CN101158516A - 致冷剂循环装置 - Google Patents

致冷剂循环装置 Download PDF

Info

Publication number
CN101158516A
CN101158516A CNA2007101541724A CN200710154172A CN101158516A CN 101158516 A CN101158516 A CN 101158516A CN A2007101541724 A CNA2007101541724 A CN A2007101541724A CN 200710154172 A CN200710154172 A CN 200710154172A CN 101158516 A CN101158516 A CN 101158516A
Authority
CN
China
Prior art keywords
refrigerant
compression assembly
compressor
oil
rotation compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101541724A
Other languages
English (en)
Inventor
松本兼三
里和哉
山口贤太郎
藤原一昭
山中正司
山崎晴久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN101158516A publication Critical patent/CN101158516A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Abstract

一种致冷剂循环装置,该致冷剂循环装置,在高压侧成为超临界压力,在不设置吸收槽下,可以防止压缩机因液体压缩所造成的损害。压缩机在密闭容器内,具备电动组件以及被电动组件所驱动的第一与第二旋转压缩组件,被第一旋转压缩组件压缩且排出的致冷剂被压缩以吸入第二旋转压缩组件中,并且排放到气体冷却器中。中间冷却回路,使从第一旋转压缩组件排出的致冷剂,在气体冷却器放热。第一内部热交换器,使从气体冷却器出来且来自第二旋转压缩组件的致冷剂与蒸发器出来的致冷剂进行热交换。第二内部热交换器,使气体冷却器出来且在中间冷却回路流动的致冷剂与从第一内部热交换器出来且来自蒸发器的致冷剂进行热交换。

