CN101151298A - Process for assembly of poss monomers - Google Patents

Process for assembly of poss monomers Download PDF

Info

Publication number
CN101151298A
CN101151298A CNA2006800073735A CN200680007373A CN101151298A CN 101151298 A CN101151298 A CN 101151298A CN A2006800073735 A CNA2006800073735 A CN A2006800073735A CN 200680007373 A CN200680007373 A CN 200680007373A CN 101151298 A CN101151298 A CN 101151298A
Authority
CN
China
Prior art keywords
sio
mixture
super alkali
polyhedral oligomeric
phosphonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800073735A
Other languages
Chinese (zh)
Other versions
CN101151298B (en
Inventor
J·J·施瓦布
安以中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hybrid Plastics Inc
Original Assignee
Hybrid Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hybrid Plastics Inc filed Critical Hybrid Plastics Inc
Publication of CN101151298A publication Critical patent/CN101151298A/en
Application granted granted Critical
Publication of CN101151298B publication Critical patent/CN101151298B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Catalysts (AREA)

Abstract

A synthesis process for polyhedral oligomeric silsesquioxanes using phosphazene superbases to produce in high yield a low resin content, solvent free, and trace metal free monomer suitable for use in microelectronic, biological, and medical applications involving polymerization, grafting, and alloying.

