CN101176036B - 激光图像显示装置和激光图像显示屏幕 - Google Patents
激光图像显示装置和激光图像显示屏幕 Download PDFInfo
- Publication number
- CN101176036B CN101176036B CN2006800169051A CN200680016905A CN101176036B CN 101176036 B CN101176036 B CN 101176036B CN 2006800169051 A CN2006800169051 A CN 2006800169051A CN 200680016905 A CN200680016905 A CN 200680016905A CN 101176036 B CN101176036 B CN 101176036B
- Authority
- CN
- China
- Prior art keywords
- laser
- image display
- diffusing layer
- scattering body
- half transmitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000009792 diffusion process Methods 0.000 claims abstract description 22
- 230000005540 biological transmission Effects 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 20
- 238000000465 moulding Methods 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 16
- 229920005989 resin Polymers 0.000 claims description 16
- 238000002310 reflectometry Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 36
- 230000003287 optical effect Effects 0.000 description 31
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000007767 bonding agent Substances 0.000 description 7
- 239000013307 optical fiber Substances 0.000 description 7
- 210000001525 retina Anatomy 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 230000002349 favourable effect Effects 0.000 description 5
- 239000003086 colorant Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241000931526 Acer campestre Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/54—Accessories
- G03B21/56—Projection screens
- G03B21/60—Projection screens characterised by the nature of the surface
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Projection Apparatus (AREA)
- Overhead Projectors And Projection Screens (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
一种激光图像显示和用于激光图像显示装置的激光图像显示屏幕。所述激光图像显示装置配置有用于发射激光束的激光光源和用于投影激光束的激光图像显示屏幕(10)。激光图像显示屏幕(10)配置有用于散射反射激光束的反射散射体(11)和与反射散射体(11)实质上平行设置的半透射漫射层(12)。半透射漫射层(12)反射至少一部分激光束,透射其余的激光束,漫射透射的激光束并且对其进行投影。
Description
技术领域
本发明涉及一种图像显示装置或用于显示图像的装置及其图像显示屏幕。具体地,本发明涉及一种使用激光光源作为光源形成图像的激光图像显示装置,以及所述激光图像显示装置使用的激光图像显示屏幕。
背景技术
当前广泛地采用使用各种方法的图像显示装置。在这么多种图像显示装置中使用的一种图像显示方法是投影显示方法,其中将来自调制光源的光投影到屏幕上并且显示图像。通常,在使用这种方法的图像显示装置中采用的光源是灯光源。然而,灯光源具有寿命短、色彩再现区域有限以及光使用效率低的问题。
为了解决灯光源中的问题,近来试验将激光光源用作投影显示器的光源。在该应用中,将使用激光光源作为光源的图像显示装置称为激光图像显示装置,并且类似地,将使用激光光源作为光源显示图像的屏幕称为激光图像显示屏幕。激光图像显示装置的激光光源具有比灯光源更长的寿命,并且由于激光的强方向性而易于提高光使用效率。另外,激光光源发射的激光单色性极佳,与灯光源相比扩大了颜色再现区域,并且能够实现彩色图像显示。
然而,激光图像显示装置散斑噪声的问题。散斑噪声是一种由图像显示器中使用的激光的高相干性引起的噪声。这种问题在使用灯光源的图像显示装置中不存在。当具有高相干性的激光在屏幕上散射并且到达观察者时,散射的激光彼此干涉,并且观察者识别出精细的不均匀噪声。已经建议了涉及激光图像屏幕和激光图像显示装置的各种技术用于减小散斑噪声。
专利文献1(日本公开专利出版物No.55-65940)公开了一种通过使激光图像显示屏幕振动来去除散斑噪声的方法。然而,当对于较大的激光图像显示屏幕采用这种方法时,用于使激光图像显示屏幕振动的驱动单元必须较大,因此驱动单元的体积和功耗增加。
专利文献2(日本公开专利出版物No.2003-98601)公开了一种激光图像显示屏幕,可以用在背投型激光图像显示装置中,其中从与观察者相对一侧的激光图像显示屏幕的背面投影图像、并且通过透射的激光向观察者提供图像。在专利文献2中公开的激光图像显示屏幕通过使用包括两种类型光漫射板的结构减小了散斑噪声。
图1是在专利文献2中公开的激光图像显示屏幕的示意图。激光图像显示屏幕包括第一和第二漫射板28a和29b。该图是描述了由激光图像显示屏幕相对于两个激光束25和27产生的光路长度差的视图,所述两个激光束以相同的角度进入第一漫射板29a,透射通过所述第一漫射板,并且到达视网膜上在观察者V识别时认为是相同的一个区域。进入第一光漫射层29a的激光被第一漫射板29a漫射,并且沿各个方向传播。已经从第一光漫射板层29a出射的至少一部分激光进一步进入第二光漫射层29b,被漫射,并且从该层出射到达观察者V。该屏幕是用于背投型激光图像显示装置的激光图像显示屏幕,目的在于通过使用具有不同漫射效果的两个漫射板29a和29b减小散斑噪声。
当将这种屏幕用于激光图像显示屏幕时,沿各个方向漫射的无穷数目的激光束从屏幕出射。这无穷数目的激光束包括激光束25和27。激光束25和27从图的右侧以相同的入射角度进入第一漫射板29a。由于第一散射板29a的漫射效应,激光束25以相对于漫射板29a和29b的主表面θ角度从第一漫射板29a出射,然后进入第二漫射板29b,其中由于第二漫射板29b的漫射效应,光路返回到与相对于第一漫射板29a的入射角度相同的方向,并且到达观察者V的眼睛。另一方面,激光束27以与激光束25相同的入射角度进入第一漫射板29,通过与激光束27进入所述板时的光路相同方向的光路,透射第一和第二漫射板29a和29b,从所述板出射并且到达观察者V的眼睛。
激光束25和激光束27的光路长度差近似为:T((1/cosθ)-1),其中T是第一漫射板29a和第二漫射板29b之间的距离,θ是第一漫射层29a的漫射角度。当θ接近0时,激光束25和27在观察者V的视网膜处彼此强烈地干涉。在这种情况下,光路长度差逐渐接近0。因此,观察者V可识别的散斑噪声仍然具有较强强度。
在专利文献2中,没有针对由两种类型光漫射板引起的诸如多重反射等问题进行描述,这被认为是应该进行的。
不可能将在专利文献2中公开的激光图像显示屏幕用于正面投影类型的激光图像显示装置,其中从与观察者相同的一侧(即激光图像显示屏幕的正面)投影图像,并且通过反射激光向观察者提供图像。
在专利文献1中公开的方法可应用于正面投影类型的激光图像显示装置。然而如上所述,在专利文献1中公开的方法难以在用于显示大图像的大激光图像显示屏幕上实现。
专利文献1:JP No.55-6540A
专利文献2:JP No.2003-9801A
发明内容
本发明要解决的问题
考虑到以上问题,本发明目的在于提供一种激光图像显示装置及其激光图像显示屏幕,该激光图像显示装置能够向观察者提供具有任意尺寸、且去除或至少减小了散斑噪声的彩色高质量图像。
解决问题的手段
在一个方面中,本发明提出了一种用于投影激光的激光图像显示屏幕,所述激光图像显示屏幕包括:散射和反射激光的反射散射体;以及半透射漫射层,与反射散射体实质上平行设置,其中半透射漫射层反射至少一部分激光,并且透射其余的激光,并且漫射和输出透射的激光。
在本发明的一个方面中,优选地,与半透射漫射层在反射散射体相对一侧的边界与反射散射体之间的距离大于等于50微米,并且小于等于2毫米。
在本发明的一个方面中,优选地,半透射漫射层包括纸材料。
在另一个方面中,本发明提出了一种激光图像显示装置,包括:发射激光的激光光源以及投影激光的激光图像显示屏幕,其中激光图像显示屏幕包括:散射和反射激光的反射散射体以及与反射散射体实质上平行设置的半透射漫射层,其中半透射漫射层反射至少一部分激光,并且透射其余的激光,并且漫射和输出透射的激光。
在本发明的另一个方面中,优选地,还将接收激光并且输出激光同时偏转前进方向的光偏转元件设置在激光光源和激光图像显示屏幕之间。
在本发明的另一个方面中,优选地,半透射漫射层在反射散射体相对一侧的边界与反射散射体之间的距离d、激光发射的激光的中心波长λ和激光的半宽度Δλ之间的关系满足2d×Δλ>λ2。
本发明的效果
根据本发明的激光图像显示装置及其激光图像显示屏幕是便宜的,并且可以与任意尺寸的图像显示相适应,并且可以显示其中去除或至少减小散斑噪声的彩色高质量图像。
附图说明
图1是由专利文献2的激光图像显示屏幕提供给激光的光路长度差的图。
图2A是根据本发明第一实施例的屏幕的部分截面示意图。
图2B是提供本发明的屏幕提供给激光的光路长度差的图。
图3是根据本发明第一实施例的屏幕的变体的部分截面示意图。
图4是根据本发明第一实施例的激光图像显示装置和图像评估装置的示意图。
图5是根据本发明第二实施例的屏幕的部分截面示意图。
图6是根据本发明第三实施例的激光图像显示装置和图像评估装置的示意图。
图7A是旋转柱面透镜的平面图。
图7B是旋转柱面透镜的操作的透视图。
图7C是具有两片结构的旋转柱面透镜的操作的透视图。
图7D是旋转柱面透镜的变体的平面图。
图8是根据本发明第四实施例的激光光源的结构示意图。
图9A是根据本发明第四实施例的红色激光光源的特征曲线。
图9B是根据本发明第四实施例的绿色激光光源的特征曲线。
图9C是根据本发明第四实施例的蓝色激光光源的特征曲线。
数字或符号的解释
10、100、101激光图像显示屏幕
11、110反射散射体
2、120半透射漫射层
12A、12C半透射纸
12B、13树脂膜
41R红色激光光源
41G绿色激光光源
41B蓝色激光光源
42棒状积分器
43照明光学系统
44空间光调制元件
46投影透镜
47视觉相机
51旋转柱面透镜
51a旋转柱面透镜的变体
53驱动单元
71柱面透镜元件
71a柱面透镜元件的变体
81红色激光光源
83激光二极管芯片阵列
85光纤
87多模光纤
811激光二极管芯片
812激光二极管芯片
813激光二极管芯片
814激光二极管芯片
815激光二极管芯片
816激光二极管芯片
817激光二极管芯片
818激光二极管芯片
具体实施方式
现在参考附图描述本发明的实施例。
(第一实施例)
根据本发明的第一实施例涉及在正面投影型激光图像显示装置中使用的激光图像显示屏幕。图2A是根据第一实施例的激光图像显示屏幕10的部分截面示意图。激光图像显示屏幕10包括反射散射体11和半透射漫射层12。在以下描述中,将“激光图像显示屏幕”简称为“屏幕”。
激光图像显示装置通过调制由激光光源发射的激光来形成图像。在正面投影型激光图像显示装置中,将形成图像的激光投影到屏幕10正面上,即观察者V一侧的屏幕10上。
半透射漫射层12在观察者V一侧的边界处反射至少一部分入射光LI(组成图像的激光),并且透射其余的光。观察者V一侧的反射是散射反射(也称为漫反射),图2A中用正面散射和反射光LFR表示,并且透射的其余激光在透射通过半透射漫射层12同时被漫射,图2A中用漫射光LS来表示。
反射散射体11散射并且反射从半透射漫射层12一侧的边界进入的全部或至少大多数激光。
图2A示出了在反射散射体11的半透射漫射层12一侧的边界处反射的激光作为内部散射和反射光LRR。为了简化说明起见,省略了从激光光源(未示出)到反射散射体11的内部散射和反射光LRR的光路。内部散射和反射光LRR再次进入半透射漫射层12,并且在透射通过半透射漫射层12同时受到漫射效应。图中,将漫射的内部散射和反射光LRR称为内部散射、反射和漫射光LRS。内部散射、反射和漫射光LRS以预定的强度分布出射,如同来自半透射漫射层12的观察者V一侧的边界的面积微元S的发散激光。反射散射体11对激光的散射反射不局限于沿附图平面内的方向的散射反射,而是可以沿着包括朝向附图平面外部方向的各种方向。
从激光光源(未示出)出射并且到达半透射漫射层12的激光的一部分在半透射漫射层12的观察者V一侧的边界处被散射和反射,如同正面散射和反射光LFR,并且其余激光进入半透射漫射层12,在透射同时被漫射,当到达反射散射体11时被散射和反射,再次进入半透射漫射层12,在透射的同时被漫射,并且从半透射漫射层12的观察者V一侧的边界出射。因此,屏幕10至少利用反射散射体11的两个表面以及半透射漫射层12的观察者V一侧的边界,散射和反射组成图像的激光。在实现本发明目的时,反射激光的表面不局限于两个表面。本发明不排除具有如下结构的激光图像显示屏幕:在三个或更多表面处反射激光,以便激光到达观察者V的眼睛。
在反射散射体11处朝着观察者V散射和反射的激光在从激光光源到反射散射体11的光路(光路的前一半)以及从反射散射体11到观察者V的光路(光路的后一半)上受到半透射漫射层12的漫射效应。在光路的前一半中,设置半透射漫射层12,因此进入半透射漫射层12的激光被半透射散射层12漫射,并且与当省略半透射漫射层12时相比,所述激光以各种角度进入反射散射体11的半透射漫射层12一侧的边界。因此,受到进行调制以通过激光形成图像的最小调制单元(例如在调制装置中包含的像素)的任意单元(一个像素)调制的激光,以各种入射角度到达反射散射体11。换句话说,在空间上接近的相干激光以各种角度进入反射散射体11,由于反射散射体11,激光的反射角度的分布包括更多数量的角度,即提供了更好的多样化,从而可以使散射和反射光对于观察者V的光路长度不同。因此,可以防止在观察者V的视网膜上在散射和反射光之间发生干涉。
反射散射体11具有以下效果:通过激光进入的位置和/或入射角度中的轻微差别,极大地并且非线性地改变反射激光的方向。如上所述,由于光路的前一半中半透射漫射层12的漫射效应,由一个任意调制单元调制的激光能够以不同的入射角度到达反射散射体11。与省略了半透射漫射层12时相比,由于半透射漫射层12的效应,可以更加可靠和有效地向激光提供反射散射体11的散射效应。
光路的后一半中半透射漫射层12对于激光的漫射效应防止了由反射散射体11散射和反射的激光(例如内部散射和反射光LRR)直接到达观察者V。
在光路的后一半中,例如,内部散射和反射光LRR受到半透射漫射层12的漫射效应(例如,如所示的内部散射、反射和漫射光LRS),并且有效光源面积增加。这里所指的有效光源面积是指观察者V识别的光源图像的面积。光的干涉通常随着光源面积的增加而降低。因此,可以通过增加有效光源面积减小散斑噪声。
例如,已经从反射散射体11的一点出射的内部散射和反射光LRR通过半透射漫射层12改变为相对于观察者V具有面积微元S的有效光源面积的内部散射、反射和漫射光LRS。
通常,当相干光散射并且进入人眼,并且通过不同路径到达人的视网膜上的一个点并且彼此干涉时,产生散斑噪声。根据本发明的屏幕10通过增加激光相对于观察者V的有效光源面积并且减小激光的相干性,减小了观察者V识别的散斑噪声。在已经从激光光源出射的激光中,被半透射漫射层12反射并且到达观察者V(未示出)的激光的存在有助于减小激光的相干性。被半透射漫射层12反射向观察者V的(没有到达反射散射体11)激光与被反射散射体11反射并且到达观察者V的激光一起到达观察者V。因此,相对于观察者V的有效光源面积具有比上述面积微元S大的面积,因此进一步增强了散斑噪声减小效应。因此,屏幕10具有去除观察者V识别的散斑噪声的效应。
图2B是描述了由屏幕10的反射散射体11提供的相对于两个激光束21和23的光路长度差的视图,这两个激光束以相同的角度进入反射散射体11上彼此非常靠近的位置,然后被反射,并且到达视网膜上就观察者的识别而言认为是相同的一个区域。在图中为了简化描述起见,省略了屏幕10的半透射漫射层12。
如上所述,当散射光在观察者V的视网膜上干涉时产生散斑噪声。在这种情况下,由于彼此干涉的散射光之间的光路长度差,散斑噪声的对比度改变。干涉光的对比度变得越强,光路长度差变得越小。并且因此,观察者V识别的散斑噪声增加。另一方面,光路长度差变得越大,干涉光的对比度变得越弱,并且观察者越不可能将这种干涉光识别为散斑噪声。参考图2B,激光束21和23进入具有凹凸形状的反射散射体11上的两个不同点。激光束21进入反射散射体11的凹凸形状(耦合波形状)的倾斜部分,即连接顶点和相邻顶点并且在精细观点看来相对于反射散射体11的主表面倾斜的那部分,而激光束23进入凹凸形状(耦合波形状)的顶点,即按照精细观点相对于反射散射体11的主表面倾斜为0或者实质为0的那部分。进入倾斜部分的激光束21在倾斜部分的一个点处反射,并且在相邻倾斜部分的一个点处再次反射,并且到达观察者V的眼睛。另一方面,激光束23在其已经进入的顶点的一个点处反射,并且到达观察者V的眼睛。因为反射散射体11提供相对于激光束21和23之间的光波长足够大的光路长度差,观察者V识别的干涉光的强度变得非常小。
如图2B所示,根据本发明的屏幕10通过反射散射体11的散射反射(漫反射),提供与图1中所示屏幕相比具有较大光程长度差的激光,即使对于通过反射散射体11从屏幕上的两个接近点出射、并且以实质上相同的角度到达观察者V的激光。在反射散射体11的散射反射(参见图2B)时,以相同的角度从屏幕10上的两个接近点出射并且到达观察者V的眼睛的激光通过完全不同的路径。因此获得了较大的光路长度差。除了反射入射激光之外,反射散射体11具有向以相同角度进入接近位置的激光提供光路长度差的效应,这在传统示例中不能获得。
根据本发明的屏幕10的反射散射体11具有如图2B所示的凹凸形状图案(耦合波形状图案),用于产生散射反射的目的。关于表面平面内的任意方向,反射散射体11的凹凸形状图案从凸起部分(凹入部分)的顶点到相邻凸起部分(凹入部分)的顶点的节距小于等于10毫米,更优选地小于等于1毫米。凹凸形状的投影顶点(凸起部分的顶点)与相对一侧的投影(下陷的)顶点(凹入部分的顶点)之间的阶梯差大于等于1微米,优选地大于等于10微米,更优选地大于等于50微米。凹凸形状只需要是用于漫射反射入射光的形状。凹凸形状理想地包括通过组合多个波形或间歇形状形成的形状之一,间歇形状即在精细观点来看与反射散射体11的主平面实质垂直倾斜的倾斜部分。
反射散射体11只需要包含用于散射反射激光的材料。反射散射体11可以包括在使用普通灯光源的投影仪中所使用的珠(bead)型屏幕或布(mat)型屏幕。另外,只要可以散射和反射构成图案的激光,还可以使用包括除了以上材料之外材料的屏幕。因此,反射散射体11可以包含诸如纸材料或壁材料之类的材料,或者可以具有配置为包括塑料、玻璃、金属等的粗糙表面。
由于漫射效应,与只配置反射散射体11时相比,根据本发明的屏幕10的半透射漫射层12包含较宽的视角。
半透射漫射层12在观察者V一侧和反射散射体11一侧的两个边界部分处都包含具有漫射效应的材料,其中两个边界中观察者V一侧的边界在其至少一部分中具有漫射表面。优选地,半透射漫射层12的反射散射体11一侧的边界具有漫射表面。
关于要使用的激光,优选地半透射漫射层12中,进入至少一个边界的激光从另一边界出射的比率,即透射率大于等于10%。如果小于10%,激光不会足够地到达反射散射体11,亮度降低,并且散斑噪声减小效应也变小,因此不是理想的。为了获得高屏幕亮度的屏幕和散斑噪声减小效应,优选地半透射漫射层12的透射率大于等于30%。更优选地,半透射漫射层12的透射率大于等于50%。
优选地,半透射漫射层12的霾(haze)值(朦胧(cloudiness)值)大于等于20%。更优选地大于等于40%,最优选地大于等于60%。
优选地,半透射漫射层12的反射率大于等于3%。更优选地大于等于10%,以及最优选地大于等于20%。
半透射漫射层12可以由单一材料构成。另外,半透射漫射层12可以具有包括多个漫射表面的多层结构。在多层结构的情况下,可以通过以粘合剂、树脂膜等进行堆叠来在正面和背面形成具有漫射表面的材料。如果半透射漫射层12的边界之一形成相对于进入的激光的镜面,理想地使用具有实质上等于半透射漫射层12的折射率的粘合剂,将形成镜面的边界粘附到反射散射体11,以防止镜面反射激光。此外,如果半透射漫射层12具有多层结构,理想地使用类似的粘合剂配置多层结构,以防止每一层之间形成镜面。
半透射漫射层12在边界的至少一部分上包括漫射表面。因此,半透射层12去除了多层结构中表面反射的激光和由反射散射体11反射的光的干涉图案噪声。
可以利用各种粘合剂将半透射漫射层12和反射散射体11进行粘合,使得屏幕10具有一体结构。通过将半透射漫射层12和反射散射体11利用之间插入的树脂膜进行粘附,来维持半透射漫射层12和反射散射体11之间的间隔恒定,这也是有利的。在半透射漫射层12与观察者V相对一侧的边界上形成反射散射体11,并且形成一体结构的屏幕10。
当使用诸如树脂膜之类具有平滑表面的材料时,优选地,使用折射率与具有平滑表面的材料的折射率实质相同的粘合剂等,紧密地粘附半透射漫射层12和反射散射体11的边界以及树脂膜。因此,即使使用树脂膜等,也防止了由于相关表面处的反射引起的干涉图案噪声。
优选地,半透射漫射层12的观察者一侧的边界和反射散射体之间的距离d大于等于50微米并且小于等于2毫米。如果小于50微米,半透射漫射层12的观察者V一侧的边界处的有效光源面积(与图2A中的面积微元S相对应的面积)不会变得足够大,从而散斑噪声减小效应变得不够,并且因此该结构不是理想的。如果大于2微米,有效光源面积变得太大。在这种情况下,图像的分辨率退化,从而观察者V观察到的图像可能会模糊,因此该结构不是理想的。距离d变大,散斑噪声减小效应提高,但是图像质量的退化是必然的。更优选地,距离d小于等于1微米,以便再现所需高分辨率图像。
优选地,半透射漫射层12在观察者V一侧的边界和反射散射体之间的距离d中,半透射漫射层12占据的比例大于等于5%,更优选地大于等于20%。即,优选地半透射漫射层12的厚度大于等于0.05×d,更优选地大于等于0.20×d。通过增加半透射漫射层的占据比例,多重散射更容易发生,这有助于散斑噪声进一步减小。
图3示出了第一实施例的屏幕的变体。屏幕100包括:具有堆叠结构的半透射漫射层120,所述堆叠结构包括半透射纸12A和树脂膜12B;以及包括珠型屏幕11A的反射散射体110,其中使用粘合剂将半透射漫射层120和反射散射体110附在一起。
在本变体100中,与屏幕10类似,半透射漫射层120具有相对于透射光的反射效应和漫射效应,并且反射散射体110具有相对于入射光的散射反射效应。一部分入射光31被半透射漫射层120反射,而透射光被漫射并且到达反射散射体110。反射散射体110散射并且反射透射光,以便再次将光输入半透射漫射层120,并且将光以实质上的发散光的形式从面积微元S输出。光33U和33L示出了以实质上的发散光的形式从面积微元S出射的光。
在本变体中,优选地半透射漫射层120至少包括半透射纸12A。半透射纸12A可以获得正面和背面漫射表面,并且实现适当的透射率。另外,在成本方面与制造专用漫射板和透镜相比也是非常有利的。可以将诸如日本纸、描图纸(tracing paper)等纸材料用作半透射纸12A。
通过使用屏幕100来执行散斑噪声减小效应的评估。图4是激光图像显示装置和用于评估的视觉相机(观看相机)47和屏幕100的图。激光图像显示装置包括:红色、绿色和蓝色的激光光源41R、41G和41B;棒状积分器42;照明光学系统43;空间光调制元件44;二向棱镜45和投影透镜。视觉相机47包括:光瞳透镜(眼睛透镜)47a;放大透镜47b;和CCD 47c。在该评估中使用的屏幕100使用描图纸作为半透射纸12A并且使用聚酯膜作为树脂膜12B。半透射漫射层120的激光入射表面和反射散射体110之间的距离d是200微米(μm)。
将从RGB三种颜色的激光光源41R、41G、41B出射的激光引导到棒状积分器42中。激光在棒状积分器42中重复地内部反射直到到达出射端为止,然后通过照射光学系统43(中继透镜、反射镜43a、场透镜43b等),并且以具有矩形截面的光束的形式投影到空间光调制元件44上,在所述矩形截面中光强度分布是均匀的。空间光调制元件44调制光束,并且形成二维图像。RGB三色已调制激光是通过二向棱镜45组合的波,并且通过投影透镜46投影到屏幕100上作为全色二维图像。
视觉相机47包括:与人眼相对应的光瞳透镜47a;放大透镜47b,用于放大在CCD 47c上的虚拟视网膜上产生的图像(包括散斑噪声);以及CCD 47c。使用视觉相机47,基于CCD43的光接收量来测量和评估在人的视网膜上形成的图像中包含的散斑噪声。
在评估时,通过绿色激光光源41G只出射绿色激光,将均匀的图像显示在屏幕100上,并且使用从均匀图像接收光的CCD元件中的光接收量的平均值X与散斑噪声所引起的均匀图像的强度变化的标准偏差σ的比率σ/X。作为比较示例,示出了其中使用普通珠型屏幕来代替屏幕100的情况。
评估结果
第一实施例变体(屏幕100):σ/X=5.1%
比较示例(珠型屏幕):σ/X=14.6%
第一实施例变体的屏幕100的σ/X减小为小于等于比较示例的σ/X的一半,表明实现了去除散斑噪声的效果。与比较示例相比较,屏幕100可以提供较宽的观看角度。尽管屏幕100是多层结构,没有发现干涉图案噪声等的产生。因此显而易见的是根据本发明的激光图像显示屏幕具有优秀的散斑噪声去除特性。
根据本发明的屏幕10、100不要求用于驱动屏幕的驱动单元。因此,有利的是可以安装在任何安装位置,并且可以将其用在各种尺寸的屏幕中,而无需功耗。
使用根据本发明的激光图像显示屏幕的激光图像显示装置可以显示减小了散斑噪声的图像。
(第二实施例)
图5示出了根据本发明第二实施例的激光图像显示屏幕101的部分截面示意图。具体地,屏幕101是在成本方面优越并且易于携带的简化结构的激光图像显示屏幕。屏幕101包括作为半透射漫射层的半透射纸12C和作为反射散射体的普通纸111,其中将树脂膜13插入在半透射漫射层和反射散射体之间。树脂膜13和半透射纸12C和普通纸111用粘合剂进行粘附,使得树脂膜的平滑表面导致的表面反射不会发生。
半透射纸12C使用与在第一实施例中描述的半透射漫射层中使用的材料相似的材料。
普通纸111只需要相对于在图像显示中使用的激光具有散射反射效果的材料,并且可以使用通常使用的普通纸。优选地,普通纸111不包含荧光剂,以便从激光光源获得生动地彩色图像。
可以利用与所谓的层压纸类似的步骤制造屏幕101,并且因此在制造成本方面是有利的。在制造中使用的材料只包括易于获得的材料,并且因此可以非常廉价的制造,在成本方面是有利的。可以用普通书写材料将文本和图绘制在屏幕上。屏幕101非常轻,并且便于携带。
示出了屏幕101的制造示例和散斑噪声去除效应的评估测量结果。在评估测量中使用的屏幕101由用作半透射纸12C的描图纸、用作树脂膜13的厚度为80μm的聚酯膜以及用作普通纸111的绘图纸构成。示例101与屏幕10类似,半透射纸12C相对于透射光具有反射效应和漫射效应,并且普通纸111相对于入射光具有散射反射效应。一部分入射光51被半透射纸12C反射,透射光被漫射并且到达普通纸111。普通纸111散射并且反射透射光,以便再次将光输入到半透射纸12C,并且将光以实质上的发散光的形式从面积微元S输出。光53U和53L示出了以实质的发散光的形式从面积微元S出射的光。本示例中在半透射漫射层的激光入射表面和反射散射体之间的距离d是150微米。与第一实施例类似,评估屏幕101的散斑噪声,并且发现σ/X=5.4%,因此可以说与比较示例相比极大地减小了散斑噪声。
另外,形成以下两种类型的屏幕(第一和第二屏幕,用于比较距离d),并且与以上所述类似地执行评估测量以研究由于距离d的差别导致的散斑噪声去除效应的变化。
用于比较距离d的第一屏幕:
通过将表面上具有凹凸图案的薄漫射树脂膜(厚度30微米)附到珠型屏幕上来形成该屏幕。在这种情况下,d=40微米。
对用于比较距离d的第一屏幕的评估测量结果:
作为与以上类似地使用激光图像显示装置和视觉相机47执行评估的结果,获得了σ/X=8.1%。认识到与比较示例的屏幕(σ/X=14.6%)相比减小了散斑噪声。然而,评估测量的结果并不具备本发明的前述屏幕结果的质量。这表明了当距离d是40微米时,即当没有满足以上条件(d≥50μm)时,所获得的散斑噪声减小效应相对较弱。
用于比较距离d的第二屏幕:
将描图纸附到具有2毫米厚度的丙烯酸板上,并且将珠型屏幕附到与丙烯酸板相对一侧的表面上。在这种情况下,d=2.1毫米。
对用于比较距离d的第二屏幕的评估测量结果:
作为与以上类似使用激光图像显示装置和视觉相机47的评估的结果,获得了σ/X=4.2%。认识到与比较示例的屏幕(σ/X=14.6%)相比减小了散斑噪声。
此外,使用视觉相机测量其中针对每一个像素重复打开/关闭的测试图案图像。(关闭像素的亮度)/(打开像素的亮度)的亮度比率小于50%,并且识别出图像分辨率的退化。这表明了当距离d是2.1毫米时即当不满足以上条件(d≤2.0mm)时图像质量降低。
(第三实施例)
本发明的第三实施例是激光图像显示装置,其中可以使用本发明前述实施例的屏幕。图6示出了根据第三实施例的激光图像显示装置的结构示意图。在图6中,将与图4相同的参考符号用于与图4相同的部件,并且将省略其描述。
根据本实施例的激光图像显示装置包括光源41R等和棒状积分器42之间的旋转柱面(lenticular)透镜。从RGB三色激光光源41R、41G、41B出射的光被旋转柱面透镜51偏转,并且被引导到棒状积分器42中。旋转柱面透镜51是具有使入射光的出射方向发生偏转的功能的光偏转元件的一种模式。
图7A是旋转柱面透镜51的平面图。旋转柱面透镜51沿圆周方向包括多个柱面透镜元件71,其中每一个元件71沿与径向平行的方向具有实质上均匀的截面。图7B是与旋转柱面透镜51相连的驱动单元53的图。驱动单元53可旋转地驱动旋转轴A,并且旋转柱面透镜51也执行旋转移动。由于这种旋转,在点P1处进入棒状积分器的光的出射角度随时间改变。因为光的偏转方向在旋转柱面透镜51中随时间改变,进入空间调制元件44中包含的任意一个像素(单元)的光的入射角度随时间改变。结果,进入与屏幕101上的任意一个像素相对应的一个区域的光的入射角度也随时间改变。
类似地,因为对于屏幕101的入射角度随时间改变,从第三实施例的屏幕101到达观察者的光随时间改变。观察者将随时间重复改变的光对视网膜的刺激在时间上进行积分,并且将其识别。因此,屏幕的有效光源面积与没有改变角度时相比变大。通过使用利用半透射漫射层和反射散射体的本发明的屏幕101,可以进一步增大有效光源面积。结果,可以将散斑噪声减小为观察者根本不可能识别的水平。
优选地,从屏幕看照射角度的改变量在数值孔径NA方面大于等于NA0.001。如果NA小于0.01,角度的改变量较小,并且不会获得散斑噪声减小效应。当NA大于等于0.002时,可以获得更优选的角度改变量,以将散斑噪声减小为观察者根本不能识别的水平。
与前述实施例类似,仅使绿色激光光源41G输出,使用视觉相机,将绿色均匀图像显示在屏幕101上,并且执行评估。从第三实施例的屏幕101看到的入射角度改变量是NA0.003。在这种情况下,σ/X=3.3%,并且实质上去除了散斑噪声。还视觉评估了散斑噪声,但是没有识别出来。
本发明的激光图像显示装置通过配置屏幕101以及驱动单元53去除了散斑噪声,所述屏幕101包括半透射漫射层和反射散射体,所述驱动单元53控制进入与屏幕101上的一个像素相对应的区域的光的入射角度,使得可以随时间改变入射角度。将旋转柱面透镜51的旋转速度设定为使得将偏转周期设定为观察者不能识别散斑噪声的速度。具体地,理想地以大于等于60Hz的速度改变偏转角度。然而,取决于待显示图像的内容,可以改变下限值。
如图7C所示,相对于激光串联排成一行的旋转柱面透镜51的结构也是有效的。在这种情况下,激光在点P1和点P2处进入柱面透镜元件71。激光在点P1处沿与图平面垂直的方向偏转,并且在点P2处沿与图平面水平的方向偏转,并且偏转方向分别随时间改变。可以通过按照这种方式配置旋转柱面透镜51,来按照复杂的方式二维地改变进入空间光调制元件45的每一个像素的光的入射角度。
附加地或代替地,还可以有利的使用旋转柱面透镜变体51a,其中配置柱面透镜元件71a以便相对于径向形成预定角度α,如图7D所示。在变体51a中,可以通过角度α自由地控制光的偏转方向随时间改变的方向。
在第三实施例中,进行控制使得通过使用旋转柱面透镜51进入屏幕101的光的入射角度随时间改变,但是只要获得类似效果,可以使用其他元件。具体地,可以使用具有如下结构的元件:将激光导引到光纤中并且使光纤振动;移动漫射板、反射镜等。
(第四实施例)
本发明的第四实施例是一种可以在本发明的激光图像显示装置中使用的激光光源。图8是根据本实施例的红色激光光源81的示意图。红色激光81包括具有多个激光二极管(LD)芯片811至818的激光二极管(LD)芯片阵列83,其中通过耦合到多模光纤87的光纤85引导LD芯片811至818的输出光,并且将从多模光纤87出射的激光引入到激光图像显示装置的光学系统中。该图示出了红色激光光源作为示例,但是可应用于其他颜色的激光光源。
当使用多个LD芯片811至818时,使用组合波的中心波长来表示从输出单色光的激光光源输出的激光的波长λ。激光波长的半宽度Δλ通过组合激光的半宽度来表示。通过使用多个LD芯片811至818,红色激光光源81与当使用单个激光二极管相比增加了Δλ。
图9A是红色激光光源81发射的红色激光的特征图。因为使用多个LD芯片811至818,出现了其中叠加了多个峰的宽峰。这种激光具有634.8纳米的中心波长,以及1.9纳米的半宽度ΔλR。
图9B是可以用于本发明的激光图像显示装置中的绿色激光发射的绿色激光的特征图。绿色激光光源使用从多个激光光源发射的激光作为基波,并且利用一个或多个波长转换元件转换基波的波长,并且使用诸如多模光纤之类的适当光学系统将已转换的波组合到相同的轴上。该激光具有540.2纳米的中心波长以及1.2纳米的半宽度ΔλG。
图9C是可以用于本发明的激光图像显示装置中的蓝色激光光源发射的蓝色激光的特征图。蓝色激光光源具有与图8的红色激光光源81类似的结构。在该光源中,使用发射蓝色区域激光的激光二极管。该激光具有445.0nm的中心波长以及2.9纳米的半宽度ΔλB。
在以上实施例中所述的半透射漫射层的光入射表面和反射散射体之间的距离d与半宽度Δλ的关系是:
2dxΔλ>λ2,
其中可以消除由半透射漫射层向观察者一侧反射的光与由反射散射体反射的光之间的干涉,并且可以去除散斑噪声。这里Δλ是ΔλR、ΔλG和ΔλB之一。
与前述评估测量类似,只从红色激光光源81输出红色激光,将红色均匀图像显示在屏幕101上,并且执行σ/X的评估以评估散斑噪声。在本评估测量中,使用具有距离d=150μm的屏幕101。评估测量的结果是σ/X=3.5%。显而易见的是该结果在散斑噪声减小效应方面比绿色激光51G(中心波长540nm,半宽度0.1nm)更好。因此,可以认识到红色激光光源81在减小散斑噪声方面是有效的。还可以视觉上评估散斑噪声,但是不会识别出来。
本发明的激光图像显示装置通过使半透射漫射层的光入射表面和反射散射体之间距离的d与激光光源的波长和半宽度之间的关系为2d×Δλ>λ2,去除了散斑噪声。
当使用图8的多个激光和多模激光使得来自激光光源的激光的波长的半宽度放大时,至少一种颜色的半宽度Δλ大子等于0.5nm(Δλ≥0.5nm)是优选的,并且半宽度可以大于等于1纳米(Δλ≥1nm)是更优选的。此外,优选地半宽度可以小于10纳米(Δλ<10nm),以维持激光振荡的效率和色纯度。
在激光图像显示装置中,使用RGB三色或更多颜色的光源,但是只需要针对一种或更多种颜色满足以上关系,但是更优选地针对所有颜色满足以上关系。
在第四实施例中,使用激光光源中的多个LD芯片来增加光的半宽度Δλ,但是另外可以使用其中使用脉冲振荡或多模激光的增加Δλ的方法。通过在可以容忍图像质量的模糊范围内增加d,即使Δλ较小也可以满足以上关系。
本发明的激光光源可以仅仅是使用激光振荡的光源,可以使用通过对半导体激光器、气体激光器、固体激光器等进行波长转换而获得的SHG激光等。
在本发明的激光图像显示装置中,积分器、照明光学系统、调制元件和投影光学系统不具体地局限于上述那些。可以适当地使用用于图像显示的光学元件。
工业应用性
可以将本发明的激光图像显示屏幕和激光图像显示装置用于显示运动画面和静止画面。
已经使用其中使用RGB三色的情况解释了本发明的激光图像显示装置,但是所述装置可以是单色的显示装置。还使用二维空间调制元件进行了描述,但是也可以将其应用于通过扫描一维调制元件和激光形成图像的激光图像显示装置中。
Claims (6)
1.一种用于投影激光的激光图像显示屏幕,所述激光图像显示屏幕包括:
包括散射和反射激光的屏幕的反射散射体;以及
半透射漫射层,与反射散射体实质上平行设置,其中:
半透射漫射层反射入射到半透射漫射层在反射散射体相反一侧的边界上的至少一部分激光,并且透射其余的激光,并且漫射透射的激光并将透射的激光输出至反射散射体;以及
半透射漫射层在反射散射体相反一侧的边界与反射散射体之间的距离d、激光光源发射的所述激光的中心波长λ和激光的半宽度Δλ之间的关系满足2d×Δλ>λ2。
2.根据权利要求1所述的激光图像显示屏幕,其中半透射漫射层包括纸材料。
3.根据权利要求1所述的激光图像显示屏幕,还包括所述半透射漫射层和所述反射散射体之间的树脂膜,其中
所述半透射漫射层和所述反射散射体通过它们之间插入的所述树脂膜而彼此粘附;以及
所述树脂膜保持所述半透射漫射层在反射散射体相反一侧的边界和所述反射散射体之间的间隔距离恒定。
4.根据权利要求1所述的激光图像显示屏幕,其中:
所述半透射漫射层的透射率大于等于10%;以及
所述半透射漫射层的反射率大于等于10%。
5.一种激光图像显示装置,包括:发射激光的激光光源以及投影激光的激光图像显示屏幕,其中
所述激光图像显示屏幕包括:
包括散射和反射激光的屏幕的反射散射体;以及
半透射漫射层,与所述反射散射体实质上平行设置,
其中所述半透射漫射层反射入射到半透射漫射层在反射散射体相反一侧的边界上的至少一部分激光,并且透射其余的激光,并且漫射透射的激光并将透射的激光输出至反射散射体;以及
半透射漫射层在反射散射体相反一侧的边界与反射散射体之间的距离d、所述激光光源发射的激光的中心波长λ和激光的半宽度Δλ之间的关系满足2d×Δλ>λ2。
6.根据权利要求5所述的激光图像显示装置,还包括接收激光并且输出激光同时偏转激光的前进方向的光偏转元件,
其中将所述光偏转元件设置在所述激光光源和所述激光图像显示屏幕之间。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005143751 | 2005-05-17 | ||
JP143751/2005 | 2005-05-17 | ||
PCT/JP2006/309662 WO2006123613A1 (ja) | 2005-05-17 | 2006-05-15 | レーザ画像表示装置およびレーザ画像表示スクリーン |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101176036A CN101176036A (zh) | 2008-05-07 |
CN101176036B true CN101176036B (zh) | 2010-05-19 |
Family
ID=37431186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006800169051A Expired - Fee Related CN101176036B (zh) | 2005-05-17 | 2006-05-15 | 激光图像显示装置和激光图像显示屏幕 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7796331B2 (zh) |
JP (1) | JP5237635B2 (zh) |
CN (1) | CN101176036B (zh) |
WO (1) | WO2006123613A1 (zh) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4961815B2 (ja) * | 2006-04-17 | 2012-06-27 | セイコーエプソン株式会社 | スクリーン、リアプロジェクタ及び画像表示装置 |
US8192030B2 (en) * | 2007-03-19 | 2012-06-05 | Panasonic Corporation | Laser illuminating device and image display device |
US8068277B2 (en) * | 2008-11-26 | 2011-11-29 | Lg Electronics Inc. | Reflective type screen using a spacer layer |
US8820967B2 (en) * | 2010-02-10 | 2014-09-02 | Koninklijke Philips N.V. | Lighting apparatus |
JP2012128137A (ja) * | 2010-12-15 | 2012-07-05 | Seiko Epson Corp | 反射型スクリーンおよび反射型スクリーンの製造方法 |
EP2687019B1 (en) | 2011-03-14 | 2019-09-04 | Dolby Laboratories Licensing Corporation | 3d projection system |
US8115997B1 (en) * | 2011-03-30 | 2012-02-14 | Martin Chien | Projection screen |
JP5594272B2 (ja) * | 2011-10-14 | 2014-09-24 | 株式会社デンソー | ヘッドアップディスプレイ装置 |
JP5488563B2 (ja) * | 2011-10-21 | 2014-05-14 | カシオ計算機株式会社 | 光源装置及びプロジェクタ |
US8687272B1 (en) * | 2013-04-19 | 2014-04-01 | Laser Light Engines, Inc. | Low-speckle projection screen |
JP5794435B2 (ja) * | 2013-09-25 | 2015-10-14 | ウシオ電機株式会社 | 画像表示システム、及び、反射型スクリーン |
US9753298B2 (en) * | 2014-04-08 | 2017-09-05 | Omnivision Technologies, Inc. | Reducing speckle in projected images |
GB2537192B (en) * | 2015-08-05 | 2017-04-12 | Harkness Screens Int Ltd | A projection screen |
JP6593696B2 (ja) * | 2015-09-25 | 2019-10-23 | 大日本印刷株式会社 | 光走査装置、光学モジュール、照明装置及び投射装置 |
FR3061300B1 (fr) * | 2016-12-26 | 2020-06-12 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede d'observation d'un objet |
JP2018163307A (ja) * | 2017-03-27 | 2018-10-18 | ソニー株式会社 | 画像表示装置、及び画像表示素子 |
CN110750029B (zh) * | 2018-07-06 | 2022-01-04 | 深圳光峰科技股份有限公司 | 投影屏幕 |
CN111198410B (zh) * | 2018-11-19 | 2022-08-12 | 深圳光峰科技股份有限公司 | 散射元件、光源系统及显示设备 |
CN109270703B (zh) * | 2018-11-21 | 2021-03-16 | 四川长虹电器股份有限公司 | 一种消散斑光路及三色激光投影系统 |
US11552441B2 (en) * | 2018-12-06 | 2023-01-10 | Canon Kabushiki Kaisha | Display device and display method |
JP2021144131A (ja) * | 2020-03-11 | 2021-09-24 | 株式会社リコー | 表示装置、及び移動体 |
CN112255830B (zh) * | 2020-10-23 | 2021-11-02 | 深圳市华星光电半导体显示技术有限公司 | 激光感应面板及其制作方法、显示装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2737093B2 (ja) * | 1991-01-29 | 1998-04-08 | 大日本印刷株式会社 | 反射型映写スクリーン |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3893748A (en) * | 1973-11-30 | 1975-07-08 | Eastman Kodak Co | Low scintillation, multi-component projection screen |
JPS5565940A (en) | 1978-11-13 | 1980-05-17 | Matsushita Electric Ind Co Ltd | Laser image display device |
JPH05173094A (ja) * | 1991-12-20 | 1993-07-13 | Sony Corp | レーザ表示装置 |
JPH06266011A (ja) * | 1993-03-15 | 1994-09-22 | Matsushita Electric Ind Co Ltd | 透過型投写スクリーン用光拡散シート、その製造方法およびそれを用いたプロジェクションテレビ |
US5668662A (en) * | 1994-05-12 | 1997-09-16 | Philips Electronics North America Corporation | Front projection screen with lenticular front surface |
JP2003098601A (ja) | 2001-09-21 | 2003-04-04 | Ricoh Co Ltd | 画像表示用スクリーン画像表示装置 |
US6847483B2 (en) * | 2001-12-21 | 2005-01-25 | Bose Corporation | Selective reflecting |
JP4122838B2 (ja) * | 2002-05-16 | 2008-07-23 | ソニー株式会社 | スクリーンおよびその製造方法ならびに投影システム |
JP2004170959A (ja) * | 2002-11-07 | 2004-06-17 | Sony Corp | 投影用スクリーン |
WO2004109390A1 (ja) * | 2003-06-06 | 2004-12-16 | Matsushita Electric Industrial Co., Ltd. | レーザ投射装置 |
-
2006
- 2006-05-15 JP JP2007516278A patent/JP5237635B2/ja active Active
- 2006-05-15 CN CN2006800169051A patent/CN101176036B/zh not_active Expired - Fee Related
- 2006-05-15 US US11/914,694 patent/US7796331B2/en not_active Expired - Fee Related
- 2006-05-15 WO PCT/JP2006/309662 patent/WO2006123613A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2737093B2 (ja) * | 1991-01-29 | 1998-04-08 | 大日本印刷株式会社 | 反射型映写スクリーン |
Also Published As
Publication number | Publication date |
---|---|
CN101176036A (zh) | 2008-05-07 |
JPWO2006123613A1 (ja) | 2008-12-25 |
US20090103176A1 (en) | 2009-04-23 |
US7796331B2 (en) | 2010-09-14 |
WO2006123613A1 (ja) | 2006-11-23 |
JP5237635B2 (ja) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101176036B (zh) | 激光图像显示装置和激光图像显示屏幕 | |
JP5674023B2 (ja) | 光源デバイスおよび表示装置 | |
EP3309610B1 (en) | Dual-colour laser light source | |
JP5776674B2 (ja) | 表示装置および光源デバイス | |
EP1544657B1 (en) | Broadband full white reflective display structure | |
US7019798B2 (en) | Display device | |
WO2014119407A1 (ja) | ヘッドアップディスプレイ装置 | |
CN109496258A (zh) | 广角成像定向背光源 | |
CN103975267A (zh) | 用于头戴式显示器的紧凑照明模块 | |
CN105324605A (zh) | 定向背光源 | |
KR20120031886A (ko) | 광원 디바이스 및 입체 표시 장치 | |
CN104039578A (zh) | 反射式显示装置 | |
KR19980020357A (ko) | 천연색 홀로그래픽 헤드 업 표시 장치 | |
CN104380186A (zh) | 定向背光源中的串扰抑制 | |
CN103913796B (zh) | 一种导光板、背光模组及透明显示器 | |
JP2019164285A (ja) | ヘッドアップディスプレイ及び移動体 | |
JP2013104915A (ja) | 光源デバイスおよび表示装置、ならびに電子機器 | |
CN109239835A (zh) | 波导、成像扩展模组、光源模组、近眼显示系统及设备 | |
EP0811859A2 (en) | Holographic reflector and reflective liquid crystal display using it | |
WO2017131185A1 (ja) | 車両用ヘッドアップディスプレイ装置 | |
WO2006059264A1 (en) | Illumination system using a laser source for a display device | |
CN201965399U (zh) | 反射型微型投影机用光学引擎 | |
JP7581636B2 (ja) | 導光部材、照明装置および表示装置 | |
US20170127043A1 (en) | Auto-multiscopic 3D display and camera system | |
WO2021181917A1 (ja) | 導光部材、照明装置および表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100519 Termination date: 20200515 |
|
CF01 | Termination of patent right due to non-payment of annual fee |