CN101188324A - Transparent antenna - Google Patents

Transparent antenna Download PDF

Info

Publication number
CN101188324A
CN101188324A CN 200710164301 CN200710164301A CN101188324A CN 101188324 A CN101188324 A CN 101188324A CN 200710164301 CN200710164301 CN 200710164301 CN 200710164301 A CN200710164301 A CN 200710164301A CN 101188324 A CN101188324 A CN 101188324A
Authority
CN
China
Prior art keywords
transparent
conductive film
antenna
transparent conductive
film
Prior art date
Application number
CN 200710164301
Other languages
Chinese (zh)
Inventor
伊藤公一
古屋洋高
后藤谦次
宁 官
Original Assignee
株式会社藤仓;国立大学法人千叶大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006-286244 priority Critical
Priority to JP2006286244 priority
Application filed by 株式会社藤仓;国立大学法人千叶大学 filed Critical 株式会社藤仓;国立大学法人千叶大学
Publication of CN101188324A publication Critical patent/CN101188324A/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Abstract

A transparent antenna includes a radiating element for radiating an electromagnetic wave in a frequency band of 100 MHz to 20 GHz. A transparent conductive film including either an ITO thin film or an FTO thin film, or both, transmits light in a visible light wavelength range of 350 nm to 780 nm. The transparent conductive film has a film thickness of 100 nm or more, a transmittance of 40% or more in the visible light wavelength range, and a sheet resistivity of 20 ohms/square or less.

Description

透明天线 Transparent antenna

技术领域 FIELD

本发明涉及光学透明的天线。 The present invention relates to an optically transparent antenna.

本发明申请主张于2006年10月20日提出的日本国特许出愿第2006-286244号的优先权,并在本说明书中引用了其内容。 The present invention in Japanese application claims October 20, 2006 proposed an Laid No. 2006-286244 filed on, the contents of which references and the present specification.

背景技术 Background technique

本发明涉及光学透明的天线。 The present invention relates to an optically transparent antenna. 使用该天线,能够在不影响美观的情况下,把天线设置在无线设备和无线终端的表面或显示器的窗口上。 Using the antenna, it is possible without affecting the appearance of the antenna is provided on a surface of a display window or a wireless device and a wireless terminal. 本发明的透明天线不仅可设置在设置部位受限制的小型无线设备上,而且,通过把天线设置在设备的表面,能够使设备内部的电子器件远离天线,可减小电子器件对天线的影响,所以能够使天线的设计更加容易。 The transparent antenna of the present invention may be provided not only on a small portion of the wireless device is provided restricted, and, by the surface of the antenna provided in the apparatus, it is possible to make an electronic device inside the device away from the antenna, the electronic device may reduce the influence of the antenna, it is possible to design the antenna easier.

作为与本发明有关的以往技术,例如公知有以下文献1〜7所公开的技术。 As a conventional technique related to the present invention, e.g. 1~7 known technique disclosed in the following documents. 到目前为止,作为透明天线,提出了各种方式的天线,例如可列举出把金属做成格子状的天线(参照文献1 )、使用了非常薄的金属的天线(参照文献2)、以及使用了透明电极的天线(参照文献3〜7)等。 So far, as the transparent antenna, the antenna proposed various ways, for example, made of a metallic grid-like antenna (Ref. 1), a very thin metallic antenna (refer to Document 2), and using a transparent electrode antenna (Ref. 3~7) and the like.

这里,作为在文献3-7中所公开的透明天线的透明电极,使用了掺杂了锡的氧化铟(ITO)薄膜。 Here, the transparent electrode in the transparent antenna as disclosed in the literature 3-7, using tin-doped indium oxide (ITO) film.

[文献1] MS Wu and K. Ito. "Meshed microstrip antennas constructed on a transparent substrate," IEICE Trans., vol. E-74, no. 5, pp. 1277-1282,1991. [Document 1] MS Wu and K. Ito. "Meshed microstrip antennas constructed on a transparent substrate," IEICE Trans., Vol. E-74, no. 5, pp. 1277-1282,1991.

[文献2]日本特许第3682480号公才艮 [Document 2] Japanese Patent No. 3682480 was known Gen

[文献3】RN Simons and RQ Lee, "Feasibility syudy of optically transparent microstrip patch antenna, ,, IEEE AP-S Int. Symp., pp.2100-2103,1997. [Document 3] RN Simons and RQ Lee, "Feasibility syudy of optically transparent microstrip patch antenna, ,, IEEE AP-S Int. Symp., Pp.2100-2103,1997.

[文献4】M. Outaleb, J. Pinel, M. Drissi, and O. Bonnaud, "Microwave planar antenna with rf-sputtered indium tin oxide films," Microwave and Opt. Technol. Lett., vol. 24, no. 1, pp. 3-7, 2000. [Document 4] M. Outaleb, J. Pinel, M. Drissi, and O. Bonnaud, "Microwave planar antenna with rf-sputtered indium tin oxide films," Microwave and Opt. Technol. Lett., Vol. 24, no. 1, pp. 3-7, 2000.

[文献51 C. Mias, C. Tsakonas, N. Prountzos, DC Koutsogeorgis, SC Liew, C. Oswald, R. Ranson, WM Cranton, and CB Thomas, "Optically transparent microstrip antennas," IEE Colloquium on Antennas for Automotives, pp. 8/1-8/6, 2000. [Document 51 C. Mias, C. Tsakonas, N. Prountzos, DC Koutsogeorgis, SC Liew, C. Oswald, R. Ranson, WM Cranton, and CB Thomas, "Optically transparent microstrip antennas," IEE Colloquium on Antennas for Automotives, pp. 8 / 1-8 / 6, 2000.

[文献6】K. Oshime, N. Kidera, K. Niwano, K. Ikawa, R. Sonoda, and S. Kawasaki, "Use of a transparent conductive thin-film on a glass substrate in active integrated antenna arrays with double strong coupling," IEEE MTT-S Int. Microwave Symp. Dig., pp. 1569-1572, 2002. [Document 6] K. Oshime, N. Kidera, K. Niwano, K. Ikawa, R. Sonoda, and S. Kawasaki, "Use of a transparent conductive thin-film on a glass substrate in active integrated antenna arrays with double strong coupling, "IEEE MTT-S Int. Microwave Symp. Dig., pp. 1569-1572, 2002.

[文献7】CF. Huang and L. Chen, " Realization of a printed陽on-display antenna for mobile terminals," Elect. Lett., vol. 38, no. 20, pp. 1162-1163, 2002. [Document 7] CF. Huang and L. Chen, "Realization of a printed male on-display antenna for mobile terminals," Elect. Lett., Vol. 38, no. 20, pp. 1162-1163, 2002.

但是,以往的技术中存在着以下的问题。 However, conventional techniques there are the following problems.

文献1所公开的使用了格子状金属的天线,还不得不保留遮挡可见光的部分。 Document 1 disclosed the use of metal grid-like antenna, but also had retained the visible part of the shutter. 另外,在文献2所公开的使用了金属膜的天线的情况下,即使使金属膜变薄,可见光的透射率也非常低。 Further, in the case of using the disclosed antenna metal film Document 2, even when the metal film is thinned, the transmittance of visible light is very low. 因此,从外观方面讲,任意一种天线都难以-没置在小型无线设备的表面。 Therefore, from the appearance, any one of the antenna is difficult - not surface disposed in small wireless devices.

另一方面,虽然ITO薄膜是透明的,可透射可见光,但是,由于电阻率高,所以具有较大的电阻值。 On the other hand, although the ITO film is transparent, the visible light transmittance, however, since the resistance is high, so having a large resistance value. 文献3〜7所公开的天线,由于辐射元件的电阻大,所以增益低,不实用。 The antenna disclosed in Document 3~7, due to the large radiation resistance element, so that a low gain is not practical. 另外,在文献3〜7中,未明确指出透明天线中的电阻值导致增益及辐射效率的降低、和透明度与增益及辐射效率之间的关系。 Further, in the literature 3~7, no clear that the resistance of the transparent antenna results in the relationship between the gain and the radiation efficiency decreases, and transparency of the gain and radiation efficiency.

发明内容 SUMMARY

本发明就是鉴于上述问题而提出的,目的是提供一种具有充分的透明度和充分的辐射特性的透明天线。 The present invention is to solve the above problems, and an object is to provide a transparent antenna having a sufficient transparency and sufficient radiation characteristics.

本发明提供一种透明天线,具有可透过350nm〜780nm的可见光波 The present invention provides a transparent antenna having a transparent to visible light waves of 350nm~780nm

长区域的光、并且以100MHz〜20GHz频段辐射电磁波的辐射元件,其中,上述辐射元件是由ITO薄膜和FTO薄膜的一方或双方构成的透明导电膜,该透明导电膜的膜厚大于等于100nm,在上述可见光波长区域下的透射率大于等于40%,薄膜电阻小于等于20Q/口。 Light wavelength region, and to radiate electromagnetic radiation element 100MHz~20GHz band, wherein the radiating element is one of the ITO film and an FTO film or a transparent conductive film made of both sides, the film thickness of the transparent conductive film is 100 nm or greater than or equal, the above-described transmittance at visible light wavelength region greater than or equal to 40%, a sheet resistance of less 20Q / port.

在本发明的透明天线中,理想的是,上述透明导电膜形成在透明的电介质基板上。 In the transparent antenna of the present invention, preferably, the transparent conductive film formed on a transparent dielectric substrate.

在本发明的透明天线中,理想的是,上述透明导电膜的膜厚大于等于100nm,在上述可见光波长区域下的透射率大于等于60%,薄膜电阻小于等于200/口。 In the transparent antenna of the present invention, it is desirable that the film thickness of the transparent conductive film is 100 nm or not less than, the above-described transmittance at a visible wavelength region is greater than or equal to 60%, a sheet resistance of less than 200 / port.

在本发明的透明天线中,理想的是,上述透明导电膜的膜厚在大于等于100nm且小于等于lfim的范围内。 In the transparent antenna of the present invention, it is desirable that the thickness of the transparent conductive film is not less than 100nm or less within the range lfim.

在本发明的透明天线中,理想的是,上述透明导电膜由FTO薄膜构成。 In the transparent antenna of the present invention, preferably, the transparent conductive film composed of FTO film.

在本发明的透明天线中,理想的是,在上述透明电介质基板上形成了上述透明导电膜的状态下,在350nm〜780nm的可见光波长区域下的透射率,大于等于30%。 In the transparent antenna of the present invention, it is desirable that the formation of the above-described state of the transparent conductive film, the transmittance at a visible light wavelength region 350nm~780nm is formed on the transparent dielectric substrate, equal to 30%.

在本发明的透明天线中,理想的是,在上述透明电介质基板上形成了上述透明导电膜的状态下,在350nm〜780nm的可见光波长区域下的透射率,大于等于50%。 In the transparent antenna of the present invention, it is desirable that the formation of the above-described state of the transparent conductive film, the transmittance at a visible light wavelength region 350nm~780nm is formed on the transparent dielectric substrate, 50% or greater.

在本发明的透明天线中,也可以是,上述透明导电膜形成在不透明的电介质基板上。 In the transparent antenna of the present invention may be the transparent conductive film is formed on the transparent dielectric substrate.

在本发明的透明天线中,理想的是,在lGHz〜12GHz下,与使用相同尺寸的金属薄膜制作的天线相比,增益下降小于等于6dB,辐射效率k于等于20%。 In the transparent antenna of the present invention, it is desirable that, in lGHz~12GHz, as compared with the metal thin film fabricated using the same antenna size, 6dB less gain reduction, k in the radiation efficiency equal to 20%.

在本发明的透明天线中,理想的是,在lGHz〜12GHz下,由透明导电膜的薄膜电阻导致的增益下降率小于等于0.5dB/ ( Q/口),辐射效率的下降率小于等于5%/ ( O/口)。 In the transparent antenna of the present invention, it is desirable that, in lGHz~12GHz, gain reduction of the sheet resistance of the transparent conductive film due to less 0.5dB / (Q / port), the radiation efficiency decrease rate of 5% or less / (O / port).

本发明的透明天线最好是单极型天线,其中,上述透明导电膜形成为四边形,其下边与电路电连接,下边W^上边\¥2、高L满足0.1mm 《Wi《15mm、 0.1mm《W2《15mm、 2mm《L《50mm的关系。 The transparent antenna of the present invention is preferably a monopole antenna, wherein the transparent conductive film is formed in a quadrangle, which circuit is electrically connected with the lower, upper lower W ^ \ 2 ¥, high L satisfies 0.1mm "Wi" 15mm, 0.1mm "W2" 15mm, the relationship between 2mm "L" 50mm of.

本发明的透明天线最好是双极型天线,其中,上述透明导电膜由平行的2条带状基部、和从该基部的一端弯曲且向外方延伸的四边形形状的2个主体部构成,各个基部的另一端与电路电连接,主体部的基部侧的边的长度W"与Wi相对的边的长度W2、主体部的长度L、基部的长度\¥3、基部间隔G满足0.1mm《Wi《15min、 0.1mm《W2《15mm、 0《W3《10mm、 2mm《L《50mm、 0.05mm《G《5mm的关系。 The transparent antenna of the present invention is preferably a bipolar antenna, wherein the transparent conductive film made of parallel belt-like base 2, the main body portion 2 and bent from one end of the base portion and outwardly extending configuration of a quadrangular shape, the other end of the circuit is electrically connected to the respective base portion, the side edges of the base length W of the main body portion "Wi length W2 of the opposite side length, the body portion of the L, the length of the base portion \ ¥. 3, the base portion satisfies 0.1mm gap G" wi "15min, 0.1mm" W2 relationship of 5mm "15mm, 0" W3 "10mm, 2mm" L "50mm, 0.05mm" G ".

在本发明的透明天线中,理想的是,上述透明导电膜形成在具有电介质筐体的无线设备的表面、或显示器的内外面的一方或双方上。 In the transparent antenna of the present invention, preferably, the transparent conductive film formed on one surface of the inner and outer wireless device having a dielectric housing member, or a display or both.

在本发明的透明天线中,理想的是,具有以下构造:上述透明导电膜形成在具有电介质筐体的无线设备的表面、或显示器的内外面的一方或双方上,并且层叠了把该透明导电膜夹在中间的电介质基板。 In the transparent antenna of the present invention, desirably, having the following structure: the transparent conductive film is formed on one of the inner and outer surface of the wireless device having a dielectric housing member, or a display or both, and laminated to the transparent conductive film interposed dielectric substrate.

本发明的透明天线在可见光区域具有透明性,并且可辐射100MHz〜20GHz频段的电磁波。 The transparent antenna of the present invention has transparency in the visible region, and an electromagnetic wave radiation 100MHz~20GHz band. 通过使用薄膜电阻低、透明性高的ITO 薄膜,并且设计最佳的天线形状,可提供具有充分透明度和具有充分辐射特性的天线。 By using a low sheet resistance of the ITO film has high transparency, the optimal antenna shape and design, it can provide a sufficient transparency and sufficient radiation characteristics of the antenna.

另外,如果使用FTO薄膜,则可避免使用稀有金属铟,从而可降低成本。 Further, if the FTO film, a rare metal, indium can be avoided, so that cost can be reduced.

本发明的透明天线,由于透明且不显眼,所以可设置在窗玻璃上, 可作为室内天线和车载天线来使用。 The transparent antenna of the present invention, since the transparent and unobtrusive, it may be provided on the window glass, may be used as a vehicle antenna and indoor antenna. 而且,可安装在逐年小型化的无线终端的表面和显示器上,不仅可确保天线的设置部位,而且能够使天线的设计变得容易。 Further, the surface may be mounted on the display and gradually miniaturized wireless terminal, provided to ensure that not only the antenna portion and the antenna design can be made easily.

根据本发明,可提供以下这样的天线:既可确保透射率大于等于70%,又可使天线增益下降小于等于ldB、辐射效率大于等于80%。 According to the present invention, such an antenna can provide the following: can ensure the transmittance of 70% or more, and the antenna can be less than or equal ldB decrease in gain, radiation efficiency is 80% or more.

附图说明 BRIEF DESCRIPTION

图1是表示在本发明的透明天线中使用的ITO薄膜和FTO薄膜在波长550nm下的透射率与薄膜电阻之间的关系的曲线图。 FIG. 1 is a graph showing the relationship between the transmittance and the sheet resistance of the ITO film and an FTO film used in a transparent antenna of the present invention at a wavelength of 550nm.

图2是表示在本发明的透明天线中使用的ITO薄膜和FTO薄膜的透射率的波长依赖性的曲线图。 FIG 2 is a graph showing the wavelength dependency of the transmittance of the ITO film and an FTO film used in a transparent antenna of the present invention.

图3是表示作为本发明的透明天线的一例的单极型天线的透明导电膜的形状的概略图。 FIG 3 is a schematic view illustrating the shape of the transparent conductive film of the transparent monopole antenna as an antenna of the present invention is an example.

图4是表示在图3的天线中改变了薄膜电阻时的VSWR的频率特性的曲线图。 FIG 4 is a graph showing changes in the frequency characteristic of the VSWR when the sheet resistance of the antenna of FIG. 3.

图5是表示在图3的天线中改变了薄膜电阻时的最大增益的频率特性的曲线图。 FIG 5 is a graph showing the frequency characteristic changes of the maximum gain of the antenna when the thin film resistors of FIG. 3.

图6是表示在图3的天线中改变了薄膜电阻时的辐射效率的频率特性的曲线图。 FIG 6 is a graph showing the frequency characteristic changes of radiation efficiency when the sheet resistance of the antenna of FIG. 3.

图7是表示在图3的天线中,在5.6GHz下的XY面的Ee的辐射图形的曲线图。 FIG 7 is a diagram showing the antenna of FIG. 3, a graph of the radiation pattern of Ee of the XY plane at the 5.6GHz.

图8是表示同样在5.6GHz下的XZ面的Ee的辐射图形的曲线图。 FIG 8 is a graph showing a radiation pattern of Ee of the XZ plane also in the 5.6GHz.

图9是表示同样在5.6GHz下的YZ面的Ee的辐射图形的曲线图。 9 is a graph showing the radiation pattern of Ee of the YZ plane also in the 5.6GHz.

图IO是表示在实施例1中制作的天线的结构的俯视图。 FIG IO is a plan view showing a configuration of the antenna prepared in Example 1 of the embodiment.

图ll是表示实施例l的透明天线在玻璃基板上形成了透明导电膜的状态下,在波长550nm下的透射率与薄膜电阻的关系的曲线图。 FIG. L ll is a diagram showing the embodiment of the transparent antenna formed in a state where the transparent conductive film, a graph showing the relationship between the sheet resistance and the transmittance at a wavelength of 550nm on a glass substrate.

图12是表示在实施例1的天线中改变了薄膜电阻时的VSWR的频率特性的曲线图。 FIG 12 is a graph showing changes in the frequency characteristic of the VSWR when the sheet resistance of the antenna 1 in the embodiment.

图13是表示在实施例1的天线中,在2.4GHz下的XY面的Ee的辐射图形的曲线图。 FIG 13 is a diagram showing an antenna in the embodiment in Example 1, a graph of the radiation pattern of Ee of the XY plane at the 2.4GHz.

图14是表示同样在2.4GHz下的XZ面的Ee的辐射图形的曲线图。 FIG 14 is a graph showing a radiation pattern of Ee of the same XZ plane in the 2.4GHz.

图15是表示同样在2.4GHz下的YZ面的Ee的辐射图形的曲线图。 FIG 15 is a graph showing a radiation pattern of Ee of the same YZ plane in the 2.4GHz.

图16是表示实施例1的天线在2.4GHz和5.0GHz下的最大增益与薄膜电阻之间的关系的曲线图。 FIG 16 is a graph showing the relationship between the antenna of Example 1 and the sheet resistance of the maximum gain at 2.4GHz and 5.0GHz embodiment.

图17是表示实施例1的天线在2.4GHz和5.0GHz下的辐射效率与薄膜电阻之间的关系的曲线图。 FIG 17 is a graph showing a relationship between the film resistance of the antenna radiation efficiency in Example 1 at 2.4GHz and 5.0GHz embodiment.

图18是表示在实施例2中制作的天线在玻璃基板上形成了透明导电膜的状态下,在波长550nm下的透射率与薄膜电阻的关系的曲线图。 FIG 18 is a diagram showing a state where the formation of the transparent conductive film, a graph showing the relationship between the sheet resistance and the transmittance at a wavelength of 550nm on a glass substrate prepared in Example 2 in the antenna embodiment.

图19是表示在实施例2的天线中,在2.4GHz下的XY面的Ee的辐射图形的曲线图。 FIG 19 is a diagram showing an antenna in the embodiment 2, the graph of the radiation pattern of Ee of the XY plane at the 2.4GHz.

图20是表示同样在2.4GHz下的XZ面的Ee的辐射图形的曲线图。 FIG 20 is a graph showing a radiation pattern of Ee of the same in the XZ plane at 2.4GHz.

图21是表示同样在2.4GHz下的YZ面的Ee的辐射图形的曲线图。 FIG 21 is a graph showing a radiation pattern of Ee of the same YZ plane in the 2.4GHz.

图22是表示实施例2的天线在2.4GHz和5.0GHz下的最大增益与薄膜电阻之间的关系的曲线图。 FIG 22 is a graph showing the relationship between the antenna of Example 2 and the sheet resistance of the maximum gain at 2.4GHz and 5.0GHz embodiment.

图23是表示实施例2的天线在2.4GHz和5.0GHz下的辐射效率与薄膜电阻之间的关系的曲线图。 FIG 23 is a graph showing the relationship between the antenna of Example 2 and the radiation efficiency 2.4GHz 5.0GHz with a sheet resistance in the embodiment.

图24是表示在实施例3中制作的双极型天线的透明导电膜的形状的俯视图。 FIG 24 is a plan view showing a shape of the transparent conductive film in the bipolar type antenna produced in Example 3 of the embodiment.

图25是表示配置了在实施例4中制作的双极型天线的无线设备的主要部分的立体图. FIG 25 is a perspective view showing the configuration of a main part of a wireless device in a bipolar embodiment of the antenna of Example 4 is prepared.

图26是表示配置了在实施例5中制作的双极型天线的无线设备的主要部分的立体图。 FIG 26 is a perspective view showing the configuration of a main part of a wireless device fabricated in Example 5 of the bipolar type antenna.

图27是说明在本发明中使用的坐标轴的位置关系的图。 FIG 27 is a diagram illustrating the positional relationship of the coordinate axes used in the present invention is described.

具体实施方式 Detailed ways

下面,参照附图,对本发明的实施方式进行说明。 Referring to the drawings, embodiments of the present invention will be described.

本发明的透明天线是具有可透过350nm〜780nm的可见光波长区域的光、并且以100MHz〜20GHz频段辐射电磁波的辐射元件的透明天线, 上述辐射元件是由ITO薄膜和FTO薄膜的一方或双方构成的透明导电膜,该透明导电膜的膜厚大于等于100nm,在上述可见光波长区域下的透射率大于等于40%,薄膜电阻小于等于20Q/口。 Transparent antenna of the present invention is a visible light wavelength region having 350nm~780nm through, and a transparent antenna radiating element 100MHz~20GHz frequency electromagnetic radiation, said radiating element is formed of one of ITO film and an FTO film, or both a transparent conductive film, film thickness of the transparent conductive film is 100 nm or not less than, the transmittance in the above visible wavelength region is greater than or equal to 40%, a sheet resistance of less 20Q / port. 该透明导电膜的膜 The transparent conductive film is a film

厚如果小于100nm,则不能获得充分的辐射特性,难以作为天线来使用。 If a thickness of 100 nm or less than, the radiation characteristics can not be obtained sufficiently, it is difficult to use as an antenna. 另外,可见光区域下的透射率如果小于40%,则从外观上讲,难以设置在小型无线设备的表面.另外,薄膜电阻如果超过200/口,则增益降低,不能作为天线来使用。 Further, the transmittance at the visible light region is less than 40%, from the appearance of speaking, it is difficult to set the surface of the small wireless device. Further, a sheet resistance exceeding 200 / port, the gain reduction can not be used as an antenna. 另外,透明导电膜的膜厚小于等于ljim。 Further, the film thickness of the transparent conductive film is less ljim. 膜厚如果厚,则薄膜电阻下降,透射率下降。 If the thickness of the film thickness, the film resistance is reduced, the transmittance decreased. 薄膜电阻与膜厚大致成反比。 And substantially inversely proportional to the thickness of the thin film resistor.

作为上述透明导电膜,希望使用薄膜电阻在1Q/口〜20Q/口的范围内、且波长550nm下的透射率大于等于70。 Examples of the transparent conductive film, it is desirable to use a sheet resistance in the range of 1Q / port ~20Q / port, and the transmittance at a wavelength of 550nm is 70. /o的ITO薄膜。 / O of the ITO film.

另外,也可以使用成本低的掺杂氟的氧化锡(FTO)薄膜。 It is also possible to use low cost fluorine-doped tin oxide (FTO) film. 在这种情况下,作为FTO薄膜,希望使用薄膜电阻在lQ/口〜5Q/口的范围内、 且波长550nm下的透射率大于等于50%的薄膜,或者薄膜电阻在5Q/ 口〜20Q/口的范围内、且波长550nm下的透射率大于等于80%的薄膜, In this case, as a FTO film, it is desirable to use a sheet resistance in the range of lQ / port ~5Q / port, and the transmittance at a wavelength of 550nm is 50% or more of the film or sheet resistance 5Q / port ~20Q / the range of the mouth, and the transmittance at a wavelength of 550nm is 80% or more of the film,

图1表示在成为辐射元件的透明导电膜中使用的ITO薄膜和FTO 薄膜在波长550rnn下的薄膜电阻与透射率的关系。 FIG. 1 shows the relationship between the sheet resistance of the ITO film and transmittance of the FTO film used in the radiation element becomes transparent conductive film at a wavelength of 550rnn.

ITO薄膜是薄膜电阻大于等于0.6Q/口的薄膜,薄膜电阻如果大于等于0.60/口,则透射率大于等于70%。 A sheet resistance of the ITO film is not less than 0.6q / mouth film, if the film resistance of not less than 0.60 / □, the transmittance is 70%. 另外,FTO薄膜是薄膜电阻大于等于lO/口的薄膜,薄膜电阻如果大于等于lO/口,则透射率大于等于50%。 In addition, FTO film is a thin film resistance of not less than lO / port, if the film resistance of not less than lO / port, the transmittance greater than or equal to 50%.

另外,图2是表示薄膜电阻为1.6Q/口的ITO薄膜、和15.50/口的FTO薄膜的透射率的波长依赖性的曲线图。 Further, FIG. 2 shows a sheet resistance of 1.6Q / port of the ITO film, and a graph of the wavelength dependence of transmittance FTO film 15.50 / port. 透射率的急剧变动是由于膜厚的干扰。 Drastic changes transmittance due to interference film thickness.

使用这些透明导电膜,制作了图3所示的单极型天线,其作为基础研究用。 The use of the transparent conductive film was produced monopole antenna shown in FIG. 3, which is used as a basis for research. 考虑到天线辐射元件的电阻,使用矩量(moment)法(参照R. R Harrington, Field computation by moment methods, IEEE PRESS, 1993。)进行了解析。 Taking into account the radiation resistance of the antenna element using moments (Moment) method (refer to R. R Harrington, Field computation by moment methods, IEEE PRESS, 1993.) were resolved. 这里,在薄膜电阻相等的情况下,VSWR特性、 最大增益、辐射效率以及辐射图形,取相同值,而与薄膜的种类无关。 Here, in the case where a sheet resistance equal, the VSWR characteristic of the maximum gain, radiation efficiency and radiation pattern, take the same value, regardless of the type of film.

图3所示的单极型天线1具有形成倒梯形形状的透明导电膜2。 Monopole antenna shown in FIG. 31 has a transparent conductive film 2 formed in an inverted trapezoidal shape. 图中的符号3是地。 FIG 3 is a ground symbol. 在该单极型天线l中,希望透明导电膜2的下边W^ 上边\¥2、高L满足0.1mm《Wi《15mm、 0.1mm《W2《15mm、 2mm ^L^50mm。 L In the monopole antenna, the desirable lower transparent conductive film 2 is the upper W ^ \ 2 ¥, high L satisfies 0.1mm "Wi" 15mm, 0.1mm "W2" 15mm, 2mm ^ L ^ 50mm.

图4是表示在使用了W产3mm、 W2=9mm、 L=21mm的透明导电膜2的天线1中改变了透明导电膜2的薄膜电阻时的电压驻波比(VSWR) 的频率特性的曲线图。 FIG. 4 is a W using the production 3mm, W2 = 9mm, the antenna L = 21mm of the transparent conductive film 1 of 2 changes the frequency characteristics of voltage standing wave curve when the sheet resistance of the transparent conductive film 2 ratio (VSWR) of Fig. 其中,传输线路的特性阻抗为如图所示, 在薄膜电阻小于等于10Q/口时,VSWR特性与使用通常的金属薄膜(例如铜箔)制作的相同尺寸的天线的VSWR特性接近,基本无变化。 Wherein the characteristic impedance of the transmission line as shown, in a sheet resistance of less 10Q / port, typically using a VSWR characteristic in a metal thin film (e.g., copper foil) produced the same size antenna VSWR characteristics close, substantially no change .

图5是表示在改变了薄膜电阻时的最大增益(使用了透明导电膜的天线在最大辐射方向的增益)的频率特性的曲线图。 FIG 5 is a diagram showing changes in the sheet resistance of the maximum gain (the transparent conductive film using the antenna gain in the direction of maximum radiation) versus frequency characteristics. 其中,最大增益用相对值来表示,该相对值是以使用了金属膜的天线在最大辐射方向的增益为基准的,如图所示,可看出,天线的增益的下降,根据各自不同的薄膜电阻而具有固有的频率特性。 Wherein the maximum gain is represented by a relative value, this relative value is used in the antenna gain of the metal film is maximum radiation direction as a reference, as shown, it can be seen, decreased gain of the antenna, according to their different a thin film resistor having a frequency characteristic inherent. 例如,如果使用薄膜电阻为10Q/口的透明导电膜,则在2GHz下,增益下降为4.5dB,而在5GHz下,减少到1.4dB。 For example, if the sheet resistance of the transparent conductive film 10Q / port, at 2GHz, the gain dropped to 4.5dB, while at 5GHz, reduced to 1.4dB. 这里,如图l所示那样,在作为透明导电膜而使用了ITO 薄膜的情况下,薄膜电阻为10Q/口时的透射率为95%,在4吏用了FTO 薄膜的情况下,薄膜电阻为10Q/口时的透射率为89%。 Here, as shown in Figure l, in a case where the ITO film was used as a transparent conductive film, a sheet resistance of 95% transmittance at 10Q / port, with the case of the FTO film 4 officials, the sheet resistance when the transmittance was 89% of 10Q / port. 另外,如果使用薄膜电阻为lQ/口的透明导电膜,则在2GHz下,增益下降仅为0.9dB, 在5GHz下,进一步减少为0.2dB。 Further, if the film resistance of the transparent conductive film lQ / port, at 2GHz, the gain is only 0.9dB decrease, at 5GHz, further reduced to 0.2dB. 如图1所示,在使用了ITO薄膜的情况下,薄膜电阻为1Q/口时的透射率为74%,在使用了FTO薄膜的情况下,薄膜电阻为1Q/口时的透射率为50%。 1, in the case where the ITO film, a sheet resistance of 74% at a transmittance of 1Q / port, in the case where the FTO film, transmittance of the sheet resistance when 1Q / port 50 %.

图6是表示改变了薄膜电阻时的辐射效率的频率特性的曲线图。 FIG 6 is a graph showing the frequency characteristic changes of radiation efficiency when the sheet resistance. 辐射效率也和增益同样,根据各自的薄膜电阻而具有固有的频率特性,并且在5GHz附近可获得较高的辐射效率。 Radiation efficiency and gain of the same, according to respective film has an inherent resistance frequency characteristic, and high radiation efficiency can be obtained in the vicinity of 5GHz. 例如,如果使用薄膜电阻为10 Q/口的透明导电膜,则2GHz下的辐射效率为34%,但5GHz下的辐射效率上升到72%。 For example, if the sheet resistance of the transparent conductive film 10 Q / ports, the radiation efficiency is 34% 2GHz, but the radiation efficiency rises to 72% of 5GHz. 另外,如果使用薄膜电阻为lQ/口的透明导电膜, 则2GHz下的辐射效率为80%, 5GHz下的辐射效率上升到95%。 Further, if the film resistance of the transparent conductive film lQ / port, the radiation efficiency is 80% at 2GHz, radiation efficiency rises to 95% at 5GHz.

图7~图9具体表示5.6GHz下的辐射图形。 7 to 9 specifically showing the radiation pattern of 5.6GHz. 这里,把沿着透明导电膜2的长度方向设为z轴,把与z轴正交、且与透明导电膜2的表面平行的方向设为y轴,把与y轴和z轴正交的方向设为x轴。 Here, a z-axis along the longitudinal direction of the transparent conductive film 2, the orthogonal to the axis z, and a direction parallel to the surface of the transparent conductive film 2 is defined as a y-axis, the y-axis and z-axis orthogonal to an x-axis direction. 另外,如图27所示,把连结原点O与测定点P的线段OP同z轴所形成的角度设为0。 Further, as shown in Figure 27, the line segment OP connecting the origin O and the point P is measured with the angle formed by the z 0 axis. 把连结将测定点P投影在XY面上而得到的点P,与原点O的线段同x轴所成的角度设为(J)。 The coupling of the measurement points P in the XY plane projected point P is obtained, the line segment with the origin O is defined as an angle formed by the x-axis (J). 以下,关于图13~15、图19〜21也是同样。 Hereinafter, FIGS. 13 to 15, 19~21 are similar to FIG. 图7是表示5.6GHz下的XY面的Ee的辐射图形的曲线图。 FIG 7 is a graph showing a radiation pattern of Ee of the XY plane at 5.6GHz. 图8是表示5.6GHz下的XZ面的Ee的辐射图形的曲线图。 FIG 8 is a graph showing a radiation pattern of Ee of the XZ plane at 5.6GHz. 图9是表示5.6GHz下的YZ面的Ee的辐射图形的曲线图。 9 is a graph showing the radiation pattern of Ee of the YZ plane at 5.6GHz.

本发明明确了特定天线中的透明导电膜的薄膜电阻与天线特性的关系。 The present invention is a clear relationship between the antenna resistance characteristics of the transparent conductive film of the thin film in a particular antenna. 利用此关系,可进行既可保证高透明度、又可具有高增益和辐射效率的天线的最佳设计。 With this relationship, it can be can ensure high transparency, but also having the best design of the antenna gain and high radiation efficiency.

[实施例1】 [Example 1]

制作图10所示的天线4,并测定了天线特性。 Making the antenna 10 shown in FIG. 4, and the antenna characteristic was measured. 该天线4是在透明玻璃基板5上形成透明导电膜6而构成的。 The antenna 4 is a transparent conductive film formed on a transparent glass substrate 56 constituted. 在实施例1中,作透明导电膜, 使用了ITO薄膜。 In Example 1, as the transparent conductive film, an ITO film. 玻璃基板5的厚度为l.lmm,相对介电常数为4.8。 The thickness of the glass substrate 5 is l.lmm, relative dielectric constant of 4.8. 另外,在测定中使用的接地板7为铜制板,大小为300mmx300mm。 Further, in the assay using the ground plate 7 is made of copper plate, a size of 300mmx300mm. 另外,导电性薄膜6具有与基础研究用的透明导电膜2相同的尺寸。 Further, the conductive film 6 having the same size and the transparent conductive film 2 for basic research.

图11是表示波长550nm下的、在玻璃基板5上形成了ITO薄膜的状态下的天线4的透射率与ITO薄膜的薄膜电阻的关系的曲线图。 FIG 11 is a diagram showing a wavelength at 550nm, the formation of a plot of sheet resistance and transmittance of the ITO film in a state of the ITO film antenna 4 on the glass substrate 5.

图12是表示在改变了薄膜电阻时的实施例1的天线4的VSWR特性的曲线图。 FIG 12 is a graph showing the VSWR characteristic at the embodiment change the sheet resistance of the antenna 4 1. 如图所示,薄膜电阻如果小于等于10Q/口,则天线4的VSWR特性与铜制天线的VSWR特性相比,几乎无变化。 As shown, the sheet resistance is less than equal to 10Q / port, the VSWR characteristic of the antenna 4 is compared with the VSWR characteristic of the antenna of copper, almost no change.

图13~图15表示实施例1的天线4在2.4GHz下的辐射图形。 13 to 15 showing an antenna radiation pattern 4 of Example 1 in the embodiment 2.4GHz. 图13 是表示2.4GHz下的XY面的Ee的辐射图形的曲线图。 FIG 13 is a graph showing a radiation pattern of Ee of the XY plane at 2.4GHz. 图14是表示2.4GHz下的XZ面的Ee的辐射图形的曲线图。 FIG 14 is a graph showing a radiation pattern of Ee of the XZ plane at 2.4GHz. 图15是表示2.4GHz下的YZ面的Ee的辐射图形的曲线图。 FIG 15 is a graph showing a radiation pattern of Ee of the YZ plane at 2.4GHz.

另外,图16表示实际测定的和理论计算的实施例1的天线4在2.4GHz和5.0GHz下的最大增益。 Further, FIG. 16 shows a maximum gain at 4 2.4GHz and 5.0GHz the antenna actually measured in Example 1 and theoretical calculations. 其中,最大增益用相对值来表示,该相对值是以使用了金属膜的天线在最大辐射方向上的增益为基准的。 Wherein the maximum gain is represented by a relative value, this relative value is used a metal film antenna gain in the direction of maximum radiation as a reference. 另外,由薄膜电阻导致的增益下降率,在2.4GHz下约为0.2dB/( Q/口)、 在5.6GHz下约为0.12dB/ ( n/口)。 Further, the rate of gain reduction caused by the thin film resistors, in the 2.4GHz approximately 0.2dB / (Q / mouth), is approximately 0.12dB / (n / port) at 5.6GHz.

也同样测定了天线4在2.4GHz和5.0GHz下的辐射效率,并且与理论计算值一同表示在图17中。 Also the antenna radiation efficiency was measured at 4 2.4GHz and 5.0GHz, and the representation in FIG. 17 together with the theoretical value. 由薄膜电阻导致的辐射效率的下降率, 在2.4GHz下约为2.7% / ( Q/口)、在5.6GHz下约为1.7% / ( Q/口)。 Decreasing rate of a radiation efficiency due to a thin film resistor, at about 2.4GHz at 2.7% / (Q / mouth), about 1.7% at the 5.6GHz / (Q / ports).

[实施例2]在实施例2中,作为透明导电膜而使用了FTO薄膜,按照与实施例1相同的尺寸制作了天线4,并测定了天线特性。 [Example 2] In Example 2, a transparent conductive film and the FTO film was used, in the same size in Example 1 was produced antenna 4, the antenna characteristics were measured. 图18表示波长550nm 下的、在玻璃基板5上形成了FTO薄膜的状态下的天线4的透射率与FTO薄膜的薄膜电阻的关系。 18 shows a wavelength at 550nm, the relationship between the formation of a thin film resistor and the transmittance of the FTO film in a state FTO film antenna 4 on the glass substrate 5.

图19~图21表示实施例2的天线4在2.4GHz下的辐射图形。 19 to 21 showing the antenna radiation pattern 4 of Example 2 in the embodiment 2.4GHz. 图19 是表示2.4GHz下的XY面的Ee的辐射图形的曲线图。 19 is a graph showing the radiation pattern of Ee of the XY plane at 2.4GHz. 图20是表示2.4GHz下的XZ面的E。 FIG 20 is a diagram showing E. XZ plane at 2.4GHz 的辐射图形的曲线图,图21是表示2.4GHz下的YZ面的Ee的辐射图形的曲线图。 The graph of the radiation pattern, FIG. 21 is a graph showing a radiation pattern of Ee of the YZ plane at 2.4GHz.

另外,测定了实施例2的天线4在2.4GHz和5.0GHz下的最大增益, 并且与理论计算值一同表示在图22中。 Further, the maximum gain of 4 was measured at 2.4GHz and 5.0GHz the antenna of Example 2, and showing in FIG. 22 together with the theoretical value. 其中,最大增益用相对值来表示,该相对值是以使用了金属膜的天线在最大辐射方向上的增益为基准的。 Wherein the maximum gain is represented by a relative value, this relative value is used a metal film antenna gain in the direction of maximum radiation as a reference.

另外,测定了实施例2的天线4在2.4GHz和5.0GHz下的天线辐射效率,并且与理论计算值一同表示在图23中。 Further, Example 2 was measured antenna radiation efficiency of the antenna 4 embodiment at 2.4GHz and 5.0GHz, and are shown in FIG. 23 together with the theoretical value.

[实施例3] [Example 3]

作为透明导电膜,使用ITO薄膜和FTO薄膜,制作了如图24所示的双极型天线8,并进行了测定。 As the transparent conductive film, an ITO film and an FTO film, making bipolar antenna shown in FIG. 248, and determined. 该双极型天线8具有透明导电膜9A、 9B,该透明导电膜9A、 9B由平行的2条带状基部、和从该基部的一端弯曲且向外方延伸的四边形形状的2个主体部构成,各个基部的另一端与电路电连接。 The dipole antenna 8 having a transparent conductive film 9A, 9B, 2 constituent entities of the portion of the transparent conductive film 9A, 9B by two parallel strip-shaped base portion and bent from one end of the base portion and extending outward quadrangular shape configuration, the other end of each base portion is electrically connected to the circuit. 主体部的基部侧的边的长度Wp与Wj目对的边的长度W2、主体部的长度L、基部的长度Ws、基部间隔G满足0,1mm《Wi 《15mm、 0.1mm《W2《15mm、 0《W3《10mm、 2mm《L《50mm、 0.05mm《G《5mm的关系。 The length of the side edge and length Wp Wj of the base side of the head main body portion for the W2, length of the body portion of the L, the length Ws of the base, the base of the gap G satisfy 0,1mm "Wi" 15mm, 0.1mm "W2" 15mm, relationship of 5mm 0 "W3" 10mm, 2mm "L" 50mm, 0.05mm "G".

在该双极型天线8中,^1L=21、 W尸3mm、 W2=9mm、 W3=6mm、 G=lmm,在与实施例l相同的玻璃基板上形成了图形。 In the bipolar antenna 8, ^ 1L = 21, W dead 3mm, W2 = 9mm, W3 = 6mm, G = lmm, a pattern formed on the same glass substrate in Example l. 与实施例l、实施例2同样地对该天线进行了透射率和辐射特性的测定,而获得了与实施例1和实施例2大致相同的结果。 Example L, the same manner as in Example 2 were measured antenna and radiation transmittance characteristics obtained with Example 1 and Example 2 is substantially the same results.

另外,改变天线的尺寸,使其主体部的基部侧的边的长度Wp W2、 主体部的长度L、基部的长度W3、基部间隔G满足0.1mm《Wi《15mm、 Further, changing the size of the antenna, so that the length of the base side of the side body portion Wp W2, length of the body portion of the L, the length W3 of the base, the base of the gap G satisfy 0.1mm "Wi" 15mm,

0.1mm《W2《15mm、 0《W3《10mm、 2mm《L《50mm、 0.05mm《G 《5mm的关系。 0.1mm "W2" 15mm, 0 Relationship "W3" 10mm, 2mm "L" 50mm, 0.05mm "G" 5mm in. 在这种情况下,也获得了与实施例1和实施例2同等程度的由薄膜电阻导致的增益下降和辐射效率。 In this case, also it obtained radiation efficiency and gain drop of Example 1 and Example 2 by the same extent due to a sheet resistance. 辐射图形如果除去由薄膜电阻导致的增益下降,则与铜制天线大致相同。 If the radiation pattern is removed by a gain reduction due to a thin film resistor is substantially the same as the antenna made of copper.

[实施例4] [Example 4]

把实施例3的天线8,如图25所示那样,形成在具有电介质筐体IO的无线设备的表面。 Example 3 of the antenna 8, as shown in FIG 25, a wireless device having a surface of a dielectric housing IO is formed. 另外,无线设备的上部表面采用绝缘材料。 Further, the upper surface of the wireless device using an insulating material.

在这种情况下,天线8的辐射特性虽然受无线设备上表面的电介质筐体10的介电常数的影响,但与如实施例1和实施例2那样单独设置的情况相比,只有VSWR特性产生微小变动。 In this case, although the radiation characteristics of the antenna 8 is influenced by the dielectric constant of the dielectric surface of the housing body 10 of the wireless device, but as compared with the case and the separately provided Example 2 as in Example 1, only the VSWR characteristic produce small changes. 该天线尤其能够设置在无线设备的显示器部上,而且,还能够设置在显示器的玻璃或透明塑料的内面上。 In particular, the antenna portion can be provided on the display of the wireless device, but can also be provided on the surface of a glass or transparent plastic display.

[实施例5】 [Example 5]

把实施例3的天线8,如图26所示那样,形成在无线设备的电介质筐体10的表面。 Example 3 of the antenna 8, as shown in FIG 26, is formed on the surface of the dielectric housing 10 of the wireless device. 无线设备的上部表面采用绝缘材料,天线8形成在玻璃和塑料等那样的透明电介质基板上,并且构成了以把透明导电膜9A、 9B夹在中间的方式层叠了电介质基板11的构造。 An upper surface of the wireless device using an insulating material, the antenna 8 is formed on a transparent dielectric substrate such as glass and plastic or the like, and constitutes at the transparent conductive film 9A, 9B sandwiching manner a stack structure of the dielectric substrate 11.

在这种情况下,天线8的辐射特性虽然受无线设备上表面的电介质筐体10的影响,但与如实施例l和实施例2那样单独设置的情况相比, 只有VSWR特性产生微小变动。 In this case, the radiation characteristics of the antenna 8 of 10 in spite of the dielectric surface of the housing body on the wireless device, as compared with the case of Example l and of Example 2 is provided as a separate embodiment, the VSWR characteristic produced only minor changes. 而且,在该情况下,从上表面覆盖的电介质基板11还具有保护天线的作用。 Further, in this case, from the upper surface of the dielectric substrate 11 to cover the antenna also have protective effects.

以上,对本发明的优选实施例进行了说明,但本发明不限于这些实施例,在不超出本发明的宗旨的范围内,可进行结构的附加、省略、置换、以及其他的变更。 Above, preferred embodiments of the present invention has been described, but the present invention is not limited to these embodiments, without departing the scope of the gist of the present invention may be additional, omissions, substitutions, and other modifications. 本发明不受上述说明的限定,而只受所附权利要求书限定。 The present invention is not limited to the above description, but only by the appended claims.

Claims (14)

1.一种透明天线,具有可透过350nm~780nm的可见光波长区域的光、并且以100MHz~20GHz频段辐射电磁波的辐射元件,其中, 上述辐射元件是由ITO薄膜和FTO薄膜的一方或双方构成的透明导电膜,该透明导电膜的膜厚大于等于100nm,在上述可见光波长区域下的透射率大于等于40%,薄膜电阻小于等于20Ω/□。 1. A transparent antenna may be 350nm ~ 780nm light transmitted through the visible light wavelength region having radiating elements and to 100MHz ~ 20GHz frequency electromagnetic radiation, wherein the radiating element is constituted by one of the ITO film and an FTO film, or both a transparent conductive film, film thickness of the transparent conductive film is 100 nm or not less than, the transmittance in the above visible wavelength region is greater than or equal to 40%, a sheet resistance of less than or equal 20Ω / □.
2. 根据权利要求1所述的透明天线,其中,上述透明导电膜形成在透明电介质基板上。 The transparent antenna according to claim 1, wherein the transparent conductive film formed on a transparent dielectric substrate.
3. 根据权利要求1所述的透明天线,其中,上述透明导电膜的膜厚大于等于100nm,在上述可见光波长区域下的透射率大于等于60%, 薄膜电阻小于等于20D/口。 The transparent antenna according to claim 1, wherein the thickness of the transparent conductive film is 100 nm or not less than, the above-described transmittance at a visible wavelength region is greater than or equal to 60%, a sheet resistance of less 20D / port.
4. 根据权利要求1所述的透明天线,其中,上述透明导电膜的膜厚在大于等于100nm且小于等于lnm的范围内。 4. The transparent antenna according to claim 1, wherein a thickness of the transparent conductive film is not less than 100nm or less within a range of lnm.
5. 才艮据权利要求1所述的透明天线,其中,上述透明导电膜由FTO 薄膜构成。 5. It was Gen transparent antenna according to claim 1, wherein the transparent conductive film made of FTO thin film.
6. 根据权利要求2所述的透明天线,其中,在上述透明电介质基板上形成了上述透明导电膜的状态下,在350nm〜780nm的可见光波长区域下的透射率大于等于30%。 The lower transparent antenna according to claim 2, wherein the transparent conductive film is formed on the transparent state of the dielectric substrate, the transmittance at a visible light wavelength region 350nm~780nm is greater than or equal to 30%.
7. 根据权利要求2所述的透明天线,其中,在上述透明电介质基板上形成了上述透明导电膜的状态下,在350nm〜780nm的可见光波长区域下的透射率大于等于50%。 The state of the transparent antenna as claimed in claim 2, wherein the transparent conductive film is formed on the transparent dielectric substrate, the transmittance at a visible light wavelength region 350nm~780nm is greater than or equal to 50%.
8. 根据权利要求1所述的透明天线,其中,上述透明导电膜形成在不透明的电介质基板上。 8. The transparent antenna according to claim 1, wherein said transparent conductive film formed on a transparent dielectric substrate.
9. 根据权利要求1所述的透明天线,其中,在lGHz〜12GHz下, 与使用相同尺寸的金属薄膜制作的天线相比,增益下降小于等于6dB, 辐射效率大于等于20%。 9. The transparent antenna according to claim 1, wherein at lGHz~12GHz, as compared with the metal thin film fabricated using the same antenna size, 6dB less gain reduction, the radiation efficiency is 20% or more.
10. 根据权利要求1所述的透明天线,其中,在lGHz〜12GHz下, 由透明导电膜的薄膜电阻导致的增益下降率小于等于0.5dB/ ( Q/口), 辐射效率的下降率小于等于5%/ ( O/口)。 10. The transparent antenna according to claim 1, wherein at lGHz~12GHz, the gain reduction rate of a film resistance of the transparent conductive film due to less 0.5dB / (Q / port), the radiation efficiency drop rate less than or equal 5% / (O / port).
11. 根据权利要求l所述的透明天线,其中,该透明天线是单极型天线,上述透明导电膜形成为四边形,其下边与电路电连接,并且,下边Wp上边W2、高L满足0.1mm《Wi《15mm、 0.1mm《W2《15mm、 2mm《L《50mm的关系。 11. The transparent antenna according to claim l, wherein the transparent antenna is a monopole antenna, the transparent conductive film is formed in a quadrangle, which is electrically connected to the circuit lower, and the lower side W2 of the upper Wp, satisfy high 0.1mm L "Wi" 15mm, 15mm, 2mm relationship 0.1mm "W2" "L" 50mm of.
12. 根据权利要求l所述的透明天线,其中,该透明天线是双极型天线,上述透明导电膜由平行的2条带状基部、和从该基部的一端弯曲且向外方延伸的四边形形状的2个主体部构成,各个基部的另一端与电路电连接,并且,主体部的基部侧的边的长度Wp与Wi相对的边的长度\¥2、主体部的长度L、基部的长度\¥3、基部间隔G满足0.1mm《 W^15mm、 0.1mm《W2《15mm、 0《W3《10mm、 2mm《L《50mm、 0.05mm《G《5mm的关系。 12. The transparent antenna according to claim l, and said base portion is bent from one end of and extending outward quadrilateral claim, wherein the transparent antenna is a dipole antenna, the transparent conductive film of the base by two parallel strip, two body portions shaped configuration, the other end of the circuit is electrically connected to the respective base portion, and the length Wp side of the base side of the main body portion and Wi opposite sides of length \ ¥ 2, L, length of the base of the length of the body portion \ ¥ 3, the base of the gap G satisfy 0.1mm "W ^ 15mm, 0.1mm" relationship W2 "15mm, 0" W3 "10mm, 2mm" L "50mm, 0.05mm" G "5mm in.
13. 根据权利要求l所述的透明天线,其中,上述透明导电膜形成在具有电介质筐体的无线设备的表面、或显示器的内外面的一方或双方上。 13. The transparent antenna according to claim l, wherein the transparent conductive film is formed on one of the inner and outer surface of the wireless device having a dielectric housing member, or a display or both.
14. 根据权利要求l所述的透明天线,其中,具有以下构造:上述透明导电膜形成在具有电介质箧体的无线设备的表面、或显示器的内外面的一方或双方上,并且层叠了把该透明导电膜夹在中间的电介质基板。 14. The transparent antenna according to claim l, wherein having the following structure: the transparent conductive film is formed on one of the inner and outer surface of the wireless device having a dielectric body trunk, or a display or both, and laminated to the the transparent conductive film interposed dielectric substrate.
CN 200710164301 2006-10-20 2007-10-09 Transparent antenna CN101188324A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006-286244 2006-10-20
JP2006286244 2006-10-20

Publications (1)

Publication Number Publication Date
CN101188324A true CN101188324A (en) 2008-05-28

Family

ID=38982627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710164301 CN101188324A (en) 2006-10-20 2007-10-09 Transparent antenna

Country Status (3)

Country Link
JP (1) JP2009533888A (en)
CN (1) CN101188324A (en)
WO (1) WO2008047953A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067243B (en) 2008-06-24 2012-06-13 日本曹达株式会社 Transparent conductive film having FTO/ITO multilayer body
CN103891158A (en) * 2012-10-11 2014-06-25 松下电器产业株式会社 Information processing terminal apparatus
CN109713442A (en) * 2019-01-03 2019-05-03 京东方科技集团股份有限公司 A kind of antenna and preparation method thereof, transparency window

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239842B2 (en) * 2008-12-25 2013-07-17 住友電気工業株式会社 Traffic light
CN103262342B (en) 2010-12-16 2016-08-10 3M创新有限公司 Transparency micro-patterning RFID antenna and the goods of assembling transparency micro-patterning RFID antenna
EP3226441A1 (en) 2016-04-01 2017-10-04 Alcatel-Lucent España, S.A. Apparatus for wireless broad band fixed access and use of this apparatus
WO2018186375A1 (en) 2017-04-04 2018-10-11 株式会社デンソー Light-transmissive antenna, window affixing type communication module, and periphery monitoring unit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198401A (en) * 1987-02-13 1988-08-17 Toppan Printing Co Ltd Transparent antenna
JPH10233612A (en) * 1997-02-19 1998-09-02 Sony Corp Antenna system
JP4223174B2 (en) * 2000-05-19 2009-02-12 Dxアンテナ株式会社 Film antenna
US6973709B2 (en) * 2001-04-19 2005-12-13 Chunghwa Picture Tubes Method of manufacturing printed-on-display antenna for wireless device
DE10135951A1 (en) * 2001-07-24 2003-02-20 Siemens Ag Mobile radio terminal
JP2003209421A (en) * 2002-01-17 2003-07-25 Dainippon Printing Co Ltd Rfid tag having transparent antenna and production method therefor
US20070128905A1 (en) * 2003-06-12 2007-06-07 Stuart Speakman Transparent conducting structures and methods of production thereof
DE602004014257D1 (en) * 2004-06-02 2008-07-17 Sony Ericsson Mobile Comm Ab Transparent conductive antenna for a portable communication device
JP2006259243A (en) * 2005-03-17 2006-09-28 Seiko Epson Corp Electrophoresis display device and its manufacturing method, and electronic equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067243B (en) 2008-06-24 2012-06-13 日本曹达株式会社 Transparent conductive film having FTO/ITO multilayer body
CN103891158A (en) * 2012-10-11 2014-06-25 松下电器产业株式会社 Information processing terminal apparatus
CN109713442A (en) * 2019-01-03 2019-05-03 京东方科技集团股份有限公司 A kind of antenna and preparation method thereof, transparency window

Also Published As

Publication number Publication date
JP2009533888A (en) 2009-09-17
WO2008047953A1 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
ES2314080T3 (en) Vehicle windshield with fractal antenna (s).
US7126537B2 (en) Cylindrical conformable antenna on a planar substrate
US6268831B1 (en) Inverted-f antennas with multiple planar radiating elements and wireless communicators incorporating same
US7102572B2 (en) Antenna and wireless communication card
US20130249768A1 (en) Multi-band monopole antennas for mobile communications devices
CN1930732B (en) Integrated multiband antennas for computing devices
CN1864301B (en) Cover structure for a radio device
EP2273611B1 (en) Multi-band monopole antenna for a mobile communications device
CN100416914C (en) Planar antenna structure and radio equipment
CN101174730B (en) Printing type antenna
TWI223468B (en) Broadband planar inverted F antenna
EP1493204B1 (en) Multi-band planar antenna
CN101443957B (en) Modified inverted-F antenna for wireless communication
CN100474695C (en) Dual band patch bowtie slot antenna structure
EP0829110B1 (en) Printed monopole antenna
US8138981B2 (en) Antenna set, portable wireless device, and use of a conductive element for tuning the ground-plane of the antenna set
US7450077B2 (en) Antenna for efficient body wearable applications
KR20080079817A (en) Multi-band antenna and mobile-communication terminal comprising the same
CN100382385C (en) Loaded antenna
US6791498B2 (en) Wireless terminal
US20120262343A1 (en) Wideband antenna and methods
CN1734836B (en) antenna
US20080180333A1 (en) Compact antenna
US7928915B2 (en) Multilevel ground-plane for a mobile device
US6008774A (en) Printed antenna structure for wireless data communications

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)