Description

致冷剂循环装置
技术领域
本发明是有关于一种转换临界致冷剂循环装置(transcriticalrefrigerant device),其具备压缩机、气体冷却器(gas cooler)、节流手段(throttling means)以及蒸发器(evaporator)依序连接的构成,高压侧为超临界压力。此外,本发明亦为有关一种使用多段压缩式压缩机的致冷剂回路装置。
背景技术
习知此种压缩机将旋转压缩机(压缩机)、气体冷却器、节流手段(膨胀阀等)以及蒸发器等依序以配管连接成环状,来构成致冷剂循环回路。致冷剂气体从旋转压缩机的旋转压缩组件的吸入端口吸入到汽缸(cylinder)的低压室侧,并通过滚轮与阀的动作来进行压缩,以成为高温高压的致冷剂气体。之后,从高压室侧,经过排出埠、排出消音室,排出到气体冷却器。在致冷剂气体于气体冷却器处放热后,以节流手段加以节流,再供应给蒸发器。致冷剂在蒸发器处蒸发,此时通过从其周围吸热,来发挥冷却作用。
近年来,为了处理地球环境问题,在此致冷剂循环回路中也使用自然致冷剂的二氧化碳(CO2),而不使用传统的氟利昂(freon),并开发出在高压侧以超临界压力来运转且使用转换临界致冷剂循环回路的装置。
在此种转换临界致冷剂循环回路中,为了防止液态致冷剂回到压缩机而进行压缩,便在蒸发器的出口侧与压缩机吸入侧之间的低压侧装设吸收槽(receiver tank)。液态致冷剂会堆积吸收槽,仅有气体会被吸入到压缩机。调整节流手段,使得吸收槽内的致冷剂不会回到压缩机(例如,日本的特开平7-18602号公报)。
然而,在致冷剂循环回路的低压侧设置接收槽便需要有足够多的致冷剂充填量。此外,为了防止液体回流,节流手段的开度(aperture)必须缩小,或者是必须扩大吸收槽的容量,但这会导致冷却能力降低且设置空间扩大的问题。于是,为了在不装置此吸收槽而能解决压缩机的液态压缩的问题,本案申请人便尝试开发出图18所示的公知的致冷剂循环回路。
如图18所示,标号10表示内部中间压型多段(2段)压缩式旋转压缩机(intemal intermediate pressure multi-stage(two stages) rotarycompressor),其在密闭容器12中,具有电动组件(驱动组件)14以及被此电动组件14的旋转轴16所驱动的第一旋转压缩组件32与第二旋转压缩组件34的构成。
接着说明此致冷剂循环装置的动作。从压缩机10的致冷剂导入管94所吸入的致冷剂被第一旋转压缩组件32压缩成中间压状态,再排出到密闭容器12内。之后,从致冷剂导入管92出来,流入到中间冷却回路150A。中间冷却回路150A设置成使之通过气体冷却器154,并于此以气冷方式放热。中间压的致冷剂便在此被气体冷却器把热夺走。
之后,被吸入到第二旋转压缩组件34,进行第二段的压缩,而成为高温高压的致冷剂气体,再从致冷剂排出管96排放到外部。此时,致冷剂被压缩到适当的超临界压力为止。
从致冷剂排出管96排出的致冷剂气体流入到气体冷却器154,并于该处以气冷的方式放热,之后再通过内部热交换器160。致冷剂于该处更被由蒸发器157出来的低压侧致冷剂夺热,而更进一步地被冷却。之后,致冷剂在膨胀阀156减压,而在此过程中致冷剂变成气体/液体的混合态,接着再流入蒸发器157蒸发。从蒸发器157出来的致冷剂便通过内部热交换器160,而于该处从高压侧致冷剂夺取热而被加热。
接着,被内部热交换器160加入的致冷剂从致冷剂导入管94被吸入到旋转压缩机10的第一旋转压缩组件32内,并重复地进行上述循环。
如上所述,在图18的转换临界致冷剂循环装置中,从蒸发器157出来的致冷剂通过内部热交换器160被高压侧致冷剂加热而可以取得过热度(superheat degree),所以可以将低压侧的吸收槽废除。但是由于运转的条件,会产生多余的致冷剂,而在压缩机内引起液体回流的现象,会产生液体压缩所造成损伤的危险性。
此外,再此种转换临界致冷剂循环回路装置中,蒸发器的蒸发温度要在-30℃至-40℃的低温范围或者-50℃以下的超低温范围,会因为压缩比要非常高与压缩机10本身的温度会升高,所以变得非常困难。
此外,在日本专利第2507047号所揭露的致冷剂循环回路装置中,特别是使用内部中间压型多段压缩式旋转压缩机的致冷剂回路装置中,密闭容器内的中间压致冷剂气体从第二旋转压缩组件的吸入端口被吸入到汽缸的低压室侧,并通过滚轮与阀的动作,进行第二段压缩,以成为高温高压的致冷剂气体;接着,从高压室侧经过排出埠、排出消音室排放到外部。进入气体冷却器放热而发挥加入作用后,以做为节流手段的膨胀阀来节流,再进入蒸发器。于该处吸热蒸发后,再被吸入到第一旋转压缩组件,并反复地重复上述循环。
然而,使用上述的压缩机的致冷剂回路装置中,停止后再起动时,旋转压缩组件会有高低压力差,而造成起动性的恶化以及引起损伤。于是,为了在压缩机停止后,使致冷剂回路内及早达到均压状态,会有将膨胀阀全开使低压侧与高压侧连通等的操作。但是,被第一旋转压缩组件所压缩的密闭容器内的中间压致冷剂气体,因为在压缩机停止后,在低压侧与高压侧间并不连通,所以要达到平衡压力所需要的时间很久。
此外,由于压缩机的热容量大,温度下降迟缓。在压缩机停止后,压缩机内部的温度会高于致冷剂回路内的其它部分。再者,在压缩机停止后,当压缩机内的致冷剂浸入时(致冷剂液化),压缩机在起动的瞬间,致冷剂会突然成为气体,使中间压急剧升高。因此,密闭容器内的中间压致冷剂气体的压力会反而比第二旋转压缩组件的排出侧(致冷剂回路的高压侧)的压力高,产生所谓压力反转现象(pressure inversionphenomenon)。在此情形,压缩机起动时的压力行为以图19与图20来加以说明。图19为公知正常起动时的压力行为。再起动前,致冷剂回路装置内的压力达到平衡状态,所以压缩机可以像平常一般起动,而不会产生中间压与高压的压力反转。
另一方面,图20是压力逆转现象发生时的压力行为。如图20所示,在压缩机10起动前,低压与高压为均压(实线)。但是如前所述,中间压会比此压力还高(虚线)。起动压缩机后,中间压会更上升而成为与高压相同或更高的压力。
特别是,在旋转压缩机中,第二旋转压缩组件的阀为付势(弹性作用)到滚轮侧,故第二旋转压缩组件的排出侧的压力是做为背压来作用。但是,在此情形,第二旋转压缩组件的排出侧压力(高压)与第二旋转压缩组件(中间压)为相同,或者是第二旋转压缩组件(中间压)较高,所以阀对滚轮侧的背压不会有作用,第二旋转压缩组件的阀会飞走。因此,第二旋转压缩组件不会进行压缩,在实质上只有第一旋转压缩组件在进行压缩。
此外,第一旋转压缩组件的阀会以该阀付势于滚轮侧,所以密闭容器内的中间压是做为背压来作用。但是,如上述,密闭容器内的压力变高的话,第一旋转压缩组件的汽缸内的压力以及密闭容器内的压力的差会太大,加压于滚轮的力也会高于所需的力,导致有显著的面压会施加于阀前端与滚轮外周面之间的滑动部分,阀与滚轮会产生摩擦,而有损伤的危险性。
另一方面,如前所述,当被第一旋转压缩机压缩的中间压致冷剂在中间热交换器冷却时,会依据运转状况,被第二旋转压缩组件压缩的高压致冷剂气体会有无法满足所期望的温度的情形。
特别是,在压缩机起动时,致冷剂的温度很难上升。此外,也会有致冷剂气体浸入压缩机内的情形发生(液化)。在此情形时,需要使压缩机内的温度及早上升以回复到正常运转。但是,如前所述,被第一旋转压缩机压缩的致冷剂在中间热交换器冷却,使其吸入到第二旋转压缩机时,要使压缩机内部的温度及早上升是很困难的。
此外,在上述的压缩机中,第二旋转压缩组件的汽缸的上侧开口被上支撑部材盖住,下侧开口则被中间分隔板盖住。另一方面,滚轮设置在第二旋转压缩组件内的汽缸中。此滚轮与旋转轴的偏心部嵌合。为了设计问题或者是防止滚轮的摩擦,有若干间隙形成于配置在滚轮与滚轮上侧的前述支撑部材以及配置在滚轮与滚轮下侧的中间分隔板之间。因此,被第二旋转压缩组件的汽缸压缩的高压致冷剂气体会从此间隙流入到滚轮内侧(滚轮内侧的偏心部周边的空间)。由此,高压致冷剂会驻留在滚轮内侧。
如上所述,若高压致冷剂驻留在滚轮内侧的话,因为滚轮内侧的压力会高于底部成为蓄油器的密闭容器内的压力(中间压),所以经过旋转轴中的油孔,利用压力差把油供给到滚轮内侧会变得很困难。对滚轮内侧的偏心部周边的供油量变会产生不足的现象。在公知技术中,如第21图所示,通路200形成于配置在第二旋转压缩组件的汽缸上侧的上支撑部材201上,用以连通第二旋转压缩组件的滚轮内侧(偏心部侧)与密闭容器内。驻留在滚轮内侧的高压致冷剂气体会释放到密闭容器内,以防止滚轮内侧变成高压状态。
然而,为了形成上述通路200来连通滚轮内侧与密闭容器内部,必须在上支撑部材201的内缘部分于滚轮侧形成开口。亦即要加工形成轴心方向的通路200A与用来连通此通路200A与密闭容器内部的水平方向通路200B的两个通路。为了形成通路,加工作业必须增加,进而造成生产成本高涨的问题。
另一方面,对于第二旋转压缩组件,由于第二旋转压缩组件的汽缸内的压力(高压)会高于底部做为蓄油器的密闭容器内的压力(中间压),从旋转轴的油孔或供油孔,利用压力差来将油供应到第二旋转压缩组件的汽缸内会变得非常困难,故仅以溶入吸入致冷剂的油来润滑变会有供油量不足的问题。
此外,在上述压缩机中,被第二旋转压缩组件压缩的致冷剂气体会直接地排放到外部。但是,在此致冷剂气体中,会混入前述的供应到第二旋转压缩组件内的滑动部的油,所以油也随着致冷剂一起被排放到外部。因此,密闭容器内的蓄油器的油量会不足,而使滑动部的润滑性能变恶化。此外,在冷冻循环的致冷剂回路中,也有多量油流出,而使冷冻循环性能恶化。此外,为了防止此问题,若减少对第二旋转压缩机的油供应量的话,则会造成第二旋转压缩组件的滑动部的循环性产生问题。
发明内容
因此,本发明的目的是提出一种致冷剂循环回路,其高压侧成为超临界压力,并不需要设置接收槽,便可以防止压缩机因液体压缩所造成的损伤。
本发明的另一目的是提出一种致冷剂循环装置,在低压侧不需要设置接收槽,便可以防止压缩机因液体压缩所造成的损伤,并且可以使冷却能力提升。
本发明的另一目的是提出一种使用多段压缩式压缩机的致冷剂循环装置,可以避免压力逆转的现象,并且提升压缩机的起动性与耐久性。
本发明的另一目的是提出一种使用多段压缩式压缩机的致冷剂循环装置,可以防止压缩机过热以及确保被第二旋转压缩组件压缩而排出的致冷剂的排出温度。
本发明的另一目的是提出一种使用多段压缩式压缩机的致冷剂循环装置,以较简单的构造来避免滚轮内侧变成高压的缺点,并且可以确实地且平滑地将油供给第二旋转压缩组件的汽缸内。
本发明的另一目的是提出一种旋转压缩机,其可以不减少对旋转压缩组件的供油量,而可以极力降低油流出到冷冻回路的量。
为达成上述与其它目的,本发明提出一种致冷剂循环装置,其中压缩机、气体冷却器、节流手段与蒸发器依序连接,而在高压侧成为超临界压力。致冷剂循环装置包括以下构件。前述压缩机在密闭容器内,更具备电动组件以及被电动组件所驱动的第一与第二旋转压缩组件,被第一旋转压缩组件压缩且排出的致冷剂被压缩以吸入第二旋转压缩组件中,并且排放到气体冷却器中。中间冷却回路使从第一旋转压缩组件排出的致冷剂,在气体冷却器放热。第一内部热交换器使从气体冷却器出来且来自第二旋转压缩组件的致冷剂与蒸发器出来的致冷剂进行热交换。第二内部热交换器使气体冷却器出来且在中间冷却回路流动的致冷剂与从第一内部热交换器出来且来自蒸发器的致冷剂进行热交换。因此,从蒸发器出来的致冷剂在第一内部热交换器与气体冷却器出来的流过中间冷却回路的致冷剂进行热交换,以夺取热。因此,可以确实地保持致冷剂的过热度,以及可以回避在压缩机的液体压缩。
另一方面,气体冷却器出来的来自第二旋转压缩组件的致冷剂在第一内部热交换器,从蒸发器出来的致冷剂夺取热,以此使致冷剂温度下降。此外,因为具备中间冷却回路,所以压缩机内部的温度可以下降。特别是在此情形,流过中间冷却回路的致冷剂在气体冷却器放热后,将热给来自蒸发器的致冷剂,在被吸入到第二旋转压缩组件中。因此,不会产生因设置第二内部热交换器而产生的压缩机内部温度上升。
在上述致冷剂循环装置中,因为致冷剂使用二氧化碳,所以对环境问题有所贡献。
在上述致冷剂循环装置中,蒸发器的致冷剂的蒸发温度在+12℃至-10℃极为有效。
本发明更提出一种致冷剂循环装置,其中压缩机、气体冷却器、节流手段与蒸发器依序连接,而在高压侧成为超临界压力。致冷剂循环装置包括以下构件。前述压缩机在密闭容器内,更具备电动组件以及被电动组件所驱动的第一与第二旋转压缩组件,被第一旋转压缩组件压缩且排出的致冷剂被压缩以吸入第二旋转压缩组件中,并且排放到气体冷却器中。中间冷却回路使从第一旋转压缩组件排出的致冷剂,在气体冷却器放热。油分离手段,用以将油从被第二旋转压缩组件的致冷剂中分离出来。回油路将被油分离手段所分离的油减压,使油回到压缩机内。第一内部热交换器使从气体冷却器出来且来自第二旋转压缩组件的致冷剂与蒸发器出来的致冷剂进行热交换。第二内部热交换器使在回油路流动的油与从第一内部热交换器出来且来自蒸发器的致冷剂进行热交换。节流手段由第一节流手段以及位在第一节流手段下游侧的第二节流手段所构成。注射回路用以将在第一与第二节流手段之间流动的部分致冷剂,注入到压缩机的第二旋转压缩组件的吸入侧。因此,从蒸发器出来的致冷剂在第一内部热交换器与气体冷却器出来的流过中间冷却回路的致冷剂进行热交换以夺取热,而在第二内部热交换器与流过回油路的油进行热交换,以夺取热。因此,可以确实地保持致冷剂的过热度,以及可以回避在压缩机的液体压缩。
另一方面,气体冷却器出来的来自第二旋转压缩组件的致冷剂在第一内部热交换器,被蒸发器出来的致冷剂夺取热,以此使致冷剂温度下降。此外,因为具备中间冷却回路,所以压缩机内部的温度可以下降。
此外,流过回油路的油在第二内部热交换器被第一内部热交换器出来的来自蒸发器的致冷剂夺取热之后,再回到压缩机内,所以压缩机内部的温度可以更进一步地降低。
再者,因为流过第一与第二节流手段间的部分致冷剂,通过注射回路后再被注入到压缩机的第二旋转压缩组件的吸入侧,所以利用此注入的致冷剂可以冷却第二旋转压缩组件。由此,第二旋转压缩组件的压缩效率可以改善,并且压缩机本身的温度也可以更进一步地下降。因此,致冷剂循环中,可以使在蒸发器的致冷剂蒸发温度下降。
在前述的致冷剂循环装置中,更包括设置气液分离手段于第一与第二节流手段之间。注射回路将被气液分离手段所分离的液态致冷剂减压,再注入到压缩机的第二旋转压缩组件的吸入侧。因此,利用随着注入致冷剂的蒸发的吸热作用,第二旋转压缩机可以更有效地被冷却。由此,致冷剂循环中,可以使在蒸发器的致冷剂蒸发温度下降。
在前述的致冷剂循环装置中,回油路在第二内部热交换器处使被油分离手段所分离的油与第一内部热交换器出来的来自蒸发器的致冷剂之间进行热交换,再回到压缩机的密闭容器内。因此,利用此油可以有效地降低压缩机的密闭容器内的温度。
在前述的致冷剂循环装置中,回油路是在第二内部热交换器处使被油分离手段所分离的油与第一内部热交换器出来的来自蒸发器的致冷剂之间进行热交换,再回到压缩机的第二旋转压缩组件的该吸入侧。因此,可以一边润滑第二旋转压缩组件以改善压缩效率,并且可以有效地降低压缩机本身的温度。
前述致冷剂循环装置中的致冷剂可以使用二氧化碳、HCF系致冷剂的R23、一氧化二氮中的任何一种致冷剂,所以对环境问题有所贡献。
此外,在上述致冷剂循环装置中,蒸发器的致冷剂的蒸发温度是在-50℃以下极为有效。
本发明更提出一种致冷剂循环装置,其中压缩机、气体冷却器、节流手段与蒸发器依序连接,而在高压侧成为超临界压力。致冷剂循环装置包括以下构件。前述压缩机在密闭容器内,更具备电动组件以及被电动组件所驱动的第一与第二旋转压缩组件,被第一旋转压缩组件压缩且排出的致冷剂被压缩以吸入第二旋转压缩组件中,并且排放到气体冷却器中。中间冷却回路使从第一旋转压缩组件排出的致冷剂,在气体冷却器放热。第一内部热交换器使从气体冷却器出来且来自第二旋转压缩组件的致冷剂与蒸发器出来的致冷剂进行热交换。油分离手段用以将油从被第二旋转压缩组件的致冷剂中分离出来。回油路将被油分离手段所分离的油减压,使油回到压缩机内。第二内部热交换器使在回油路流动的油与从第一内部热交换器出来且来自蒸发器的致冷剂进行热交换。因此,从蒸发器出来的致冷剂在第一内部热交换器与气体冷却器出来的流过中间冷却回路的致冷剂进行热交换以夺取热,而在第二内部热交换器与流过回油路的油进行热交换,以夺取热。因此,可以确实地保持致冷剂的过热度,以及可以回避在压缩机的液体压缩。
另一方面,气体冷却器出来的来自第二旋转压缩组件的致冷剂在第一内部热交换器,被蒸发器出来的致冷剂夺取热,以此使致冷剂温度下降。此外,因为具备中间冷却回路,所以压缩机内部的温度可以下降。
此外,流过回油路的油在第二内部热交换器被第一内部热交换器出来的来自蒸发器的致冷剂夺取热之后,再回到压缩机内,所以压缩机内部的温度可以更进一步地降低。由此,致冷剂循环中的蒸发器的致冷剂温度可以被降低。
在前述的致冷剂循环装置中,回油路是在第二内部热交换器处使被油分离手段所分离的油与第一内部热交换器出来的来自蒸发器的致冷剂之间进行热交换,再回到压缩机的密闭容器内。因此,利用此油可以有效地降低压缩机的密闭容器内的温度。
在前述的致冷剂循环装置中,回油路在第二内部热交换器处使被油分离手段所分离的油与第一内部热交换器出来的来自蒸发器的致冷剂之间进行热交换,再回到压缩机的第二旋转压缩组件的该吸入侧。因此,可以一边润滑第二旋转压缩组件以改善压缩效率,并且可以有效地降低压缩机本身的温度。
在上述致冷剂循环装置中,因为致冷剂使用二氧化碳,所以对环境问题有所贡献。
在上述致冷剂循环装置中,蒸发器的致冷剂的蒸发温度在-30℃至-40℃极为有效。
本发明更提出一种致冷剂循环装置。压缩机具备被驱动组件所驱动的第一与第二旋转压缩组件。被第一旋转压缩组件压缩且排出的致冷剂被压缩以吸入该第二旋转压缩组件中,并且排放到该气体冷却器中。旁通回路,在不将从压缩机的第一旋转压缩组件排出的致冷剂减压下,把致冷剂供给到蒸发器;以及阀装置,用以在蒸发器除霜时,开放该旁通回路。阀装置也开放该旁通回路的流路。因此,在蒸发器进行除霜时,打开阀装置,从第一压缩组件排出的致冷剂流过旁通回路,在不减压下,供给蒸发器加热。
此外,在压缩机起动时,阀装置也开放,经过旁通回路,第一压缩组件的排出侧,亦即第二压缩组件只吸入侧的压力可以逃到蒸发器。因此,可以避免压缩机起动时第二旋转压缩组件的吸入侧(中间压)与第二压缩组件的排出侧(高压)的压力逆转的现象。
在上述致冷剂循环装置中,阀装置从压缩机起动前至一预定时间内,开放旁通回路。
此外,该阀装置也可以从压缩机起动时至一预定时间内,开放旁通回路。
或者,该阀装置可以从该压缩机起动后至一预定时间内,开放旁通回路。
本发明更提出一种致冷剂循环装置,其中压缩机、气体冷却器、节流手段与蒸发器依序连接。压缩机具备第一与第二旋转压缩组件,被第一旋转压缩组件压缩且排出的致冷剂被压缩以吸入第二旋转压缩组件中,并且排放到气体冷却器中。致冷剂循环装置包括:致冷剂配管,用来使被第一旋转压缩组件压缩的致冷剂被吸入到第二旋转压缩组件;中间冷却回路,与冷配管并列连接;以及阀装置,用以控制使从第一旋转压缩装置排出的致冷剂流到致冷剂配管或是中间冷却回路。因此,可以依据致冷剂的状态来选择是否流入中间冷却回路。
致冷剂状态的侦测是利用压力或温度来进行。亦即,当第二旋转压缩组件的排出致冷剂压力或致冷剂温度上升到预定值时,阀装置使致冷剂流过中间冷却回路,而当低于预定值时,致冷剂流过致冷剂配管。
上述致冷剂循环装置更可以包括温度侦测手段,用来侦测从第二旋转压缩组件排出的致冷剂温度。当温度侦测手段侦测到的第二旋转压缩组件的排出致冷剂温度上升到一预定值时,阀装置使致冷剂流到中间冷却回路。当比预定值低时,使致冷剂流到致冷剂配管。
本发明更提出一种压缩机,在密闭容器具有被驱动组件的旋转轴所驱动的第一与第二旋转压缩组件。被第一旋转压缩组件所压缩的致冷剂排放到该密闭容器中,排放出的中间压致冷剂气体再被第二旋转压缩组件压缩。压缩机包括以下构成:两汽缸,分别构成第一与第二旋转压缩组件;两滚轮,分别设置在各汽缸内,与旋转轴的偏心部嵌合而做偏心旋转;中间分隔板,位在各汽缸与各滚轮之间,以分割第一与第二旋转压缩组件;两支称部材,分别封住各该汽缸的开口面,且各具备该旋转轴的轴承;油孔,形成于旋转轴中;贯通孔,穿孔设置于中间分隔板中,以连通密闭容器内部与两滚轮的内侧;连通孔穿孔设置于第二旋转压缩组件的汽缸中,用以连通中间分隔板的贯通孔以及第二旋转压缩组件的吸入侧。由此中间分隔板的贯通孔,累积在滚轮内侧的高压致冷剂可以逃到密闭容器内。
此外,即使在第二旋转压缩组件的汽缸内的压力高于成为中间压的密闭容器内的压力,利用在第二旋转压缩组件的吸入过程的吸入压损,通过中间分隔板的贯通孔以及连通孔,油可以确实地从旋转轴的油孔供给到第二旋转压缩组件的吸入侧。因为中间分隔板的贯通孔可以达成兼作滚轮内侧的高压释放以及对第二旋转压缩组件的供油,所以可以达到构造简化以及成本降低的目的。
前述的压缩机中的驱动组件是在起动时以低速来起动的转数控制型马达。当起动时,即使第二旋转压缩组件从与密闭容器内连通的中间分隔板的贯通孔吸入密闭容器中的油,也可以抑制因为油压缩所造成的不好影响,也可以避免旋转压缩机的可靠性下降。
