a dispersion method
Yadav et al. Recent advances on properties and utility of nanomaterials generated from industrial and biological activities
Lee et al. Large-scale direct patterning of aligned single-walled carbon nanotube arrays using dip-pen nanolithography
Gerasimenko et al. Hybrid carbon nanotubes–graphene nanostructures: Modeling, formation, characterization
Saxena et al. Carbon nanotube-based sensors and their application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant