CN101158663B - 碳纳米管修饰电极的制备方法 - Google Patents
碳纳米管修饰电极的制备方法 Download PDFInfo
- Publication number
- CN101158663B CN101158663B CN2007101706996A CN200710170699A CN101158663B CN 101158663 B CN101158663 B CN 101158663B CN 2007101706996 A CN2007101706996 A CN 2007101706996A CN 200710170699 A CN200710170699 A CN 200710170699A CN 101158663 B CN101158663 B CN 101158663B
- Authority
- CN
- China
- Prior art keywords
- carbon nano
- tube
- preparation
- electrode
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种碳纳米管修饰的制备方法,包括原料溶液的配制、碳纳米管在玻碳电极表面的电沉积和层层静电自组装过程三个过程。本发明利用电沉积技术将带有负电荷的碳纳米管沉积到玻碳电极表面,从而解决玻碳电极表面预处理后带负电荷量不足的问题,随后在PDDA溶液和碳纳米管分散液中进行层层静电自组装过程,得到自组装效率高、修饰层稳定的修饰电极。本发明可以将碳纳米管有效地修饰在玻碳电极表面,形成的修饰层对电化学活性物质具有催化作用,提高检测灵敏度,降低氧化反应过电位,提高电极的选择性和稳定性。
Description
技术领域
本发明涉及一种碳纳米管修饰的制备方法,本发明制备的碳纳米管修饰电极属高稳定性和高灵敏度电极可用于检测硫代胆碱、谷胱甘肽、半胱氨酸等具有电化学活性物质的检测。
背景技术
碳纳米管由于其特殊的结构及在物理、化学、电子方面的特异性质,在电化学领域有着广阔的使用前景。众多的研究表明,碳纳米管奇异的电子特性和很高的表面体积比意味着当它被用于电极反应时可以促进电子的转移反应,而且对生物分子具有很好的催化和选择性作用。目前,碳纳米管在修饰电极领域的应用研究主要集中在如何提高其催化性能及选择性方面,碳纳米管修饰层的稳定与否有着至关重要的意义。目前多数的应用采用了直接滴涂法制备碳纳米管修饰电极,即将碳纳米管分散液滴加到电极表面,溶剂挥发后实现修饰功能,但是这种方法存在稳定性方面的严重问题,特别是在流动、搅拌的体系内,修饰层容易脱落,严重影响了修饰电极的实际应用。另外,也有一些研究利用层层自组装技术将碳纳米管修饰到电极表面,但是由于玻碳电极表面带电荷不足导致修饰效率较低。
发明内容
本发明所要解决的技术问题是提供一种稳定、高效、性能优越的碳纳米管修饰电极的制备方法。
本发明采用的技术方案:碳纳米管修饰电极的制备方法,包括下列步骤:a.原料溶液的配制:
先配制质量浓度为1%的聚二烯丙基二甲基氯化铵溶液,然后加入氯化钠,使氯化钠的浓度达到0.8mol·L-1调节溶液的离子强度,备用;再以pH值为9.18的四硼酸钠溶液作分散剂,配制出浓度为1mg/mL的碳纳米管水分散液,备用;
b.碳纳米管在玻碳电极表面的电沉积:
将玻碳电极与铂电极组成的两电极体系放入步骤a配制的碳纳米管水分散液中,在两电极上施加1.70V的工作电压,使带负电的碳纳米管沉积到玻碳电极表面,2小时后形成一层亮黑色的、带大量负电荷的“前驱层”;
c.层层静电自组装过程:
上述经过电沉积处理的玻碳电极被浸入到步骤a配制的带正电荷的聚二烯丙基二甲基氯化铵溶液中,15min后取出,用去离子水小心冲洗掉残液后,再浸入到步骤a配制的带负电的碳纳米管水分散液中,15min后取出,用去离子水小心冲洗掉残液,如此反复5遍在电极表面形成了5层的碳纳米管修饰层。
本发明的有益效果:本发明利用电沉积技术将带有负电荷的碳纳米管沉积到玻碳电极表面,从而解决玻碳电极表面预处理后带负电荷量不足的问题,随后在PDDA溶液和碳纳米管分散液中进行层层静电自组装过程,得到自组装效率高、修饰层稳定的修饰电极。本发明可以将碳纳米管有效地修饰在玻碳电极表面,形成的修饰层对电化学活性物质具有催化作用,提高检测灵敏度,降低氧化反应过电位,提高电极的选择性和稳定性。本发明制备的碳纳米管修饰电极可作为高稳定性和高灵敏度的硫代胆碱、谷胱甘肽等检测电极
具体实施方式
下面通过实施例对本发明进一步详细描述,碳纳米管修饰电极的制备方法,包括下列步骤:
a.原料溶液的配制:
先配制质量浓度为1%的聚二烯丙基二甲基氯化铵溶液,然后加入氯化钠,使氯化钠的浓度达到0.8mol·L-1调节溶液的离子强度,备用;再以pH值为9.18的四硼酸钠溶液作分散剂,配制出浓度为1mg/mL的碳纳米管水分散液,备用;
b.碳纳米管在玻碳电极表面的电沉积:
将玻碳电极与铂电极组成的两电极体系放入步骤a配制的碳纳米管水分散液中,在两电极上施加1.70V的工作电压,使带负电的碳纳米管沉积到玻碳电极表面,2小时后形成一层亮黑色的、带大量负电荷的“前驱层”;
c.层层静电自组装过程:
上述经过电沉积处理的玻碳电极被浸入到步骤a配制的带正电荷的聚二烯丙基二甲基氯化铵溶液中,15min后取出,用去离子水小心冲洗掉残液后,再浸入到步骤a配制的带负电的碳纳米管水分散液中,15min后取出,用去离子水小心冲洗掉残液,如此反复5遍在电极表面形成了5层的碳纳米管修饰层。
实施例
a.玻碳电极经过抛光、电化学活化预处理后,与铂电极组成两电极体系,在1mg/mL的碳纳米管水分散液中,施加1.7V的电压,电沉积2小时,形成亮黑色的、带有大量负电荷的碳纳米管电沉积层。
b.将经过电沉积步骤的玻碳电极浸入到1%的PDDA溶液(含0.8mol·L-1的氯化钠)中,进行PDDA的静电自组装,15min后取出用去离子水仔细冲洗,再浸入到碳纳米管的分散液(pH9.18的四硼酸钠溶液为分散剂)中,进行碳纳米管的静电自组装,15min后取出,用去离子水小心冲洗,至此,碳纳米管修饰层为1层,反复操作,直到碳纳米管的修饰层层数为5。
c.将制得的修饰电极用于浓度为5×10-3mol·L-1硫代胆碱的检测,与未经修饰的裸玻碳电极相比,氧化峰峰电位从0.7V降低到0.3V,峰电流大小从2.7×10-5A增大到5.4×10-5A,而且连续检测的重复性好,稳定性高。
以上所述内容仅为本发明构思下的基本说明,而依据本发明的技术方案所作的任何等效变换,均应属于本发明的保护范围。
Claims (1)
1.碳纳米管修饰电极的制备方法,包括下列步骤:
a.原料溶液的配制:
先配制质量浓度为1%的聚二烯丙基二甲基氯化铵溶液,然后加入氯化钠,使氯化钠的浓度达到0.8mol·L-1以调节溶液的离子强度,备用;再以pH值为9.18的四硼酸钠溶液作分散剂,配制出浓度为1mg/mL的碳纳米管水分散液,备用;
b.碳纳米管在玻碳电极表面的电沉积:
将玻碳电极与铂电极组成的两电极体系放入步骤a配制的碳纳米管水分散液中,在两电极上施加1.70V的工作电压,使带负电的碳纳米管沉积到玻碳电极表面,2小时后形成一层亮黑色的、带大量负电荷的“前驱层”;
c.层层静电自组装过程:
上述经过电沉积处理的玻碳电极被浸入到步骤a配制的带正电荷的聚二烯丙基二甲基氯化铵溶液中,进行PDDA的静电自组装,15min后取出,用去离子水小心冲洗掉残液后,再浸入到步骤a配制的带负电的碳纳米管水分散液中,进行碳纳米管的静电自组装,15min后取出,用去离子水小心冲洗掉残液,碳纳米管修饰层为一层,反复操作,直到碳纳米管修饰层为5。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101706996A CN101158663B (zh) | 2007-11-21 | 2007-11-21 | 碳纳米管修饰电极的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101706996A CN101158663B (zh) | 2007-11-21 | 2007-11-21 | 碳纳米管修饰电极的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101158663A CN101158663A (zh) | 2008-04-09 |
CN101158663B true CN101158663B (zh) | 2010-06-02 |
Family
ID=39306823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101706996A Expired - Fee Related CN101158663B (zh) | 2007-11-21 | 2007-11-21 | 碳纳米管修饰电极的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101158663B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102645476B (zh) * | 2012-05-16 | 2014-08-13 | 西北师范大学 | 基于多壁碳纳米管/辅酶q10/离子液体凝胶的修饰电极 |
CN102914570B (zh) * | 2012-06-14 | 2015-04-15 | 青岛科技大学 | 基于纳米金和硫堇信号放大检测谷胱甘肽的方法 |
CN104282920A (zh) * | 2013-07-04 | 2015-01-14 | 华中科技大学 | 一种无金属氧还原催化剂的制备方法 |
CN105403605A (zh) * | 2015-10-23 | 2016-03-16 | 太原理工大学 | 一种纳米碳管载葡萄糖氧化酶膜电极的制备方法 |
CN106596672A (zh) * | 2017-01-06 | 2017-04-26 | 金华市中心医院 | 一种双通道细胞膜糖基电化学传感阵列及其制备方法 |
CN107247082A (zh) * | 2017-05-11 | 2017-10-13 | 贵州民族大学 | 一种基于脉冲电沉积碳纳米管修饰电极的制备方法 |
US11820663B2 (en) | 2018-02-14 | 2023-11-21 | International Business Machines Corporation | Crystalline film of carbon nanotubes |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101046461A (zh) * | 2006-03-29 | 2007-10-03 | 福建医科大学 | 一种电化学传感器及其制备方法和用途 |
-
2007
- 2007-11-21 CN CN2007101706996A patent/CN101158663B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101046461A (zh) * | 2006-03-29 | 2007-10-03 | 福建医科大学 | 一种电化学传感器及其制备方法和用途 |
Also Published As
Publication number | Publication date |
---|---|
CN101158663A (zh) | 2008-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101158663B (zh) | 碳纳米管修饰电极的制备方法 | |
Xu et al. | A 3D porous NCNT sponge anode modified with chitosan and Polyaniline for high-performance microbial fuel cell | |
Huang et al. | Investigation of active electrodes modified with platinum/multiwalled carbon nanotube for vanadium redox flow battery | |
Zhuo et al. | Salts of C60 (OH) 8 electrodeposited onto a glassy carbon electrode: surprising catalytic performance in the hydrogen evolution reaction | |
Feng et al. | A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-Fenton process | |
Croissant et al. | Electrocatalytic oxidation of hydrogen at platinum-modified polyaniline electrodes | |
Yang et al. | Nanostructured palladium-silver coated nickel foam cathode for magnesium–hydrogen peroxide fuel cells | |
Yang et al. | Research on PEG modified Bi-doping lead dioxide electrode and mechanism | |
Li et al. | Co3O4 thin film prepared by a chemical bath deposition for electrochemical capacitors | |
Ahn et al. | Nanostructured carbon cloth electrode for desalination from aqueous solutions | |
CN105529473B (zh) | 储能液流电池用氧化石墨烯修饰的电极材料 | |
Zhou et al. | Electrochemical fabrication of novel platinum-poly (5-nitroindole) composite catalyst and its application for methanol oxidation in alkaline medium | |
CN100407477C (zh) | 全钒氧化还原液流电池用电极及其制备方法 | |
CN106450397B (zh) | 一种氮掺杂石墨烯电极材料的制备方法 | |
Tseng et al. | Improvement of titanium dioxide addition on carbon black composite for negative electrode in vanadium redox flow battery | |
Raoof et al. | Enhanced electrocatalytic activity of nickel particles electrodeposited onto poly (m-toluidine) film prepared in presence of CTAB surfactant on carbon paste electrode for formaldehyde oxidation in alkaline medium | |
US9546430B2 (en) | Lithium recovery device and recovery method | |
CN107364934A (zh) | 电催化还原复合电极、制备方法及其应用 | |
Dong et al. | Titanium-manganese electrolyte for redox flow battery | |
Xiang et al. | Electrochemical enhancement of carbon paper by indium modification for the positive side of vanadium redox flow battery | |
CN108328703A (zh) | 钛基二氧化钛纳米管沉积锡锑氟电极的制备及其对电镀铬废水中铬抑雾剂降解的应用 | |
Yu et al. | Cost-effective electrodeposition of platinum nanoparticles with ionic liquid droplet confined onto electrode surface as micro-media | |
Zhang et al. | Preparation of a Pt thin-film modified electrode for alkaline electrocatalytic oxidation of methanol by Cu (OH) 2 electrodeposition and galvanic replacement reaction | |
Chen et al. | Composition dependence of ethanol oxidation at ruthenium-tin oxide/carbon supported platinum catalysts | |
CN107768147B (zh) | 一种基于CoFe类普鲁士蓝的长寿命非对称型超级电容器及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100602 Termination date: 20121121 |