本发明更提出一种压缩机。在密闭容器中具备电动组件与被电动组件所驱动的旋转压缩组件。被旋转压缩组件所压缩的致冷剂排放到外部,压缩机在旋转压缩组件内形成蓄油室,用以将从旋转压缩组件与致冷剂一起排放出来的油加以分离、蓄积,并且蓄油室经由具有节流功能的返回通路,连通到密闭容器内部。因此,从第二旋转压缩组件排放到旋转压缩机外部的油量可以降低。
本发明更提出一种压缩机。在密闭容器内具有电动组件以及被电动组件所驱动的旋转压缩机构。旋转压缩机构由第一与第二旋转压缩组件所构成,被第一旋转压缩组件所压缩的致冷剂排放到密闭容器内,排放出来的中间压致冷剂以第二旋转压缩组件来压缩,排放到外部。压缩机在旋转压缩机构内形成蓄油室,用以将从第二旋转压缩组件与致冷剂一起排放出来的油加以分离、蓄积,并且蓄油室经由具有节流功能的返回通路,连通到密闭容器内部。因此,从第二旋转压缩组件排放到旋转压缩机外部的油量可以降低。
上述压缩机更包括:第二汽缸,构成第二旋转压缩组件;第一汽缸,透过中间分隔板配置在第二汽缸下方,并且用以构成第一旋转压缩组件;第一支撑部材,用以封住第一汽缸的下方;第二支撑部材,用以封住第二汽缸的上方;以及吸入通路,于第一旋转压缩组件中。蓄油室形成在吸入通路以外部分的第一汽缸内。由此构成,空间效率得以提升。
上述压缩机中,蓄油室利用上下贯通第二汽缸、中间分隔板、与第一汽缸的贯通孔来构成。因此,可以显著地改善构成蓄油室的加工作业性。
附图说明
图1绘示构成本发明的转换临界致冷剂循环回路的内部中间压型多段压缩式旋转压缩机的纵剖面图。
图2依据本发明实施例所绘示的转换临界致冷剂循环装置的致冷剂回路图。
图3绘示图2的致冷剂回路的p-h线图。
图4依据本发明另一实施例所绘示的转换临界致冷剂循环装置的致冷剂回路图。
图5依据本发明另一实施例所绘示的转换临界致冷剂循环装置的致冷剂回路图。
图6依据本发明另一实施例所绘示的转换临界致冷剂循环装置的致冷剂回路图。
图7依据本发明另一实施例所绘示的转换临界致冷剂循环装置的致冷剂回路图。
图8绘示致冷剂循环装置的致冷剂回路图。
图9绘示本发明的致冷剂回路装置的压缩机起动时的压力行为图。
图10绘示另一实施例中对应图9的压力行为图。
图11绘示致冷剂循环装置的致冷剂回路图。
图12绘示在第二旋转压缩组件的排出致冷剂温度上升到预定值时,致冷剂回路的p-h线图。
图13绘示图1的旋转压缩机的中间分隔板的平面图。
图14绘示图1的旋转压缩机的中间分隔板的纵剖面图。
图15绘示形成于图1的旋转压缩机的中间分隔板的贯通孔在密闭容器侧的放大图。
图16绘示图1的旋转压缩机的上汽缸吸入侧的压力变动图。
图17绘示本发明另一实施例的内部中间压型多段压缩式旋转压缩机的纵剖面图。
图18绘示公知的致冷剂循环装置的致冷剂回路图。
图19绘示公知的致冷剂回路装置的压缩机正常起动时的压力行为图。
图20绘示公知发生压力逆转现象的压力行为图。
图21绘示公知旋转压缩机的上支撑部材的纵剖面图。
图式标号说明
10压缩机                      12密闭容器
12A容器本体                   12B盖体
12C蓄油器                     12D安装孔
14电动组件                    16旋转轴
18旋转压缩机构
20端子                        22定子
24转子                        26积层体
28定子线圈                    30积层体
32第一旋转压缩组件            34第二旋转压缩组件
36中间分隔板
38上汽缸                      40下汽缸
42、44上下偏心部              54、56上下支撑部材
54A、56A轴承                  58、60吸入通路
62、64排出消音室              66、68上盖与下盖
78主螺80排出通路
82、84横方向供油孔      92致冷剂导入管
94致冷剂导入管          96致冷剂排出管
100蓄油室               110返回通路
102油泵                 103节流部材
121中间排出管           129主螺丝
131贯通孔               133、134连通孔
141、142、143、144衬管
150中间冷却回路         152A中间冷却回路
156膨胀阀
156A、156B第一与第二膨胀阀
157蒸发器               152、158电磁阀
160、162第一与第二内部热交换器
161吸入埠               170油分离器
175、175A回油路         176毛细管
180旁通回路
190排出气体温度传感器
200气液分离器           210注射回路
220毛细管
具体实施方式
为让本发明的上述目的、特征、和优点能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明如下:
接着参考附图来详细说明本发明的实施例图1为本发明的致冷剂循环装置,特别是以使用于转换临界致冷剂循环装置的压缩机来做为实施例,并且为具备第一及第二旋转压缩组件32、34的内部中间压型多段(2段)压缩式旋转压缩机10的纵剖面图。图2为本发明的转换临界致冷剂循环装置的致冷剂回路图。此外,本发明的转换临界致冷剂循环装置使用于自动售货机、空调机或冷冻库、展示柜等。
在各图式中,标号10为以二氧化碳(CO2)为致冷剂而使用的内部中间压型多段压缩式旋转压缩机。压缩机10由钢板所构成的圆筒状密闭容器12;配置收纳于此密闭容器12内部空间的上侧的电动组件14;以及配置在电动组件14下侧,以电动组件14的旋转轴16所驱动的第一转压缩组件(第一段)32与第二旋转压缩组件(第二段)34等的旋转压缩机构18等所构成。此外,本实施例的旋转压缩机10的第一旋转压缩组件32的容积可以例如是2.89cc,而做为第二段的第二旋转压缩组件34的容积则可以例如是1.88cc
密闭容器12的底部是做为蓄油器,且由电动组件14、收纳旋转压缩机构18的容器本体12A、用来盖住容器本体12A的上部开口且略成碗状的盖体12B等所构成。此外,圆形的安装孔12D形成于盖体12B上面的中心处。供应电力给电动组件14的端子(省略配线)20则安装于此安装孔12D中。
电动组件14为所谓的磁极集中式DC马达,包括沿着密闭容器12上部空间的内周面且以环状安装的定子22,以些微间隔插入设置于定子22内侧的转子24。转子24通过中心,固定于在签垂方向延伸的旋转轴16上。定子22具有以环状(doughnut shape)电磁钢板堆栈而成的积层体26,以及以直卷于积层体26齿部的方式而卷成的定子线圈28。此外,转子24与定子22相同,也是以电磁钢板的积层体30所形成,并在积层体30内插入永久磁铁MG来构成转子24。
此外,做为供油手段的油泵102在旋转轴16下端部。利用此油泵102,润滑用的油便可以从构成密闭容器12底部的蓄油器被吸上来,经过在铅直方向形成于旋转轴16内的轴中心上中的油孔(未绘出),从与油孔连通的横方向供油孔82、84(在上下偏心部42、44也有形成),油便被供应到上下偏心部42、44以及第一与第二旋转压缩组件32、34的滑动部等。由此,便可以防止第一与第二旋转压缩组件32、34的摩耗。
中间分隔板36被挟持于第一旋转压缩组件32与第二旋转压缩组件34之间。亦即,第一旋转压缩组件32与第二旋转压缩组件34由中间分隔板36;上汽缸38与下汽缸40,配置在中间分隔板36上下位置上;上下滚轮46、48,具有180度的相位差并且通过设置在旋转轴16上的上下偏心部42、44在上下汽缸38、40内做偏心旋转;阀,与上下滚轮46、48接触,将上下汽缸38、40内分别分割成低压室侧与高压室侧;以及上支撑部材54与下支撑部材56用以将上汽缸38上侧开口面与下汽缸40下侧开口面封起来,并兼做旋转轴16的轴承且做为支撑部材。
另一方面,吸入通路58、60与凹陷的排出消音室62、64形成于上支撑部材54与下支撑部材56中。吸入通路58、60分别以吸入埠161、161连接到上下汽缸38、40,而两排出消音室62、64的个别与各汽缸38、40反对侧的开口部分别被盖体封起来。亦即,排出消音室62被做为盖体的上盖66封起来,而排出消音室66被做为盖体的下盖68封起来。
在此情形,轴承54A立设于上支撑部材54的中央。此外,轴承56A贯通形成于下支撑部材56的中央。旋转轴16被上支撑部材54的轴承54A与下支撑部材56的轴承56A所保持。
下盖68由圈状(doughnut)的圆形钢板所构成,外围部的四个地方则利用主螺丝129从下方固定于下支撑部材56上。主螺丝129的前端则螺接于上支撑部材54上。
第一旋转压缩组件32的排出消音室64与密闭容器12内以连通路连通。此连通路为一未绘出的孔洞,并且贯通下支撑部材56、上支撑部材54、上盖66、上汽缸38、下汽缸40与中间分隔板36。在此情形,中间排出管121立设于连通路的上端,中间压的致冷剂则从此中间排出管121排放到密闭容器12内。
此外,上盖66区划出排出消音室62,其以未绘出的排出部,连接至第二旋转压缩组件34的上汽缸38内部。以与上盖66具有预定的间隔,电动组件14设置于上盖66上侧。上盖66由略成圈状的圆形钢板所构成,其上有形成孔,此孔为贯通上支撑部材54的轴承54A。上盖66的周边部利用四个主螺丝78,从下方固定于下支撑部材56上。主螺丝78的前端则螺接于下支撑部材56上。
考虑对地球环境的影响、可燃性与毒性等,致冷剂使用自然致冷剂的二氧化碳(CO2),而润滑油则例如使用矿物油、烷基苯油(alkyl benzene)、酯油(ester oil)、PAG油(poly alkyl glycol,聚烷基甘醇)等既存的油品。
在对应上支撑部材54与下支撑部材56的吸入通路60(上侧未绘出)、排出消音室62、上盖66上侧(约略对应电动组件14的下端的位置)的位置上,衬管141、142、143、144分别溶接固定于密闭容器12的容器本体12A的侧面上。将致冷剂导入上汽缸38的致冷剂导入管92的一端插入连接至衬管141内,此致冷剂导入管92的一端则连通于上汽缸38的吸收通路(未绘出)。致冷剂导入管92经过后述的设置于中间冷却回路150上的第二内部热交换器162、气体冷却器154后到达衬管144,另一端则插入连接于衬管144内而连通至密闭容器12内。或者是,致冷剂导入管92经由有通过后述的气体冷却器154的中间冷却回路150而到达衬管144,另一端则插入连接于衬管144内而连通至密闭容器12内。
第二内部热交换器162是在出于气体冷却器154且流过中间冷却回路150的中间压致冷剂以及出于第一内部热交换器160且来自蒸发器157的低压侧致冷剂之间进行热交换。或者是,第二内部热交换器162是在流过回油路175的油以及出于第一内部热交换器160且来自蒸发器157的低压侧致冷剂之间进行热交换。
此外,用来将致冷剂导入下汽缸40的致冷剂导入管94的一端插入连接至衬管142内,而此致冷剂导入管94的一端则连通至下汽缸40的吸入通路60。致冷剂导入管94的另一端则连接到第二内部热交换器。此外,致冷剂排出管96插入连接至衬管143内,而此致冷剂排出管96的一端再连接到排出消音室62。
第二实施例
接着参考图2,上述的压缩机10为构成图2的致冷剂回路的一部分。亦即,压缩机10的致冷剂排出管96连接到气体冷却器154的入口。气体冷却器154出来的配管则通过前述的第一内部热交换器160。第一内部热交换器是在气体冷却器出来的高压侧致冷剂以及蒸发器157出来的低压侧致冷剂之间进行热交换。
通过第一内部热交换器160的致冷剂到达做为节流手段的膨胀阀156。膨胀阀156的出口连接到蒸发器157的入口,蒸发器157出来的配管则经过第一内部热交换器160,到达前述第二内部热交换器162。第二内部热交换器162出来的配管则连接到致冷剂导入管94。
一边参考图3的p-h线图(莫利耶线图,Mollier diagram),一边来说明上述构成的本发明转换临界致冷剂循环装置的动作。经由端子20以及未绘出的配线,当压缩机10的电动组件14的定子线圈28通电后,电动组件14便起动而转子24也随之转动起来。通过此转动,与旋转轴16一体设置的上下偏心部42、44嵌合的上下滚轮46、48便在上下汽缸内偏心旋转。
由此,经由形成于致冷剂导入管94与下支撑部材56中的吸入通路,从未绘出的吸入埠吸入到汽缸40的低压室侧的低压致冷剂气体(图3的状态①),会通过滚轮48与阀的动作,被压缩成中间压,再从下汽缸40的高压室侧,经由未绘出的连通路,从中间排出管121排放到密闭容器12内。由此,密闭容器12便成中间压状态(图3的状态②)。
接着,密闭容器12内的中间压致冷剂气体进入致冷剂导入管92,再从衬管144出来,流入中间冷却回路150。接着,中间冷却回路150在通过气体冷却器154的过程中,以空冷的方式进行放热(图3的状态②’),之后再通过第二内部热交换器162。致冷剂便在此从低压致冷剂夺取热,以更进一步地被冷却(图3的状态③)。
以图3来说明此状态。流过中间冷却回路150的致冷剂气体在气体冷却器154处放热,此时熵损失Δh1。再者,在第二内部热交换器162,被低压侧致冷剂夺取热而冷却,熵损失Δh3。如此,通过使通过中间冷却回路150,被第一旋转压缩组件32压缩的中间压致冷剂气体可以被气体冷却器154与第二内部热交换器162有效地冷却,所以密闭容器12内的温度上升可以被抑制,且第二旋转压缩组件34的压缩效率也可以提升。
接着,被冷却的中间压致冷剂气体经由形成于上支撑部材54中的吸入通路(未绘出),从未绘出的吸入埠被吸入到第二旋转压缩组件34的上汽缸38的低压室侧。通过滚轮46与阀的动作,进行第二段压缩而成为高温高压致冷剂气体。接着,从高压室侧,通过未绘出的排出埠,再经过形成于上支撑部材54中的排出消音室62,而从致冷剂排出管96被排放到外部。此时,致冷剂被压缩到适当的超临界压力(图3的状态④)。
从致冷剂排出管96排出的致冷剂流入至气体冷却器154,并于该处以空冷方式放热(图3的状态⑤’),之后再通过第一内部热交换器160。致冷剂于此处被低压侧致冷剂夺取热,而更进一步地被冷却(图3的状态⑤)。
此状态以图3来说明。换句话说,在没有第一内部热交换器160时,膨胀阀156入口的致冷剂的熵成为⑤’的状态。在此情形,蒸发器157的致冷剂温度会变高。另一方面,当第一内部热交换器160使与低压侧致冷剂做热交换时,致冷剂的熵下降Δh2,而成为图3的状态⑤。因此,以图3的状态(5)’的熵,蒸发器157的致冷剂温度会变低。因此,设置第一内部热交换器160会提升蒸发器157的致冷剂气体的冷却能力。
因此,在不增加致冷剂循环量下也可以很容易地达到所要的蒸发温度,例如在蒸发器157的蒸发温度为+12℃到-10℃的中高温度范围。此外,压缩机的耗电量也可以降低。
被第一内部热交换器160冷却的高压侧致冷剂气体到达膨胀阀156。在膨胀阀156的入口处,致冷剂气体还是气体状态。因为膨胀阀156的压力下降,致冷剂会变成气体/液体两相的混合体(图3的状态⑥),并且以此状态流入蒸发器157内。致冷剂在蒸发器157处蒸发,利用从空气吸热的作用,来发挥冷却作用。
之后,致冷剂从蒸发器157流出(图3的状态①”),通过第一内部热交换器160。于该处,从高压侧致冷剂夺取热而受到加热作用后(图3的状态①’),到达第二内部热交换器162。接着,在第二内部热交换器162,从流过中间冷却回路150的中间压致冷剂夺取热,以受到更进一步的加热作用(图3的状态①)。
以图3来说明此状态。在蒸发器157蒸发而成为低温,并从蒸发器157出来的致冷剂为图3所示的状态①”。致冷剂并非完全气体状态,而是混合着液体。通过通过第一内部热交换器160来与高压侧致冷剂进行热交换,致冷剂的熵会上升Δh2,而成为图3的状态①’。由此,致冷剂会几乎完全成为气体。再者,通过第二内部热交换器162来与中间压致冷剂进行热交换,致冷剂的熵会上升Δh3,而成为图3的状态①,致冷剂会确实地取得过热度,而完全成为气体。
由此,从蒸发器157出来的致冷剂可以确实地被气化。特别是,即使在运转条件下产生剩余致冷剂时,利用第一内部热交换器160与第二内部热交换器162,以两阶段来加热低压侧致冷剂,所以可不需要设置吸收槽便可以确实地防止液体致冷剂被吸入到压缩机10内的液体回流现象,并且可以回避压缩机10因为液体回流所受到的损伤。
此外如前所述,来自蒸发器157且被第一内部热交换器160加热的低压致冷剂以及被第一旋转压缩机压缩的中间压致冷剂在第二内部热交换器162进行热交换。在双方进行热交换后,致冷剂被吸入到压缩机10内所以压缩机内的热收支为零。
因此,在不会使压缩机10的排出温度或内部温度上升下,过热度可以确保。因此,转换临界致冷剂循环装置的可靠性可以提升。
此外,被第二内部热交换器162加热的致冷剂,从致冷剂导入管94被吸入到压缩机10的第一旋转压缩组件32。此循环反复地操作。
如上所述,以具备中间冷却回路150,将第一旋转压缩组件32排放出的致冷剂在气体冷却器154放热;第一内部热交换器160,使气体冷却器154出来的来自第二旋转压缩组件34的致冷剂以及蒸发器157出来的致冷剂之间进行热交换;以及第二内部热交换器162,使气体冷却器154出来的流过中间冷却回路150的致冷剂以及第一内部热交换器160出来的来自蒸发器157的致冷剂之间进行热交换,蒸发器157出来的致冷剂会在第一内部热交换器160与气体冷却器154出来的来自第二旋转压缩组件34的致冷剂进行热交换以夺取热,而在第二内部热交换器162与气体冷却器154出来的流过中间冷却回路150的致冷剂进行热交换以夺取热。因此,致冷剂的过热度可以确实地确保,以避免压缩机10内的液体压缩。
另一方面,气体冷却器154出来的来自第二旋转压缩组件34的致冷剂会在第一内部热交换器160,被蒸发器157出来的致冷剂夺取热,所以致冷剂温度可以由此下降。因此,蒸发器157的致冷剂气体的冷却能力可以提升。因此,在不增加致冷剂循环量下,可以轻易地达到所要的蒸发温度,而且压缩机的耗电量也可以降低。
此外,因为具备中间冷却回路150,压缩机10内部的温度可以下降。特别是在此情形,因为流过中间冷却回路150的致冷剂在气体冷却器154放热后,会把热传给来自蒸发器157的致冷剂,此致冷剂再被吸入到第二旋转压缩组件34,所以设置第二内部热交换器162使压缩机10内部的温度上升的事情不会发生。
此外,在实施例中,二氧化碳是被使用做为致冷剂,但是本发明并不限定于此。任何在转换临界致冷剂循环中可使用的各种致冷剂均可以使用。
第三实施例
接着参考图4,上述的压缩机10构成图4的致冷剂回路的一部分。亦即,压缩机10的致冷剂排出管96连接到气体冷却器154的入口。接着,气体冷却器154出来的配管连接到做为油分离手段的油分离器170的入口。油分离器170用来分离与被第二旋转压缩组件34压缩的致冷剂一起排出的油。
油分离器170出来的致冷剂配管通过前述的第一内部热交换器160。第一内部热交换器160用来进行油分离器170出来的来自第二旋转压缩组件34的高压侧致冷剂以及蒸发器157出来的低压侧致冷剂之间的热交换。
接着,通过第一内部热交换器160的高压侧致冷剂到达做为节流手段的膨胀机构156。膨胀机构156由做为第一节流手段的第一膨胀阀156A以及设置在第一膨胀阀156A下游侧的做为第二节流手段的第二膨胀阀156B所构成。此外,前述第一膨胀阀156A的开度被调整成使被第一膨胀阀156A减压后的致冷剂压力高于压缩机10内的中间压。
此外,做为气体液体分离手段的气液分离器200是设置在第一膨胀阀156A与第二膨胀阀156B之间的致冷剂配管。第一膨胀阀156A出来的致冷剂配管连接到气液分离器200的入口。气液分离器200的气体出口侧的致冷剂配管连接到第二膨胀阀156B的入口。接着,第二膨胀阀156B的出口连接到蒸发器157的入口,蒸发器157出来的致冷剂配管经过第一内部热交换器160,到达第二内部热交换器162。第二内部热交换器162出来的致冷剂配管连接到致冷剂导入管94。
另一方面,将被油分离器170分离之油返回到压缩机10内的前述回油路175系连接到油分离器170。做为减压手段的毛细管176设置在回油路175上,其用来将被油分离器170分离的油减压。回油路175经过第二内部热交换器162,连通到压缩机10的密闭容器12内。
此外,注射回路(injection loop)210连接到气液分离器200的液体出口侧,用以使被气液分离器200分离的液体致冷剂回到压缩机10内。做为减压手段的毛细管220设于注射回路210上,用以将被气液分离器200分离的液体致冷剂减压。此注射回路210连接到与第二旋转压缩组件34的吸入侧连通的前述致冷剂导入管92。
经由端子20以及未绘出的配线,当压缩机10的电动组件14的定子线圈28通电后,电动组件14便起动而转子24也随之转动起来。通过此转动,与旋转轴16一体设置的上下偏心部42、44嵌合的上下滚轮46、48便在上下汽缸内偏心旋转。
经由端子20以及未绘出的配线,当压缩机10的电动组件14的定子线圈28通电后,电动组件14便起动而转子24也随之转动起来。通过此转动,与旋转轴16一体设置的上下偏心部42、44嵌合的上下滚轮46、48便在上下汽缸内偏心旋转。
由此,经由形成于致冷剂导入管94与下支撑部材56中的吸入通路60,从未绘出的吸入埠吸入到汽缸40的低压室侧的低压致冷剂气体,会通过滚轮48与阀的动作,被压缩成中间压,再从下汽缸40的高压室侧,经由未绘出的连通路,从中间排出管121排放到密闭容器12内。由此,密闭容器12便成中间压状态。
通过使通过中间冷却回路150,被第一旋转压缩组件32压缩的中间压致冷剂气体可以被气体冷却器154与第二内部热交换器162有效地冷却,所以密闭容器12内的温度上升可以被抑制,且第二旋转压缩组件34的压缩效率也可以提升。
接着,被冷却的中间压致冷剂气体经由形成于上支撑部材54中的吸入埠(未绘出),从未绘出的吸入埠被吸入到第二旋转压缩组件34的上汽缸38的低压室侧。通过滚轮46与阀的动作,进行第二段压缩而成为高温高压致冷剂气体。接着,从高压室侧,通过未绘出的排出埠,再经过形成于上支撑部材54中的排出消音室62,而从致冷剂排出管96被排放到外部。此时,致冷剂被压缩到适当的超临界压力。
从致冷剂排出管排放出来的致冷剂气体流入到气体冷却器154,并于该处以空冷方式放热后,到达前述油分离器170。在油分离器170,致冷剂气体与油被分离开。
接着,从致冷剂气体分离出来的油流入到回油路175。油被设置在回油路175上的毛细管176减压后,通过第二内部热交换器162。油便在此处被来自第一内部热交换器160的低压侧致冷剂夺取热而被冷却后,再回到压缩机10内。
如上所述,因为冷却的油回到压缩机10的密闭容器12内,所以密闭容器12内可通过油被有效地冷却。因此,可以抑制密闭容器12内的温度上升,并且可以提升第二旋转压缩组件34的压缩效率。
此外,密闭容器12内的蓄油器的油面降低等缺点也可以避免。
另一方面,从油分离器170出来的致冷剂气体通过第一内部热交换器160。致冷剂于该处被低压侧致冷剂夺走热,而被更进一步地冷却。通过递一内部热交换器160的存在,热被低压侧致冷剂夺走,所以在蒸发器157的致冷剂的蒸发温度可以被降低。因此,蒸发器的冷却能力便提升。
被第一热交换器160冷却的高压侧致冷剂气体到达膨胀机构156的第一膨胀阀156A。此外,在第一膨胀阀156A的入口处,致冷剂气体还是气体状态。如前所述,第一膨胀阀156A的开度被调整成使致冷剂的压力高于压缩机10的第二旋转压缩组件34的吸入侧压力(中间压)。在此处,致冷剂便减压到高于中间压的压力。由此,致冷剂一部分被液化,而成为气体/液体两相混合体,再流入到气液分离器200。于该处,气体致冷剂与液体致冷剂被分离。
接着,气液分离器200内的液体致冷剂流入到注射回路210。液体致冷剂被设置在注射回路210上的毛细管220减压,而成为略高于中间压的压力。之后,经过致冷剂导入管92,注入到压缩机10的第二旋转压缩组件34的吸入侧。在此处,致冷剂蒸发,利用从周围吸收热来发挥冷却作用。由此,包含第二旋转压缩组件34的压缩机10本身便被冷却。
如上述,由于致冷剂在注射回路210被减压,再注入到压缩机10的第二旋转压缩组件34的吸入侧,并且致冷剂于该处蒸发,使第二旋转压缩组件34被冷却。因此,第二旋转压缩组件34可以被有效地冷却。通过此种方式,第二旋转压缩组件34的压缩效率可以被提升。
另一方面,从气液分离器200出来的气体致冷剂到达第二膨胀阀156B。致冷剂通过第二膨胀阀156B的压力下降进行最终的液化,并在气体/液体两相混合体的状态下流入蒸发器157。于该处,致冷剂蒸发,利用从空气吸热来发挥冷却作用。
如上所述,通过使被第一旋转压缩组件32压缩的中间压致冷剂通过中间冷却回路150,来抑止密闭容器12内温度上升的效果;通过使从致冷剂气体中被油分离器170分离出的油通过第二内部热交换器162,来抑制密闭容器12内温度上升的效果;更通过以气液分离器200来分离气体致冷剂与液体致冷剂,在分离出的液体致冷剂被毛细管220减压后,在第二旋转压缩组件34从周围吸热使之蒸发,以冷却第二旋转压缩组件34的效果,第二旋转压缩组件34的压缩效率可以被提升。此外,利用使被第二旋转压缩组件34压缩的致冷剂通过第一内部热交换器160,以降低再蒸发器157的致冷剂蒸发温度的效果,蒸发器157的致冷剂蒸发温度也得已被下降。
亦即,在此情形的蒸发器157的蒸发温度,可以很容易地达到例如-50℃以下的超低温范围。此外,也可以同时降低压缩机10的耗电量。
之后,致冷剂从蒸发器157流出,通过第一内部热交换器160。在该处,从前述高压侧致冷剂夺取热,而受到加热作用后,到达第二内部热交换器162。接着,再第二内部热交换器162从流过回油路175的油夺取热,以更受到进一步的加热作用。
在蒸发器157蒸发而成为低温。从蒸发器157出来的致冷剂并非完全气体状态,而是混合着液体。通过通过第一内部热交换器160来与高压侧致冷剂进行热交换,致冷剂被加热。由此,致冷剂会几乎完全成为气体。再者,通过通过第二内部热交换器162来与油进行热交换,致冷剂会被加热,并且确实地取得过热度,而完全成为气体。
由此,从蒸发器157出来的致冷剂可以确实地被气化。特别是,即使在运转条件下产生剩余致冷剂时,利用第一内部热交换器160与第二内部热交换器162,以两阶段来加热低压侧致冷剂,所以可不需要设置吸收槽便可以确实地防止液体致冷剂被吸入到压缩机10内的液体回流现象,并且可以回避压缩机10因为液体压缩所受到的损伤。
因此,在不会使压缩机10的排出温度或内部温度上升下,过热度可以确保。因此,迁临界致冷剂循环装置的可靠性可以提升。
此外,被第二内部热交换器162加热的致冷剂,从致冷剂导入管94被吸入到压缩机10的第一旋转压缩组件32。此循环反复地操作。
如上所述,以具备中间冷却回路150,将第一旋转压缩组件32排放出的致冷剂在气体冷却器154放热;油分离器170,将油从被第二旋转压缩组件34压缩的致冷剂分离出来;回油路175,使被油分离器170分离的油减压而回到压缩机内;第一内部热交换器160,使气体冷却器154出来的来自第二旋转压缩组件34的致冷剂以及蒸发器157出来的致冷剂之间进行热交换;以及第二内部热交换器162,使流过回油路175的油与第一内部热交换器160出来的来自蒸发器157的致冷剂之间进行热交换。做为节流手段的膨胀机构156由第一膨胀阀156A与设置在第一膨胀阀156A的下游侧的第二膨胀阀156B所构成。此外,更具备注入回路210,使在第一膨胀阀156A与第二膨胀阀156B之间流动的部分致冷剂减压,在将其注入到压缩机10的第二旋转压缩组件34的吸入侧。因此,蒸发器出来的致冷剂在第一内部热交换器160与气体冷却器出来的来自第二旋转压缩组件34的致冷剂进行热交换以夺取热,而在第二内部热交换器162与流过回油路175的油进行热交换以夺取热。因此,致冷剂的过热度可以确实地确保,以避免压缩机10内的液体压缩。
另一方面,使气体冷却器出来的来自第二旋转压缩组件34的致冷剂通过油分离器170后,在第一内部热交换器160被蒸发器157出来的致冷剂夺取热,由此致冷剂的蒸发温度得以下降。由此方式,蒸发器157的致冷剂气体的冷却能力可以提升。此外,因为具备中间冷却回路150,所以压缩机10内部的温度可以被降低。
此外,流过回油路175的油,在第二内部热交换器162被第一内部热交换器160出来的来自蒸发器的致冷剂夺取热后,再回到压缩机10内,故压缩机10内部的温度可以被更进一步地降低。
再者,设置气液分离气200于第一与第二膨胀阀156A、156B之间,注射回路210将被气液分离器200分离的液体致冷剂减压,再注入到压缩机10的第二旋转压缩组件34的吸入侧。因此,来自注射回路210的致冷剂便蒸发而从周围吸热,故包含第二旋转压缩组件34的压缩机10全体可以被有效地冷却。由此,致冷剂循环的蒸发器157的致冷剂蒸发温度可以更进一步地降低。
由上所述的方式,使致冷剂循环的蒸发器157的致冷剂蒸发温度降低是可能的,例如蒸发器157的蒸发温度可以很容易地达到-50℃以下的超低温范围。此外,压缩机10的耗电量也可以被降低。
第四实施例
图5所示的回油路175A也同样设置毛细管176。但在此情形是经过第二内部热交换器162,连接到致冷剂导入管92,其是连通到第二旋转压缩组件34的上汽缸38的未绘出吸入通路。由此,被第二内部热交换器162冷却的油会供应到第二旋转压缩组件34。
如上述,回油路175A将被油分离器170分离出的油以毛细管176减压,在第二内部热交换器162处与第一内部热交换器160出来的来自蒸发器157的致冷剂进行热交换后,再从致冷剂导入管92回到压缩机10的第二旋转压缩组件。
由此,第二旋转压缩组件34可以被有效地冷却,并且第二旋转压缩组件34的压缩效率也可以被提升。
此外,因为直接供油给第二旋转压缩组件34,所以可以避免第二旋转压缩组件34的油量不足的缺点。
再者,在本实施例中,被气液分离器200所分离出的液体致冷剂,以设置在注射回路210的毛细管减压,再从致冷剂导入管92回到第二旋转压缩组件34的吸入侧。但是,也可以不装设气液分离器200。在此情形时,第一膨胀阀156A出来的致冷剂(因为没有气液分离器,所以致冷剂的状态为气体、液体或是其混合状态),以设置在注射回路210的毛细管220下降到适当的压力(略高于中间压的压力),再从致冷剂导入管92被吸入到第二旋转压缩组件34的吸入侧。
再者,第一膨胀阀156A出来的致冷剂被减压至适当的压力(略高于中间压的压力),并且在此情形的致冷剂状态设定为气体的话,毛细管220是不需要设置。
此外,在此实施例中,做为油分离手段的油分离器170是设置在气体冷却器154与第一内部热交换器160之间的致冷剂配管,但是并不局限于此架构。例如,也可以设置在压缩机10与气体冷却器154之间的配管。此外,设置在回油路175且做为减压手段的毛细管176,也可以热传导方式卷付于第一内部热交换器160出来的致冷剂配管,以构成第二内部热交换器162。
其次,在实施例中,致冷剂是使用二氧化碳,但是本发明并不局限于此。在转换临界致冷剂循环中,任何可使用的致冷剂,亦即在高压侧成为超临界的HFC系致冷剂的R23(CHF3)或一氧化二氮(N2O)等的致冷剂均可以适用。此外,当使用此HFC系致冷剂的R23(CHF3)或或一氧化二氮(N2O)等的致冷剂时,蒸发器157的致冷剂蒸发温度可以到达-80℃以下的超低温。
第五实施例
接着,参考图6,来详细说明本发明的转换临界致冷剂循环装置的另一实施例。图6绘示此情形的转换临界致冷剂循环装置的致冷剂回路图。此外,在图6中,与图1与图5相同符号者具有相同或类似的作用。
图5与图6所示的转换临界致冷剂循环装置的致冷剂回路的不同处在于通过第一内部热交换器160的高压侧致冷剂到达做为节流手段的膨胀阀156。接着,膨胀阀156的出口连接到蒸发器157的入口,蒸发器157出来的致冷剂配管经过第一内部热交换器160而到达第二内部热交换器162。接着,第二内部热交换器162出来的致冷剂配管连接到致冷剂导入管94。
被第一内部热交换器160冷却的高压侧致冷剂气体到达膨胀阀156。此外,在膨胀阀156的入口处,致冷剂气体还是气体的状态。致冷剂利用膨胀阀156的压力下降,变成气体/液体两相混合体,并以此状态流入到蒸发器157内。致冷剂于该处蒸发并且从空气吸热,以发挥冷却作用。
此时,通过使被第一旋转压缩机32压缩的中间压致冷剂通过中间冷却回路150,来抑制密闭容器12内温度上升的效果;通过使以油分离器170从致冷剂气体分离出的油通过第二内部热交换器162,来抑制密闭容器12内温度上升的效果;第二旋转压缩组件34的压缩效率可以提升。此外,通过使被第二旋转压缩组件34压缩的致冷剂气体通过第一内部热交换器160,来降低在蒸发器157的致冷剂温度的效果,可以降低蒸发器157的致冷剂的蒸发温度。
亦即,此情形下的蒸发器157的蒸发温度可以很容易地达到如-30℃至-40℃的低温范围。此外,也可以同时降低压缩机10的消耗电量。
之后,致冷剂从蒸发器157流出,通过第一内部热交换器160,并且在此从高压侧致冷剂取得热,而受到加热作用,之后便到达第二内部热交换器162。接着,在第二内部热交换器162,从流经油返回路175的润滑油,取得热,以更进一步地受到加热作用。
在蒸发器157蒸发变成低温且从蒸发器出来的致冷剂并不是完全为气态,而是混合液体的状态。但是,使之通过第一内部热交换器160来与高压侧致冷剂进行热交换,致冷剂被加热。由此,致冷剂几乎完全成为气体。再者,使其通过第二内部热交换器162,来与油进行热交换,致冷剂被加热,以确实地取得过热度而完全变成气体。
由此,从蒸发器157出来的致冷剂可以确实地被气化。特别是,即使在运转条件下产生剩余致冷剂时,利用第一内部热交换器160与第二内部热交换器162,以两阶段来加热低压侧致冷剂,所以可不需要设置吸收槽便可以确实地防止液体致冷剂被吸入到压缩机10内的液体回流现象,并且可以回避压缩机10因为液体回流所受到的损伤。
因此,在不会使压缩机10的排出温度或内部温度上升下,过热度可以确保。因此,转换临界致冷剂循环装置的可靠性可以提升。
此外,被第二内部热交换器162加热的致冷剂,从致冷剂导入管94被吸入到压缩机10的第一旋转压缩组件32。此循环反复地操作。
如上所述,以具备中间冷却回路150,将第一旋转压缩组件32排放出的致冷剂在气体冷却器154放热;第一内部热交换器160,使气体冷却器154出来的来自第二旋转压缩组件34的致冷剂以及蒸发器157出来的致冷剂之间进行热交换;油分离器170,将油从被第二旋转压缩组件34压缩的致冷剂中分离出来;回油路175,将被分离出来的油减压,使之返回压缩机10内;以及第二内部热交换器162,使流过回油路175的油以及第一内部热交换器160出来的来自蒸发器157的致冷剂之间进行热交换,蒸发器157出来的致冷剂会在第一内部热交换器160与气体冷却器154出来的来自第二旋转压缩组件34的致冷剂进行热交换以夺取热,而在第二内部热交换器162与流过回油路175的油进行热交换以夺取热。因此,致冷剂的过热度可以确实地确保,以避免压缩机10内的液体压缩。
另一方面,使气体冷却器出来的来自第二旋转压缩组件34的致冷剂通过油分离器170后,在第一内部热换器160被蒸发器157出来的致冷剂夺取热,由此致冷剂的蒸发温度得以下降。由此方式,蒸发器157的致冷剂气体的冷却能力可以提升。此外,因为具备中间冷却回路150,所以压缩机10内部的温度可以被降低。
此外,流过回油路175的油,在第二内部热交换器162被第一内部热交换器160出来的来自蒸发器的致冷剂夺取热后,再回到压缩机10内,故压缩机10内部的温度可以被更进一步地降低。
由此,可以使在致冷剂循环的蒸发器的致冷剂蒸发温度降低。例如,蒸发器157处的蒸发温度可以很容易地到达-30℃至-40℃的低温范围。此外,压缩机10的耗电量也可以降低。
第六实施例
接着,参考图7,来详细说明本发明的转换临界致冷剂循环装置的另一实施例。图7绘示此情形的转换临界致冷剂循环装置的致冷剂回路图。此外,在图7中,与图1与图6相同符号者具有相同或类似的作用。
图7所示的回油路175A也同样设置毛细管176。但在此情形是经过第二内部热交换器162,连接到致冷剂导入管92,其是连通到第二旋转压缩组件34的上汽缸38的未绘出吸入通路。由此,被第二内部热交换器162冷却的油会供应到第二旋转压缩组件34。
如上述,回油路175A将被油分离器170分离出的油以毛细管176减压,在第二内部热交换器162处与第一内部热交换器160出来的来自蒸发器157的致冷剂进行热交换后,再从致冷剂导入管92回到压缩机10的第二旋转压缩组件。
由此,第二旋转压缩组件34可以被有效地冷却,并且第二旋转压缩组件34的压缩效率也可以被提升。
此外,因为直接供油给第二旋转压缩组件34,所以可以避免第二旋转压缩组件34的油量不足的缺点。
此外,在此实施例中,做为油分离手段的油分离器170为设置在气体冷却器154与第一内部热交换器160之间的致冷剂配管,但是并不局限于此架构。例如,也可以设置在压缩机10与气体冷却器154之间的配管。此外,设置在回油路175且做为减压手段的毛细管176,也可以热传导方式卷付于第一内部热交换器160出来的致冷剂配管,以构成第二内部热交换器162。
其次,在实施例中,致冷剂是使用二氧化碳,但是本发明并不局限于此。一氧化二氮(N2O)等可在转换临界致冷剂循环中使用的任何致冷剂均可以适用。
第七实施例
接着参考图8,上述的压缩机10构成图8所示的热水供应装置的致冷剂回路的一部分。亦即,压缩机10的致冷剂排出管96连接到气体冷却器154的入口。接着,气体冷却器154出来的配管到达做为节流手段的膨胀阀156。膨胀阀156的出口连接到蒸发器157的入口,蒸发器157出来的配管连接到致冷剂导入管94。
此外,图1未绘出的旁通回路(bypass loop)180从致冷剂导入管92的中途分歧出来。旁通回路180在不把密闭容器12排出的中间压致冷剂气体以膨胀阀156减压,而供应给蒸发器157的回路。膨胀阀156与蒸发器157之间以致冷剂配管连接起来。接着,用来开关此膨胀回路180的做为阀装置的电磁阀158设置在旁通回路180上。
接着说明具备上述构成的致冷剂回路装置的动作。此外,在压缩机10起动之前,电磁阀158以未绘出的控制装置使其关闭。
经由端子20以及未绘出的配线,当压缩机10的电动组件14的定子线圈28通电后,电动组件14便起动而转子24也随之转动起来。通过此转动,与旋转轴16一体设置的上下偏心部42、44嵌合的上下滚轮46、48便在上下汽缸内偏心旋转。
由此,经由形成于致冷剂导入管94与下支撑部材56中的吸入通路60,从未绘出的吸入埠吸入到汽缸40的低压室侧的低压致冷剂气体,会通过滚轮48与阀的动作,被压缩成中间压,再从下汽缸40的高压室侧,经由未绘出的连通路,从中间排出管121排放到密闭容器12内。由此,密闭容器12便成中间压状态。
接着,密闭容器12内的中间压致冷剂气体经过致冷剂导入管92,再经过行程在上支撑部材54中的未绘出的吸入通路,从未绘出的吸入埠被吸入到第二旋转压缩组件34的上汽缸38的低压侧。通过滚轮46与阀的动作,进行第二段压缩,以成为高压高温致冷剂气体。接着,从高压室侧通过未绘出的排出埠,在经由形成于上支撑部材54中的排出消音室62,从致冷剂排出管96排放到外部。
从致冷剂排出管96排出的致冷剂气体流入气体冷却器154,于该处放热后,到达膨胀阀156。在膨胀阀处致冷剂被减压,再流入蒸发器157内,并于该处从周围吸热。之后,从致冷剂导入管94被吸入到第一旋转压缩组件32。上述循环反复地执行。
另一方面,若长时间运转,蒸发器157会结霜。在此情形,以图未示的控制装置打开电磁阀158,使旁通回路180打开,以执行蒸发器157的除霜运转。由此,密闭容器12内的中间压致冷剂气体回流到膨胀阀156的下游侧,直接流入蒸发器157而没有被减压。亦即,中间压的较高温致冷剂并不会被减压,而是直接供应蒸发器157。由此,蒸发器157便被加热而除霜。
从第二旋转压缩组件34排出的高压致冷剂并不减压而供给蒸发器除霜时,因为膨胀阀156为全开,第一旋转压缩组件32的吸入压力上升。由此,第一旋转压缩组件32的排出压力(中间压)变高。此致冷剂通过第二旋转压缩组件34而排出。但是,因为膨胀阀156全开,第二旋转压缩组件34的排出压力会变得与第一旋转压缩组件32相同,故在第二旋转压缩组件34的排出侧(高压)与吸入侧(低压)之间会产生压力逆转现象。然而,如上所述,因为从第一旋转压缩组件32排出的中间压致冷剂从密闭容器12被取出,使蒸发器157进行除霜,所以可以防止除霜运转时的高压与中间压之间的逆转现象。
图9绘示致冷剂回路装置的压缩机10起动时的压力行为。如图9所示,压缩机10停止时,膨胀阀156为全开。由此,在压缩机10起动之前,致冷剂回路内的低压(第一旋转压缩装置32的吸入侧压力)与高压(第二旋转压缩组件34的排出侧压力)变被均等化(实线所示)。但是,密闭容器12内的中间压(虚线)并不会马上被均压,而是如前所述,会变成比低压侧、高压侧高的压力。
依据本发明,压缩机10起动后,再经过一段时间后,以未绘出的控制装置将电磁阀158打开,而使旁通回路180开放。由此,被第一旋转压缩组件32压缩且排放到密闭容器12内的一部分致冷剂气体会从致冷剂导入管92出来,通过旁通回路180,再流入蒸发器157。
当被第一旋转压缩组件32压缩且排放到密闭容器12内的致冷剂气体没有从旁通回路180逃到蒸发器157时,若在此状态使压缩机10运转,背压会加在第二旋转压缩组件34的阀上,第二旋转压缩组件34的排出侧压力与第二旋转压缩组件34的吸入侧压力会相同,或者是第二旋转压缩组件34的吸入侧压力会较高,所以阀不会对滚轮46侧产生弹性力,阀有可能飞起。因此,第二旋转压缩组件34会无法进行压缩。压缩机10变仅剩下第一压缩组件32在压缩,而使得压缩效率恶化,也导致压缩机的乘绩系数(coefficient ofproduct,COP)降低。
此外,第一旋转压缩组件32的吸入侧压力(低压)与施加在第一旋转压缩组件32的阀的密闭容器12内的中间压之间的压力差会变得大于必要以上,阀的前端与滚轮48外周面的滑动部分上,面压会显著地施加上去,阀与滚轮48变会磨损。最坏的情形会有损伤的危险性。
再者,若密闭容器12内的中间压上升大多时,由于电动组件14会得更高温,致冷剂气体的吸入、压缩与排放等只压缩机的各个性能恐怕会发生障碍。
但是,如前所述,利用旁通回路180,当被第一旋转压缩组件32排放到密闭容器12内的中间压致冷剂气体逃到蒸发器157时,中间压迅速地降低,而变得比高压低,所以可以防止逆转现象(参考图9)。
藉此,因为可以回避前述压缩机10的不稳定运转行为,所以压缩机10的性能与耐久性可以提升。因此,可以维持致冷剂回路装置的稳定的运转状况,进而谋求致冷剂回路装置的可靠性的提升。
此外,从开放旁通回路180的电磁阀158后经过一预定时间后,以未绘示的控制装置,关闭电磁阀158。之后就回复一般的正常运转。
如前所述,利用前述除霜用回路的旁通回路180,密闭容器12内的中间压致冷剂气体可以逃到蒸发器157侧,所以不必修改配管,也可以回避高压与中间压的压力逆转现象。由此,生产成本可以被降低。
此外,在本实施例中,在压缩机10起动后,经过预定的时间,以未绘示的控制装置打开电磁阀158,以开启旁通回路180。但是并不一定要局限于此架构。例如,如图10所示,从在压缩机10起动前,以未绘示的控制装置打开电磁阀158,在压缩机10起动后经过一预定时间再关闭电磁阀158。或者是,在压缩机10起动的同时,开启电磁阀158,并在一段时间经过后关闭电磁阀。此些情形均可以回避密闭容器12内的中间压与第二旋转压缩组件34的排出侧的高压之间的压力逆转现象。
此外,在本实施例中,压缩机使用内部中间压型多段(两段)压缩式旋转压缩机,但是本发明并不局限于此架构。多段压缩式压缩机也可以使用。
第八实施例
图1未绘出的中间冷却回路150并联连接于致冷剂导入管92。中间冷却回路150用来使被第一压缩组件32压缩且排放到密闭容器12内的中间压致冷剂气体在中间热交换器151放热,之后再将致冷剂吸入到第二旋转压缩组件34中。此外,做为阀装置的前述电磁阀152设置在中间冷却回路150上,其用来控制被第一旋转压缩组件32排放出的致冷剂流到致冷剂导入管92或流入中间冷却回路150。电磁阀152依据排出气体温度传感器190所检测出的第二旋转压缩组件34所排出的致冷剂温度,当排出致冷剂温度上升到一预定值时(例如100℃),便打开电磁阀152,使致冷剂流入中间冷却回路150。当未满100℃便关闭电磁阀152,使致冷剂流入致冷剂导入管92。此外,在实施例中,如前所述,以相同预定值来控制电磁阀152的开关,但是打开电磁阀152的上限值与关闭电磁阀的下限值也可以不同。电磁阀152的开度也可以依据温度变化,做线性或阶段的调整。
接着说明具备以上构成的本发明的致冷剂回路装置的动作。此外,在压缩机10起动之前,利用排出气体温度传感器190将电磁阀152关闭。
经由端子20以及未绘出的配线,当压缩机10的电动组件14的定子线圈28通电后,电动组件14便起动而转子24也随之转动起来。通过此转动,与旋转轴16一体设置的上下偏心部42、44嵌合的上下滚轮46、48便在上下汽缸内偏心旋转。
由此,经由形成于致冷剂导入管94与下支撑部材56中的吸入通路60,从未绘出的吸入埠被吸入到汽缸40的低压室测的低压致冷剂,会通过滚轮48与阀的动作,而呈为中间压状态。从下汽缸40的高压室侧,经由未绘出的连通路,从中间排出管121排放到密闭容器12内。由此,密闭容器12变成中间压。
如前所述,因为电磁阀152为关闭,密闭容器12内的中间压致冷剂气体会全部流到致冷剂导入管92。接着,从致冷剂导入管92经过形成于上支撑部材54中的吸入通路(未绘出),从未绘出的吸入埠被吸入到第二旋转压缩组件34的上汽缸38的低压室侧。通过滚轮46与阀的动作,进行第二段压缩,而成为高温高压的致冷剂气体。之后,从高压室侧,通过未绘出的排出埠,经由形成于上支撑部材54中的排出消音室62,从致冷剂排出管排放到外部。
此高温高压致冷剂气体从气体冷却器154放热,加热未绘出的热水储存槽内的水,以产生温水。另一方面,在气体冷却器154处,致冷剂本身被冷却,在从气体冷却器154出来。接着,在膨胀阀156被减压后,流入到蒸发器157蒸发(此时从周围吸热),在从致冷剂导入管94被吸回到第一旋转压缩组件32内。上述的循环反复地进行。
另一方面,经过一定时间后,利用排出气体温度传感器190,侦测出从第二旋转压缩组件34排出的致冷剂温度上升到100℃时,利用排出气体温度侦测器190将电磁阀152打开,已开放中间冷却回路150。由此,被第一旋转压缩组件32压缩、排出的中间压致冷剂便流入到中间冷却回路150,并以设置于此的中间热交换器151来冷却,在被吸入到第二旋转压缩组件34。
此状态以图12的p-h线图(莫利耶线图)来说明。从第二旋转压缩组件34排出的致冷剂的温度上升到100℃时,被第一旋转压缩组件32压缩而成中间压的致冷剂(图12的状态B),通过中间冷却回路150,并且被设置于此的中间热交换器151夺取热之后(图12的状态C),被吸入到第二旋转压缩组件34。接着,被第二旋转压缩组件34压缩,再排放到压缩机10外部(图12的状态E)。在此情形,被第二旋转压缩组件34压缩且排放到压缩机10外部的致冷剂温度为图12所示的TA2。
即使从第二旋转压缩组件34排出的致冷剂的温度上升到100℃,致冷剂没流到中间冷却回路150时,被第一旋转压缩组件32压缩而成为中间压的致冷剂(图12的状态B)会直接通过致冷剂导入管92,而被吸入到第二旋转压缩组件34中被第二旋转压缩组件34压缩,再排放到压缩机10部(图12的状态D)。在此情形,被第二旋转压缩组件34压缩而排放到压缩机10外部的致冷剂温度则成图12所示的TA1,成为比致冷剂流过中间冷却回路时的温度高。因此,压缩机10内的温度上升使压缩机10过热,故负荷增加。压缩机10运转变得不稳定,并且因为密闭容器12内的高温环境,使得油裂化,恐怕会对压缩机10的耐久性会有不好的影响。但是,如前所述,通过中间冷却回路150,以中间热交换器151来冷却被第一旋转压缩组件32压缩的致冷剂后,再使致冷剂被吸入到第二旋转压缩组件34,便可以抑制被第二旋转压缩机压缩、排放出的致冷剂的温度上升。
由此,被第二旋转压缩机压缩、排放出的致冷剂的温度异常上升而对致冷剂循环装置有不良影响便可以被避开。
接着,若利用排出气体温度传感器190检测出来的被第二旋转压缩组件34排出的致冷剂温度低于100℃时,利用气体温度传感器190,关闭电磁阀152,回到正成的运转。
由此,被第一旋转压缩组件32压缩的致冷剂并不会通过中间冷却回路150而被吸入到第二旋转压缩组件34,所以在第一旋转压缩组件32压缩再被第二旋转压缩组件34吸入的过程中,致冷剂温度几乎没有下降。由此,致冷剂温度不至于下降很多,便可以避免不在气体冷却器154处制作高温温水所带来的缺点。
如上所述,通过具备使被第一旋转压缩组件压缩的致冷剂被吸入到第二旋转压缩组件34的致冷剂导入管92;与此致冷剂导入管92并列连接的中间冷却回路150;以及用来控制使第一旋转压缩组件32排放出的致冷剂流到致冷剂导入管92或流到中间冷却回路150的电磁阀152,当用来侦测从第二旋转压缩组件34排放出来的致冷剂温度的排出气体温度传感器190,侦测到第二旋转压缩组件34的排放致冷剂温度上升到100℃时,电磁阀152便开放而使致冷剂流到中间冷却回路150,所以可以防止第二旋转压缩组件34的排出致冷剂温度异常上升而使压缩机10过热,进而造成运转不稳定的缺点,也可以防止密闭容器12内高温环境所造成的油裂化,而使压缩机10的耐久性的不好影响。
此外,排出气体温度传感器190侦测到第二旋转压缩组件34的排放致冷剂温度降到低于100℃时,因为电磁阀152关闭而使被第一旋转压缩组件32压缩的致冷剂直接通过致冷剂导入管92,再被吸入到第二旋转压缩组件34,所以被第二旋转压缩组件34压缩且排放的致冷剂气体的温度可以变成高温。
由此,起动时,致冷剂的温度会很容易上升,浸入压缩机10的致冷剂也可以迅速地回到正常状态因此,压缩机的起动性可以提升。
由此,通常100℃左右的高温致冷剂回流入到气体冷却器154,所以在气体冷却器154处便可以常常做出一定温度的热水。由此,致冷剂循环装置的可靠度可以提升。
此外,在本实施例中,在压缩机10与气体冷却器154之间的配管中,以排出气体温度传感器190来侦测压缩机10的第二旋转压缩组件34的排出致冷剂温度,以控制电磁阀152,但是并不局限于此架构。例如,也可以利用时间来控制电磁阀152。
此外,在本实施例中,压缩机室内部中间型多段(两段)压缩式旋转压缩机,但本发明并不局限于此。例如,也可以使用多段压缩式压缩机。
第九实施例
如图13至图15所示,连通于密闭容器12内与滚轮46内侧的贯通孔131利用细孔加工的方式,使穿孔于图1的中间分隔板36中。图13是中间分隔板36的平面图,图14是中间分隔板36的纵剖面图,图15标绘示贯通孔131的密闭容器12侧的扩大图。亦即,些微间隙形成于中间分隔板36与旋转轴16之间,此间隙的上侧连通到滚轮46内侧(滚轮46内侧的偏心部42的周边空间)。再者,中间分隔板36与旋转轴16间的间隙下侧连通到滚轮48内侧(滚轮48内侧的偏心部44的周边空间)。贯通孔131为一条通路,使从形成于用来塞住汽缸38内侧滚轮46与汽缸38的上侧开口面的上部支撑部材54以及用来塞住下侧开口面的中间分隔板之间的间隙,漏到滚轮46内侧(滚轮46内侧的偏心部42外围的空间),再流入中间分隔板36与旋转轴16间的间隙以及滚轮48内侧的高压致冷剂气体,逃到密闭容器12内。
通过贯通孔131,漏到滚轮46内侧的高压致冷剂通过形成于中间分隔板36与旋转轴16之间的间隙,流入密闭容器12内。
由此,漏到滚轮46内侧的高压致冷剂气体会从贯通孔131逃到密闭容器12内,所以可以避免高压致冷剂气体滞留在滚轮46内侧、中间分隔板36与旋转轴16之间的间隙以及滚轮48内侧的缺点。由此,利用压力差,便可以从前述的旋转轴16的供油孔82、84,将油供给到滚轮46内侧以及滚轮48内侧。
特别是,仅仅以在水平方向形成贯通中间分隔板36的贯通孔131,漏到滚轮46内侧的高压致冷剂可以逃到密闭容器12内,所以也可以极力地抑制加工成本的增加。
此外,在上侧延伸支连通孔(垂直孔)133穿设于贯通孔131的中途。连通中间分隔板36的连通孔133与吸入埠161(第二旋转压缩组件34的吸入侧)的注射用(injection)连通孔134穿设于上汽缸38中。中间分隔板36的贯通孔131于旋转轴16侧的开口通过前述的供油孔82、84,连通到未绘出的油孔。
在此情形,如后所述,因为密闭容器12内变成中间压,油很难供应给在第二段变成高压的上汽缸38内。但是,通过将中间分隔板36做成上述的结构,油从密闭容器12内的蓄油器被吸上来且未绘出的油孔上升,从供油孔82、84出来的油会进入到中间分隔板36的贯通孔131,再经过连通孔133、134,被供应到上汽缸38的吸入侧(吸入埠161)。
图16中的L是表示上汽缸38内的吸入侧的压力变动。图中P1表示中间分隔板36的旋转轴16侧的压力。如图中L1所示,上汽缸38吸入侧的压力(吸入压力)在吸入的过程中,利用吸入压损,会低于中间分隔板36的旋转轴16侧的压力。在此期间,油经过旋转轴16中未绘出的油孔且从供油孔82、84,再经过中间分隔板36的连通孔131、133,而从汽缸38的连通孔134被注入到上汽缸38内,而达到供油的目的。
如上述,通过形成于用来使漏到滚轮46内侧的高压致冷剂逃到密闭容器12内而形成的贯通孔131的上侧延伸的连通孔(垂直孔)133以及通过形成连通中间分隔板36的连通孔133与上汽缸38的吸入埠161的注入用连通孔134,即使在第二旋转压缩组件34的汽缸38内的压力高于变成中间压的密闭容器12内,利用第二旋转压缩组件34的吸入过程的吸入压损,油可以确实地从形成于中间分隔板36中的贯通孔131供应到汽缸38内。
此外,兼用用来使滚轮46内侧的高压逃脱的贯通孔,仅通过形成从该贯通孔131上侧延伸的连通孔以及用来连通上汽缸38的吸入埠161与连通孔133的连通孔134,便可以确实地将油供给第二旋转压缩组件34。因此,可以利用简单构造且低成本来达到压缩机性能的提升以及可靠性的回复。
亦即,可以避免第二旋转压缩组件34的滚轮内侧46变成高压的缺点,并且可以确实地进行第二旋转压缩机34的润滑。故,旋转压缩机10的性能可以确保,并且可靠性可以提升。
再者,如前所述,因为电动组件14利用反相器来控制转速,使压缩机起动时能以低速被起动,所以在旋转压缩机10起动时,即使油从贯通孔131由密闭容器12内的蓄油器被吸入,也可以抑制因液体压缩导致的不好影响,也可以回避可靠性降低的问题
考虑对地球环境的影响、可燃性与毒性等,致冷剂使用自然致冷剂的二氧化碳(CO2),而封入密闭容器12内做为润滑油的油则例如使用矿物油、烷基苯油(alkyl benzene)、酯油(ester oil)、PAG油(poly alkyl glycol,聚烷基甘醇)等既存的油品。
在对应上支撑部材54与下支撑部材56的吸入通路58、60、以及排出消音室62以及上盖66上侧(约略对应电动组件14下端的位置)的位置上,衬管141、142、143与144分别溶接固定于密闭容器12的容器本体12A的侧面。衬管141、142为上下邻接,而衬管143位为衬管141的约略对角线上。此外,衬管144位在偏离衬管141约90度的位置上。
用来导入致冷剂气体到上汽缸38内的致冷剂导管92的一端插入连接至衬管141内,此致冷剂导管的一端则连通于上汽缸38的吸入通路58。致冷剂导管92经过密闭容器12上侧,到达衬管144,另一端则插入连接于衬管144内而连通至密闭容器12内。
此外,用来将致冷剂气体导入下汽缸40内的致冷剂导管94的一端插入连接至衬管142内,此致冷剂导管的一端则连通于下汽缸40的吸入通路60。此外,致冷剂导管96插入连接到衬管143内,致冷剂导管96的一端连通到排放消音室62。
接着说明上述构成的动作。此外,旋转压缩机10起动前,密闭容器12内的油面一般是在形成于中间分隔板36中的贯通孔131的密闭容器12侧的开口上侧。因此,密闭容器12内的油会从贯通孔131的密闭容器12侧的开口,流到贯通孔131内。
经由端子20以及未绘出的配线,当压缩机10的电动组件14的定子线圈28通电后,电动组件14便起动而转子24也随之转动起来。通过此转动,与旋转轴16一体设置的上下偏心部42、44嵌合的上下滚轮46、48便在上下汽缸内偏心旋转。
由此,经由形成于致冷剂导入管94与下支撑部材56中的吸入通路,从吸入埠62吸入到汽缸40的低压室侧的低压致冷剂气体(4MPaG),会通过滚轮48与阀的动作,被压缩成中间压(8MPaG),再从下汽缸40的高压室侧,排出埠41、形成在下支撑部材56内的排出消音室64,经过连通路63,从中间排出管121排放到密闭容器12内。
接着,密闭容器12内的中间压致冷剂气体从衬管144出来,经由致冷剂导入管92以及形成于上支撑部材54中的吸入通路58,从吸入埠161被吸入到上汽缸38的低压室侧。
另一方面,当旋转压缩机10起动后,从前述贯通孔131的密闭容器12侧的开口浸入的油会经由连通孔133、134,被吸入到第二旋转压缩组件34的汽缸38的低压室侧。接着,被吸入到汽缸38低压室侧的中间压致冷剂与油会通过滚轮46与未绘出的阀的动作,进行第二段压缩。在此,致冷剂气体变成高温高压(12MPaG)。
在此情形,与中间压致冷剂气体一起从前述贯通口131的密闭容器12侧的开口浸入的油也会被压缩,但是由于旋转压缩机10的转数被控制在起动时以低速运转,所以力矩较小。因此,即使油被压缩,旋转压缩机10也几乎没被影响到,所以可以正常地运转。
接着,以预定的控制样式,将转数上升,最后电动组件14以预期的转数来运转。运转中的油面在贯通孔131的下侧。但是,从前述贯通孔131,经过连通孔133与连通孔134,把油供给给第二旋转压缩组件34的吸入侧,所以可以避免第二旋转压缩组件34的滑动部的油不充足的缺点。
如上所述,将连通密闭容器12内与滚轮46内侧的贯通孔131穿设于中间分隔板36中,以及在构成第二旋转压缩组件34的汽缸38内,穿孔形成用来连通中间分隔板36的贯通孔131与第二旋转压缩组件34的吸入侧的连通孔133、134。因此,漏到滚轮46内侧的高压致冷剂气体可以从此贯通孔131逃到密闭容器12内。
由此,利用滚轮46内侧以及滚轮内48侧的压力差,从旋转轴16的供油孔82、84来平顺地供给油。因此,滚轮46内侧的偏心部42周边以及滚轮48内侧的偏心部44周边的油量不足便可以避免。
此外,即使第二旋转压缩组件34的汽缸38内的压力成为高于变成中间压的密闭容器12内的压力的状态,在第二旋转压缩组件34的吸入过程中,利用吸入压损,可以确实地将油从与中间分隔板36的贯通孔131连通形成的贯通孔133、134,供给到汽缸38内。
总得来说,利用较简单的构造,来避免滚轮46内侧变成高压的缺点,以确实地进行第二旋转压缩机34的润滑。因此,旋转压缩机10的性能可以确保,可靠性也可以提升。
再者,因为电动组件14为在起动时以低速起动的转数控制型马达,所以,当旋转压缩机10起动时,即使油便从贯通孔131且从密闭容器12内底部的蓄油器被吸上来,也可以抑制一体压缩的不好影响,并且也可以避免可靠性的降低。
此外,在本实施例中,形成于中间分隔板36与旋转轴1 6间的间隙的上侧连通到滚轮46内侧,下侧则连通到滚轮48的内侧,但是并非局限于此型态。例如,也可以只有形成于中间分隔板36与旋转轴16间的间隙的上侧连通到滚轮46内侧的情形(下侧并不连到滚轮48内侧)。此外,滚轮46内侧与滚轮48内侧以中间分隔板36来分割的情形也没关系。在此情形,利用在中间分隔板36的贯通孔131的中途部,形成与滚轮46内侧连通的轴心方向孔洞,滚轮46内侧的高压也可以逃到密闭容器12内。再者,油也可以从供油孔82供给到第二压缩组件34的吸入侧。
此外,在本实施例中,第一旋转压缩组件的容积为2.89cc且第二旋转压缩组件的容积为1.88cc的旋转压缩机10被使用来说明,但是并不局限于上述容积大小,其它容积的旋转压缩机也可以使用。
此外,在本实施例中,旋转压缩机以具备第一旋转压缩组件与第二旋转压缩组件的两段压缩式旋转压缩机来做说明,。但是本发明不局限于此架构。旋转压缩组件也可以是具备三段、四段或以上的旋转压缩组件。
第十实施例
接着依据图式来说明本发明的第十实施例。图17做为本实施例的旋转压缩机,具备第一与第二旋转压缩组件32、34的内部中间压多段式(两段)压缩式旋转压缩机10的纵剖面图。在17图中,与图1相同符号的构件具备相同或类似的作用,其说明省略不说明。
如图17所示,在未绘出的吸入埠分别与上下汽缸38、40内侧连通的吸入通路58、60设置于上下汽缸38、40中。从未绘出的排出埠,利用上支撑部材54的凹陷部做为避面的盖体来塞住在被上汽缸38压缩的致冷剂而形成的排出消音室62设置在上支撑部材54中。亦即,排出消音室62做为被区隔出该排出消音室62的壁面的上盖65所封住。
另一方面,被下汽缸40压缩的致冷剂从未绘出的排出埠,被排放到形成于下支撑部材56的与电动组件14反侧位置的排出消音室64中。排出消音室64由用来覆盖下支撑部材56的与电动组件14反侧位置的盖体65所构成。盖体65的中心具有孔洞,用来贯通旋转轴16以及用来兼做旋转轴16轴承的下支撑部材56的轴承56A。
在此情形,轴承56A立设于上支撑部材54的中央。此外,前述的轴承56A贯通形成于下支撑部材56的中央。旋转轴16被上支撑部材54的轴承54A与下支撑部材56的轴承56A所保持。
接着,第一旋转压缩组件32的排出消音室64与密闭容器12内以连通路来连通。此连通路为一未绘出的孔,其贯通下支撑部材56、上支撑部材54、上盖66、上下汽缸38、40以及中间分隔板36。在此情形,中间排出管121立设于连通路的上端,而中间压致冷剂便从该中间排出管121被排放到密闭容器12内。
此外,上盖66区分出以未绘出排出埠来与第二旋转压缩组件34的上汽缸38内部连通的排出消音室62。电动组件14与上盖66相距预定间隔,设置在上盖66的上侧。上盖66由略成圈状(doughnut)的圆形钢板构成,其上形成一孔,用来连通上述上支撑部材54的轴承54A。
此外,封入密闭容器12内做为润滑油的油则例如使用矿物油、烷基苯油(alkyl benzene)、酯油(ester oil)、PAG油(poly alkyl glycol,聚烷基甘醇)等既存的油品。
在对应上支撑部材54与下支撑部材56的吸入通路58、60、以及排出消音室62以及上盖66上侧(约略对应电动组件14下端的位置)的位置上,衬管141、142、143与144分别溶接固定于密闭容器12的容器本体12A的侧面。衬管141、142为上下邻接,而衬管143位为衬管141的约略对角线上。此外,衬管144位在偏离衬管141约90度的位置上。
用来导入致冷剂气体到上汽缸38内的致冷剂导管92的一端插入连接至衬管141内,此致冷剂导管的一端则连通于上汽缸38的吸入通路58。致冷剂导管92经过密闭容器12上侧,到达衬管144,另一端则插入连接于衬管144内而连通至密闭容器12内。
此外,用来将致冷剂气体导入下汽缸40内的致冷剂导管94的一端插入连接至衬管142内,此致冷剂导管的一端则连通于下汽缸40的吸入通路60。此外,致冷剂导管96插入连接到衬管143内,致冷剂导管的一端连通到后述的排出通路80。
前述排出通路80连通排出消音室62与致冷剂排出管96的通路。此排出通路80从蓄油室100的途中分歧出来,并在上汽缸38内往水平方向延伸而形成。致冷剂排出管96的一端插入连接到此排出通路80。接着,被第二旋转压缩组件34压缩且排放到排出消音室62的致冷剂便通过此排出通路80,从致冷剂排出管96排放到旋转压缩机10的外部。
此外,前述蓄油室100形成于下汽缸40内的与第二压缩组件34的吸入通路60相反侧的位置(吸入通路60以外的部分)。该蓄油室100架构成上下贯通上汽缸38、中间分隔板36、以及下汽缸40。该蓄油室100的上端连通到排出消音室62,而下端则以下支撑部材56来封住。接着,前述的排出通路80连通到稍微低于蓄油室100上端的位置。
此外,返回通路110从略高于该蓄油室100下端的位置来分歧设置。返回通路110从蓄油室100向外侧(密闭容器12侧),往水平方向延伸的孔。节流部材103为一细孔,并且形成于返回通路110内,以达到节流功能。由此,返回通路110通过节流部材103,来连通蓄油室100内部与密闭容器12内部。接着,蓄积在蓄油室100下部的油便通过返回通路110内的节流部材103的细孔。而在此过程中,油被减压而流出到密闭容器12内。流出的油便返回到密闭容器12内底部的蓄油器12C。
利用将上述蓄油室100形成于旋转压缩机构18内,被第二旋转压缩组件34压缩而排出的致冷剂气体与油从排放消音室62被排放出来后,便流到蓄油室100内。此时,致冷剂气体朝向排出通路80,而油便直接流到蓄油室100的下方。通过上述方式,与致冷剂气体一起从第二旋转压缩组件34被排出的油便被平顺地分离开,而累积到蓄油室100的下方。因此,排放到旋转压缩机10外部的油量便得以降低,并且可以防止因为大量油流出到冷冻循环的致冷剂回路中所造成的冷冻循环性能下降的缺点。
此外,蓄积在蓄油室100内的油更透过具有节流部材103的返回通路110,使油返回到形成于密闭容器12内的底部的蓄油器12C,所以可以避免密闭容器12C内的油量不足的缺点。
总的来说,可以极力地降低油排放到致冷剂循环回路中的量,并且可以将油平顺地供应到密闭容器12内。因此,旋转压缩机10的性能与可靠性便可以提升。
再者,蓄油室100以上下贯通中间分隔板36与上下汽缸38、40的贯通孔来形成,所以可以简单的构造,来极力地降低油被排放到旋转压缩机10外部。
此外,蓄油室100形成在下汽缸40内,并且位在与下汽缸40内的吸入通路60相反侧的位置上。因此,空间使用效率可以提升。
接着来说明上述构成的动作。经由端子20以及未绘出的配线,当压缩机10的电动组件14的定子线圈28通电后,电动组件14便起动而转子24也随之转动起来。通过此转动,与旋转轴16一体设置的上下偏心部42、44嵌合的上下滚轮46、48便在上下汽缸内偏心旋转。
由此,经由形成于致冷剂导入管94与下汽缸40中的吸入通路60,从吸入埠吸入到下汽缸40的低压室侧的低压致冷剂气体,会通过滚轮48与阀的动作,被压缩成中间压,再从下汽缸40的高压室侧,经排出埠、排出消音室64,经过连通路,从中间排出管121排放到密闭容器12内。由此,密闭容器12内变成中间压。
接着,密闭容器12内的中间压致冷剂从衬管144出来,经由形成于致冷剂导入管92与上汽缸38内的吸入通路58,从未绘出的吸入埠被吸入到上汽缸38的低压室侧。被吸入的中间压致冷剂利用滚轮46与阀的动作,来进行第二段压缩,以成为高温高压的致冷剂气体。接着,从高压室侧通过未绘出的排出埠,排放到形成于上支撑部材54中的排出消音室62。
此时,供给到第二旋转压缩组件34的油会混在被第二旋转压缩组件34压缩的致冷剂气体中,使得油也被排放到排出消音室62。接着,排放到排出消音室62的致冷剂气体以及混入此致冷剂气体中的油会到达蓄油室100。在进入到蓄油室100后,致冷剂气体朝向排出通路80,而油则如前所述被分离开并累积于蓄油室100的下方。累积在蓄油室100的油接着便经过前述的返回通路110,流入到节流部材103。流入到节流部材103的油在此处被减压,再流出到密闭容器12内。流出的油便回到密闭容器12的容器本体12A壁面、下汽缸40以及下支撑部材56等所围成的密闭容器12底面的蓄油器12C。另一方面,致冷剂气体从排出通路80经过致冷剂排出管,被排放到旋转压缩机10的外部。
如前所述,用来与致冷剂气体一同从第二旋转压缩组件34排放出来的油加以分离与蓄积的蓄油室100形成在旋转压缩机构18中,并且该蓄油室100经由具备节流部材103的返回通路110来连通到密闭容器12内。因此,可以降低油与被第二旋转压缩组件34压缩的致冷剂气体一起排放到旋转压缩机10外部的油量。
由此,因大量油流出到冷冻循环的致冷剂回路中而使冷冻循环性能恶化的缺点可以极力地防止。
此外,因为蓄油室100形成在下汽缸40内的与吸入通路60相反侧的位置上,故空间效率可以提升。
再者,因为蓄油室100做为上下贯通中间分隔板36、上下汽缸38、40的贯通孔,所以可以简单的构造来极力地降低油流到压缩机外部。
此外,在本实施例中,第二旋转压缩组件34的排出通路80形成于上汽缸38中,并且此排出通路80经过致冷剂排出管96而排放到外部的结构。但是,本发明并不局限于此架构。例如,将第二旋转压缩组件34的排出通路80形成于上支撑部材54中的架构,也同样适用于本发明。
在此情形,也可以使蓄油室100的上端连信道排出消音室62内,或者是连通到出排放消音室62后的排放通路80的中途。
此外,在本实施例中,返回通路110做成设置在下汽缸40内的结构,但并不局限于此。例如也可以形成在下支撑部材56中。
此外,在本实施例中,旋转压缩机以具备第一旋转压缩组件与第二旋转压缩组件的两段压缩式旋转压缩机来做说明。但是本发明不局限于此架构。旋转压缩组件也可以是具备三段、四段或以上的旋转压缩组件。
如上所述,依据本发明的一实施例,致冷剂循环装置中的压缩机、气体冷却器、节流手段与蒸发器依序连接,而在高压侧成为超临界压力。致冷剂循环装置包括以下构件。前述压缩机在密闭容器内,更具备电动组件以及被电动组件所驱动的第一与第二旋转压缩组件,被第一旋转压缩组件压缩且排出的致冷剂被压缩以吸入第二旋转压缩组件中,并且排放到气体冷却器中。中间冷却回路使从第一旋转压缩组件排出的致冷剂,在气体冷却器放热。第一内部热交换器使从气体冷却器出来且来自第二旋转压缩组件的致冷剂与蒸发器出来的致冷剂进行热交换。第二内部热交换器使气体冷却器出来且在中间冷却回路流动的致冷剂与从第一内部热交换器出来且来自蒸发器的致冷剂进行热交换。因此,从蒸发器出来的致冷剂在第一内部热交换器与气体冷却器出来的流过中间冷却回路的致冷剂进行热交换,以夺取热。因此,可以确实地保持致冷剂的过热度,以及可以回避在压缩机的液体压缩。
另一方面,气体冷却器出来的来自第二旋转压缩组件的致冷剂在第一内部热交换器,从蒸发器出来的致冷剂夺取热,以此使致冷剂温度下降。由此,蒸发器的致冷剂气体的冷却能力可以提升。亦即,在不增加致冷剂循环量下,可以轻易地达到所要的蒸发温度,也可以达成降低压缩机耗电量的目的。
此外,因为具备中间冷却回路,所以压缩机内部的温度可以下降。特别是在此情形,流过中间冷却回路的致冷剂在气体冷却器放热后,将热给来自蒸发器的致冷剂,在被吸入到第二旋转压缩组件中。因此,不会产生因设置第二内部热交换器而产生的压缩机内部温度上升。
在上述致冷剂循环装置中,因为致冷剂使用二氧化碳,所以对环境问题有所贡献。
在上述致冷剂循环装置中,蒸发器的致冷剂的蒸发温度在+12℃至-10℃极为有效。
依据本发明的另一实施例,致冷剂循环装置中的压缩机、气体冷却器、节流手段与蒸发器依序连接,而在高压侧成为超临界压力。致冷剂循环装置包括以下构件。前述压缩机在密闭容器内,更具备电动组件以及被电动组件所驱动的第一与第二旋转压缩组件,被第一旋转压缩组件压缩且排出的致冷剂被压缩以吸入第二旋转压缩组件中,并且排放到气体冷却器中。中间冷却回路使从第一旋转压缩组件排出的致冷剂,在气体冷却器放热。油分离手段,用以将油从被第二旋转压缩组件的致冷剂中分离出来。回油路将被油分离手段所分离的油减压,使油回到压缩机内。第一内部热交换器使从气体冷却器出来且来自第二旋转压缩组件的致冷剂与蒸发器出来的致冷剂进行热交换。第二内部热交换器使在回油路流动的油与从第一内部热交换器出来且来自蒸发器的致冷剂进行热交换。节流手段由第一节流手段以及位在第一节流手段下游侧的第二节流手段所构成。注射回路用以将在第一与第二节流手段之间流动的部分致冷剂,注入到压缩机的第二旋转压缩组件的吸入侧。因此,从蒸发器出来的致冷剂在第一内部热交换器与气体冷却器出来的流过中间冷却回路的致冷剂进行热交换以夺取热,而在第二内部热交换器与流过回油路的油进行热交换,以夺取热。因此,可以确实地保持致冷剂的过热度,以及可以回避在压缩机的液体压缩。
另一方面,气体冷却器出来的来自第二旋转压缩组件的致冷剂在第一内部热交换器,从蒸发器出来的致冷剂夺取热,以此使致冷剂温度下降。此外,因为具备中间冷却回路,所以压缩机内部的温度可以下降。
此外,流过回油路的油在第二内部热交换器被第一内部热交换器出来的来自蒸发器的致冷剂夺取热之后,再回到压缩机内,所以压缩机内部的温度可以更进一步地降低。
再者,因为流过第一与第二节流手段间的部分致冷剂,通过注射回路后再被注入到压缩机的第二旋转压缩组件的吸入侧,所以利用此注入的致冷剂可以冷却第二旋转压缩组件。由此,第二旋转压缩组件的压缩效率可以改善,并且压缩机本身的温度也可以更进一步地下降。因此,致冷剂循环中,可以使在蒸发器的致冷剂蒸发温度下降。
亦即,通过使被第一旋转压缩机压缩的中间压致冷剂通过中间冷却回路,以抑止密闭容器内的温度上升的效果;通过使以油分离器从致冷剂分离出的油通过第二内部热交换器,以抑止密闭容器内的温度上升之效;以及更通过使流过第一与第二节流手段间配管的部分致冷剂注入到压缩机的第二旋转压缩组件的吸入侧,以从周围吸热来蒸发,使第二旋转压缩机冷却的效果等,第二旋转压缩组件的压缩效率可以提升。除此之外,通过使被第二旋转压缩组件所压缩的致冷剂气体通过第一内部热交换器,以降低在蒸发器的致冷剂蒸发温度的效果,蒸发器的冷却能力可以显著地提升,且压缩机的耗电量也可以降低。
在前述的致冷剂循环装置中,更包括设置气液分离手段于第一与第二节流手段之间。注射回路将被气液分离手段所分离的液态致冷剂减压,再注入到压缩机的第二旋转压缩组件的吸入侧。因此,来自注入回路的致冷剂蒸发以从周围吸热,包含第二旋转压缩组件的压缩机本身可以被进一步且有效地冷却。由此,致冷剂循环中的蒸发器的致冷剂蒸发温度可以更进一步地降低。
在前述的致冷剂循环装置中,回油路在第二内部热交换器处使被油分离手段所分离的油与第一内部热交换器出来的来自蒸发器的致冷剂之间进行热交换,再回到压缩机的密闭容器内。因此,利用此油可以有效地降低压缩机的密闭容器内的温度。
在前述的致冷剂循环装置中,回油路在第二内部热交换器处使被油分离手段所分离的油与第一内部热交换器出来的来自蒸发器的致冷剂之间进行热交换,再回到压缩机的第二旋转压缩组件的该吸入侧。因此,可以一边润滑第二旋转压缩组件以改善压缩效率,并且可以有效地降低压缩机本身的温度。
前述致冷剂循环装置中的致冷剂可以使用二氧化碳、HCF系致冷剂的R23、一氧化二氮中的任何一种致冷剂,所以对环境问题有所贡献。
此外,在上述致冷剂循环装置中,蒸发器的致冷剂的蒸发温度在-50℃以下极为有效。
依据本发明的另一实施例,致冷剂循环装置中的压缩机、气体冷却器、节流手段与蒸发器依序连接,而在高压侧成为超临界压力。致冷剂循环装置包括以下构件。前述压缩机在密闭容器内,更具备电动组件以及被电动组件所驱动的第一与第二旋转压缩组件,被第一旋转压缩组件压缩且排出的致冷剂被压缩以吸入第二旋转压缩组件中,并且排放到气体冷却器中。中间冷却回路使从第一旋转压缩组件排出的致冷剂,在气体冷却器放热。第一内部热交换器使从气体冷却器出来且来自第二旋转压缩组件的致冷剂与蒸发器出来的致冷剂进行热交换。油分离手段用以将油从被第二旋转压缩组件的致冷剂中分离出来。回油路将被油分离手段所分离的油减压,使油回到压缩机内。第二内部热交换器使在回油路流动的油与从第一内部热交换器出来且来自蒸发器的致冷剂进行热交换。因此,从蒸发器出来的致冷剂在第一内部热交换器与气体冷却器出来的流过中间冷却回路的致冷剂进行热交换以夺取热,而在第二内部热交换器与流过回油路的油进行热交换,以夺取热。因此,可以确实地保持致冷剂的过热度,以及可以回避在压缩机的液体压缩。
另一方面,气体冷却器出来的来自第二旋转压缩组件的致冷剂在第一内部热交换器,从蒸发器出来的致冷剂夺取热,以此使致冷剂温度下降。此外,因为具备中间冷却回路,所以压缩机内部的温度可以下降。
此外,流过回油路的油在第二内部热交换器被第一内部热交换器出来的来自蒸发器的致冷剂夺取热之后,再回到压缩机内,所以压缩机内部的温度可以更进一步地降低。由此,致冷剂循环中的蒸发器的致冷剂温度可以被降低。
亦即,通过使被第一旋转压缩机压缩的中间压致冷剂通过中间冷却回路,以抑止密闭容器内的温度上升的效果;以及通过使以油分离器从致冷剂分离出的油通过第二内部热交换器,以抑止密闭容器内的温度上升的效等,第二旋转压缩组件的压缩效率可以提升。除此之外,通过使被第二旋转压缩组件所压缩的致冷剂气体通过第一内部热交换器,以降低在蒸发器的致冷剂蒸发温度的效果,蒸发器的冷却能力可以显著地提升,且压缩机的耗电量也可以降低。
在前述的致冷剂循环装置中,回油路在第二内部热交换器处使被油分离手段所分离的油与第一内部热交换器出来的来自蒸发器的致冷剂之间进行热交换,再回到压缩机的密闭容器内。因此,利用此油可以有效地降低压缩机的密闭容器内的温度,也可以抑制密闭容器内的温度上升。
在前述的致冷剂循环装置中,回油路在第二内部热交换器处使被油分离手段所分离的油与第一内部热交换器出来的来自蒸发器的致冷剂之间进行热交换,再回到压缩机的第二旋转压缩组件的该吸入侧。因此,可以一边润滑第二旋转压缩组件以改善压缩效率,并且可以有效地降低压缩机本身的温度。
在上述致冷剂循环装置中,因为致冷剂使用二氧化碳,所以对环境问题有所贡献。
在上述致冷剂循环装置中,蒸发器的致冷剂的蒸发温度在-30℃至-40℃极为有效。
依据本发明的另一实施例,致冷剂循环装置中的压缩机具备被驱动组件所驱动的第一与第二旋转压缩组件。被第一旋转压缩组件压缩且排出的致冷剂被压缩以吸入该第二旋转压缩组件中,并且排放到该气体冷却器中。旁通回路,在不将从压缩机的第一旋转压缩组件排出的致冷剂减压下,把致冷剂供给到蒸发器;以及阀装置,用以在蒸发器除霜时,开放该旁通回路。阀装置在该压缩机起动时,也开放该旁通回路的流路。因此,在蒸发器进行除霜时,打开阀装置,从第一压缩组件排出的致冷剂流过旁通回路,在不减压下,供给给蒸发器加热。
由此,当不对从第二旋转压缩组件排出的高压致冷剂减压而供给蒸发器来除霜时,可以避免除霜运转时的第二旋转压缩组件的吸入侧与排出侧的压力逆转现象。
此外,在压缩机起动时,阀装置也开放,经过旁通回路,第一压缩组件的排出侧,亦即第二压缩组件只吸入侧的压力可以逃到蒸发器。因此,可以避免压缩机起动时第二旋转压缩组件的吸入侧(中间压)与第二压缩组件的排出侧(高压)的压力逆转的现象。
由此,因为可以避免压缩机的不稳定的运转行为,故可以提升压缩机的性能与耐久性。因此,可以维持致冷剂回路装置的稳定运转,也可以提升致冷剂回路装置的可靠性。
特别是,利用在除霜时所使用的旁通回路,可以使从第一旋转压缩组件排出的致冷剂释放到压缩机外部,所以不必改设配管,便可以避免第二旋转压缩组件的吸入侧与排出侧的压力逆转现象,并且生产成本也可以降低。
依据本发明的另一实施例,致冷剂配管,用来使被第一旋转压缩组件压缩的致冷剂被吸入到第二旋转压缩组件;中间冷却回路,与冷配管并列连接;以及阀装置,用以控制使从第一旋转压缩装置排出的致冷剂流到致冷剂配管或是中间冷却回路。因此,可以依据致冷剂的状态来选择是否流入中间冷却回路。
由此,当流到中间冷却回路时,可以避免压缩机内的温度有异常上升的缺点。当流到致冷剂配管时,可以使压缩机起动时的致冷剂排放温度很快地上升。浸入到压缩机类的致冷剂可以快速地回复到正常状态,使压缩机的起动性提升。
上述致冷剂循环装置更可以包括温度侦测手段,用来侦测从第二旋转压缩组件排出的致冷剂温度。当温度侦测手段侦测到的第二旋转压缩组件的排出致冷剂温度上升到一预定值时,阀装置使致冷剂流到中间冷却回路。当比预定值低时,使致冷剂流到致冷剂配管。
当以温度侦测手段侦测出的第二旋转压缩组件的排出致冷剂温度低于预定值时,因为阀装置使致冷剂流入到致冷剂配管,在起动时等,第二旋转压缩组件的排出致冷剂温度可以很早上升。由此,因为在起动时致冷剂温度可以容易地上升,所以浸入到压缩机内的致冷剂可以迅速地回到正常状态,并且压缩机的起动性也可以更进一步地提升。
依据本发明的另一实施例,压缩机在密闭容器具有被驱动组件的旋转轴所驱动的第一与第二旋转压缩组件。被第一旋转压缩组件所压缩的致冷剂排放到该密闭容器中,排放出的中间压致冷剂气体再被第二旋转压缩组件压缩。压缩机包括以下构成:两汽缸,分别构成第一与第二旋转压缩组件;两滚轮,分别设置在各汽缸内,与旋转轴的偏心部嵌合而做偏心旋转;中间分隔板,位在各汽缸与各滚轮之间,以分割第一与第二旋转压缩组件;两支撑部材,分别封住各该汽缸的开口面,且各具备该旋转轴的轴承;油孔,形成于旋转轴中;贯通孔,穿孔设置于中间分隔板中,以连通密闭容器内部与两滚轮的内侧;连通孔穿孔设置于第二旋转压缩组件的汽缸中,用以连通中间分隔板的贯通孔以及第二旋转压缩组件的吸入侧。由此中间分隔板的贯通孔,累积在滚轮内侧的高压致冷剂可以逃到密闭容器内。
由此,利用滚轮内侧的压力差,油可以从旋转轴的供油孔平顺地供应,故可以避免滚轮内侧偏心部周边会有油量不足的缺点。
此外,即使在第二旋转压缩组件的汽缸内的压力高于成为中间压的密闭容器内的压力,利用在第二旋转压缩组件的吸入过程的吸入压损,通过中间分隔板的贯通孔以及连通孔,油可以确实地从旋转轴的油孔供给到第二旋转压缩组件的吸入侧。因为中间分隔板的贯通孔可以达成兼作滚轮内侧的高压释放以及对第二旋转压缩组件的供油,所以可以达到构造简化以及成本降低的目的。
亦即,利用上述构成,旋转压缩机的性能可以确保且可靠性可以提升。特别是,利用穿设连通密闭容器内与滚轮内侧的贯通孔,以及在构成第二旋转压缩组件的汽缸中,穿设连通孔,以连通中间分隔板的贯通孔与第二旋转压缩组件的吸入侧等的简单构造,故滚轮内侧的高压释放以及对第二旋转压缩组件的供油得以进行。因此,可以达到简单构造与成本的削减。
前述的压缩机中的驱动组件为在起动时以低速来起动的转数控制型马达。当起动时,即使第二旋转压缩组件从与密闭容器内连通的中间分隔板的贯通孔吸入密闭容器中的油,也可以抑制因为油压缩所造成的不好影响,也可以避免旋转压缩机的可靠性下降。
依据本发明的另一实施例,压缩机在密闭容器中具备电动组件与被电动组件所驱动的旋转压缩组件。被旋转压缩组件所压缩的致冷剂排放到外部,压缩机在旋转压缩组件内形成蓄油室,用以将从旋转压缩组件与致冷剂一起排放出来的油加以分离、蓄积,并且蓄油室经由具有节流功能的返回通路,连通到密闭容器内部。因此,从第二旋转压缩组件排放到旋转压缩机外部的油量可以降低。
由此,可以防止大量油流出到冷冻循环的致冷剂回路中所造成的冷冻循环性能恶化的问题。
此外,蓄积在蓄油室的油以具有节流功能的返回通路回到密闭容器内,所以可以避免密闭容器内油量不足的缺点。
总的来说,可以极力降低油被排放到致冷剂循环的致冷剂回路中,并且可以平顺地供油到密闭容器内。因此,旋转压缩机的性能与可靠性可以提升。
依据本发明的另一实施例,压缩机在密闭容器内具有电动组件以及被电动组件所驱动的旋转压缩机构。旋转压缩机构由第一与第二旋转压缩组件所构成,被第一旋转压缩组件所压缩的致冷剂排放到密闭容器内,排放出来的中间压致冷剂以第二旋转压缩组件来压缩,排放到外部。压缩机在旋转压缩机构内形成蓄油室,用以将从第二旋转压缩组件与致冷剂一起排放出来的油加以分离、蓄积,并且蓄油室经由具有节流功能的返回通路,连通到密闭容器内部。因此,从第二旋转压缩组件排放到旋转压缩机外部的油量可以降低。
由此,可以防止大量油流出到冷冻循环的致冷剂回路中所造成的冷冻循环性能恶化的问题。
此外,蓄积在蓄油室的油以具有节流功能的返回通路回到密闭容器内,所以可以避免密闭容器内油量不足的缺点。
总的来说,可以极力降低油被排放到致冷剂循环的致冷剂回路中,并且可以平顺地供油到密闭容器内。因此,旋转压缩机的性能与可靠性可以提升。
上述压缩机更包括:第二汽缸,构成第二旋转压缩组件;第一汽缸,透过中间分隔板配置在第二汽缸下方,并且用以构成第一旋转压缩组件;第一支撑部材,用以封住第一汽缸的下方;第二支撑部材,用以封住第二汽缸的上方;以及吸入通路,于第一旋转压缩组件中。蓄油室形成在吸入通路以外部分的第一汽缸内。由此构成,空间效率得以提升。
上述压缩机中,蓄油室利用上下贯通第二汽缸、中间分隔板、与第一汽缸的贯通孔来构成。因此,可以显著地改善构成蓄油室的加工作业性。
综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟悉本技术的人员,在不脱离本发明的精神和范围内,可可作各种的更动与润饰,因此本发明的保护范围当视后附的权利要求书所界定的为准。

Claims (2)

1.一种致冷剂循环装置,其中一压缩机、一气体冷却器、一节流手段与一蒸发器依序连接,其中该压缩机在具备一第一与一第二旋转压缩组件,被该第一旋转压缩组件压缩且排出的致冷剂被压缩以吸入该第二旋转压缩组件中,并且排放到该气体冷却器中,该致冷剂循环装置包括:
一致冷剂配管,用来使被该第一旋转压缩组件压缩的致冷剂被吸入到该第二旋转压缩组件;
一中间冷却回路,与该冷配管并列连接;
一阀装置,用以控制使从该第一旋转压缩装置排出的致冷剂流到该致冷剂配管或是该中间冷却回路。
2.如权利要求1所述的致冷剂循环装置,更包括一温度侦测手段,用来侦测从该第二旋转压缩组件排出的致冷剂温度,其中当该温度侦测手段侦测到的该第二旋转压缩组件的排出致冷剂温度上升到一预定值时,该阀装置使致冷剂流到该中间冷却回路。
CNA2007101541724A 2002-08-30 2003-08-28 致冷剂循环装置 Pending CN101158516A (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002253225A JP2004092469A (ja) 2002-08-30 2002-08-30 ロータリコンプレッサ
JP2002253225 2002-08-30
JP2002265365 2002-09-11
JP2002265542 2002-09-11
JP2002268321 2002-09-13
JP2002272986 2002-09-19
JP2002275172 2002-09-20
JP2002283956 2002-09-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB031564488A Division CN100498121C (zh) 2002-08-30 2003-08-28 致冷剂循环装置

Publications (1)

Publication Number Publication Date
CN101158516A true CN101158516A (zh) 2008-04-09

Family

ID=32059287

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101541724A Pending CN101158516A (zh) 2002-08-30 2003-08-28 致冷剂循环装置

Country Status (2)

Country Link
JP (1) JP2004092469A (zh)
CN (1) CN101158516A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105650921A (zh) * 2016-03-28 2016-06-08 天津商业大学 一种闪气旁通梯级冷却的双级压缩制冷循环系统
CN105649991A (zh) * 2015-12-31 2016-06-08 深圳市共济科技有限公司 一种变频空调器及其压缩机回油系统
CN107388664A (zh) * 2017-08-16 2017-11-24 广东美的暖通设备有限公司 空调系统中回油阀的控制方法、控制装置和空调系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI301188B (en) * 2002-08-30 2008-09-21 Sanyo Electric Co Refrigeant cycling device and compressor using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105649991A (zh) * 2015-12-31 2016-06-08 深圳市共济科技有限公司 一种变频空调器及其压缩机回油系统
CN105650921A (zh) * 2016-03-28 2016-06-08 天津商业大学 一种闪气旁通梯级冷却的双级压缩制冷循环系统
CN107388664A (zh) * 2017-08-16 2017-11-24 广东美的暖通设备有限公司 空调系统中回油阀的控制方法、控制装置和空调系统
CN107388664B (zh) * 2017-08-16 2019-12-03 广东美的暖通设备有限公司 空调系统中回油阀的控制方法、控制装置和空调系统

Also Published As

Publication number Publication date
JP2004092469A (ja) 2004-03-25

Similar Documents

Publication Publication Date Title
CN100498121C (zh) 致冷剂循环装置
CN100370197C (zh) 使用于致冷剂循环装置的压缩机
US7510382B2 (en) Apparatus for preventing overheating of scroll compressor
CN100570238C (zh) 冷冻空调装置
EP1703229B1 (en) Method of operating a multi-stage refrigeration system with pressure control
US6568198B1 (en) Multi-stage compression refrigerating device
TWI313729B (en) Multistage rotary compressor
US6931866B2 (en) Multistage compression type rotary compressor and cooling device
EP3546754B1 (en) Air injection enthalpy-increasing scroll compressor and refrigeration system
US6581408B1 (en) Multi-stage compression refrigerating device
JP2007178052A (ja) 冷凍装置
CN102822609B (zh) 冷冻循环装置及其运转方法
CN1316212C (zh) 制冷剂循环装置
EP1486742B1 (en) Refrigerant cycle apparatus
CN102062090B (zh) 涡旋压缩机
CN1816696B (zh) 涡旋型流体机械
CN102003390B (zh) 涡旋压缩机
WO2015131313A1 (zh) 双级旋转式压缩机及具有其的制冷循环装置
JP2006105458A (ja) 冷媒循環装置及び密閉形圧縮機
JP6446542B2 (ja) 可変容量型圧縮機及びこれを備える冷凍装置
CN100498119C (zh) 冷媒循环装置
CN101158516A (zh) 致冷剂循环装置
CN1807896B (zh) 多级压缩式回转压缩机
CN103791645B (zh) 制冷循环装置
EP3350448B1 (en) Intermediate discharge port for a compressor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20080409