Description

The method of poss monomers assembling
The cross reference of related application and patent
The application requires in the U.S. Provisional Patent Application No.60/659 of submission on March 7th, 2005,722 right of priority.
Invention field
Usually, the present invention relates to be used for improving the method for the functionalized poss monomers performance that is incorporated into polymerization product and biological products.
Background of invention
The preferred examples of nanostructure chemical preparations is those based on the material of polyhedral oligomeric silsesquioxane (POSS) and polyhedral oligomeric silicate (POS) cheaply.The polyhedral oligomeric silsesquioxane system contains hydridization (being organic and inorganic) composition, and inside cage shape framework wherein mainly is made up of inorganic silicon-oxygen key.The outside of this nanostructure is coated with two reactive behavioies and reactionless active organo-functional group (R), and it guarantees consistency and tailorability between nanostructure and organic monomer and the polymkeric substance.In U.S. Patent No. 5,412,053 and U.S. Patent No. 5,484,867 in these and other performance characteristic of nanostructure chemical preparations has been described in detail in detail, its full content is hereby incorporated by.
Current engineering practice can be produced functionalized polyhedral oligomeric silsesquioxane molecule by high productivity, but some microelectronics, medical and biologic applications need higher purity or those can not use prior art easily or the chemical functionality who produces economically.Art methods is included in uses hydroxide bases, anion salt and bronsted acid catalyst (referring to US patent application No.09/631 in polyhedral oligomeric silsesquioxane cages assembling process and the functionalized process thereof, 892 and 10 186,318, and US patent No.6,770,724,6,660,823,6,596,821 and 3,390,163).Though known these approach generally are effectively, they are subject to the self-condensation (Fig. 1) that protonic acid and hydroxide bases both can catalysis polyhedral oligomeric silsesquioxane list cage enter the oligomeric polyhedral oligomeric silsesquioxane cages that contains resin.Because it is coarse that their structure is a molecule, this resinoid microtronics, biology or medical on be unfavorable.In addition, the consistency between the dispersion of polyhedral oligomeric silsesquioxane molecule and they and the polymkeric substance depends on free energy of mixing equation (Δ G=Δ H-T Δ S) on thermodynamics.When the cage size is that single picture (monoscopic) and corresponding oligomer distribution are when being 1.0, reaction active groups and polymkeric substance and surface reaction or interactional ability can help favourable enthalpy item (Δ H) widely on the attribute of R group and the polyhedral oligomeric silsesquioxane cages, and the entropy item (Δ S) of polyhedral oligomeric silsesquioxane is highly favourable simultaneously.
Therefore need on prior art, improve polyhedral oligomeric silsesquioxane cages assembling and functionalized monomer's method.The invention describes more improving one's methods of high purity and the accurate polyhedral oligomeric silsesquioxane system of molecule of a kind of production.
Brief summary of the invention
The invention provides a kind of synthetic method of improved polyhedral oligomeric silsesquioxane, it can produce low resin content and solvent-free by high productivity fast, at the monomer product that all is suitable for aspect polymerization, grafting and the alloying.This synthetic method has been used with general formula and has been R 1SiX 3The super alkali of phosphonitrile of silane coupling agent reaction, formation is by the polyhedral oligomeric silsesquioxane cages of silanol functional, wherein the general formula of silanol is [(R 1SiO 1.5) 7(HOSiO 1.5) 1] ∑ 8, [(R 1SiO 1.5) 6(R 1HOSiO 1) 2] ∑ 8, [(R 1SiO 1.5) 2(R 1HOSiO 1) 4] ∑ 6, [(R 1SiO 1.5) 4(R 1HOSiO 1) 3] ∑ 7This synthetic method can also comprise that super alkali of phosphonitrile and general formula are R 2SiX 3The reaction of silane coupling agent, form by R 2Group functionalization's polyfunctional group polyhedral oligomeric silsesquioxane cages and larger sized cage, R 2The general formula of group is [(R 2SiO 1.5) 6] ∑ 6, [(R 2SiO 1.5) 8] ∑ 8, [(R 2SiO 1.5) 10] ∑ 10, [(R 2SiO 1.5) 12] ∑ 12
Perhaps in the presence of solvent and super alkali, the super alkali of this phosphonitrile can be R at general formula 2R 3R 4SiX, R 2R 3SiX 2Or R 2SiX 3Silane coupling agent exist down and general formula is [(R 1SiO 1.5) 7(HOSiO 1.5) 1] ∑ 8, [(R 1SiO 1.5) 6(R 1HOSiO 1) 2] ∑ 8, [(R 1SiO 1.5) 4(R 1HOSiO 1) 3] ∑ 7Silanol reaction time enough, the cancellation of HX wherein takes place and the poss monomers of simple function is provided, its general formula is [(R 1SiO 1.5) 8(R 2R 3R 4SiO 1)] ∑ 9, [((R 1SiO 1.5) 8) 2(R 2R 3SiO 2)] ∑ 17, [((R 1SiO 1.5) 8) 3(R 2SiO 3)] ∑ 25, [(R 1SiO 1.5) 6(R 1SiO 1) 2(R 2R 3R 4SiO) 2] ∑ 10, [(R 1SiO 1.5) 6(R 1SiO 1) 2(R 2R 3SiO 2)] ∑ 9, [(R 1SiO 1.5) 6(R 1HOSiO 1) 1(R 2R 3SiO)] ∑ 8, [(R 1SiO 1.5) 6(R 1(R 2R 3R 4SiO) SiO 1) (R 2R 3SiO)] ∑ 9, [(R 1SiO 1.5) 4(R 1(R 2R 3R 4SiO) SiO 1) 3] ∑ 10, [(R 1SiO 1.5) 7(R 2SiO 1.5) 1] ∑ 8The essentially no impurity of resulting monomer and by to form, the selection of R base and nanostructure size and topological framework, have controllable performance.Highly purified nanostructure poss monomers is desirable, because with respect to impure system, they demonstrate improved filtration capacity, the pollution of minimizing and viscosity, more reliable polyreaction, lower cost and Waste recovery.
A kind of preferable methods comprises that general formula is [(R 1SiO 1.5) 7(HOSiO 1.5) 1] ∑ 8, [(R 1SiO 1.5) 6(R 1HOSiO 1) 2] ∑ 8, [(R 1SiO 1.5) 4(R 1HOSiO 1) 3] ∑ 7Polyhedral oligomeric silsesquioxane silanols and general formula be R 2R 3R 4SiX, R 2R 3SiX 2, R 2SiX 3The reaction of silane coupling agent in the presence of solvent and super alkali.
The accompanying drawing summary
Fig. 1 shows the contrast of prior art and improved silanization (silation) method;
Fig. 2 shows the super alkali of various preferred phosphonitriles; With
Fig. 3 is presented at the structure of synthetic compound among the embodiment 5.
The definition of nanostructured expression formula
In order to understand chemical composition of the present invention, the expression formula of polyhedral oligomeric silsesquioxane (polyhedral oligomeric silsesquioxane) and polyhedral oligomeric silicate (POS) nanostructured is fixed. and justice is as follows:
Polysilsesquioxane is by general formula [RSiO1.5] The material of expression. Wherein ∞ represents the mole of polymerized degree, R=represents organic substituent, and (H, siloxy, ring-type or linear aliphatic family or aromatic group, this group can Containing in addition reactive functional such as alcohol, ester, amine, ketone, alkene, ether or halide, or those can Contain fluorinated groups). Polysilsesquioxane can be equal fragment (homoleptic) or assorted fragment (heteroleptic). All the fragment system only contains one type R group, and assorted fragment system contains More than one type R group is arranged.
Polyhedral oligomeric silsesquioxane and POS nanostructured form thing and are represented by following general formula:
[(RSiO 1.5) n] ∑ #, represent equal fragment constituent
[(RSiO 1.5) n(R ' SiO 1.5) m] ∑ #The assorted fragment constituent (wherein R ≠ R ') of expression
[(RSiO 1.5) n(RXSiO 1.0) m] ∑ #Expression functionalized heteroleptic composition (wherein the R group can be equivalent or with normal).
More than all R identical with above-mentioned definition, and X includes but not limited to OH, Cl, Br, I, alkoxide (OR), formate (OCH), acetic ester (OCOR), acid (OCOH), ester (OCOR), superoxide (OOR), amine (NR2), isocyanic ester (NCO) and R.Symbol m and n refer to stoichiometric composition.Symbol ∑ indication composition forms nanostructure, and symbol # refers to the Siliciumatom number that contains in nanostructure inside.The # value is the m+n sum normally, and wherein n is generally 1~24, and m is generally 1~12.Should be understood that ∑ # can not obscure for being used for definite stoichiometric multiplier, because it just describes the whole system nanostructure feature of (having another name called the cage size).
Detailed description of the invention
The present invention has narrated improving one's methods than more high purity of describing before and more low-cost synthetic polyhedral oligomeric silsesquioxane nano structural chemistry goods.
Key feature of the present invention is the formation by utilizing the super alkali of phosphonitrile to come the catalysis polyhedral oligomeric silsesquioxane cages.A large amount of phosphonitriles are suitable for, and comprise that those are at molecular weight and the discrepant polyphosphonitrile of composition.Preferred phosphonitrile oligopolymer and the molecule, particularly P1 type P (NtBu) (NH of using 2) 3, P2 type (H 2N) 3P=N-P (NH 2) 4, P3 type (H 2N) 3P=N-P (NH 2)-N=P (NH 2) 3, P4 type (H 2N) 3P=N-P (NH 2) 3=N-P (NH 2) 3-N=P (NH 2) 3The basicity of the super alkali of phosphonitrile increases with the increase of phosphorus atom number, and this provides valuable means when using these reagent.With respect to three silanols (trisilanol), the preferred concentration of super alkali is 2mol%, but useful range comprises 0.1mol%~10mol%.
Be applied to the general method variable of all methods
As more typical situation in chemical process, there are many variablees to can be used for controlling purity, selectivity, speed and the mechanism of arbitrary method.The variable that influences method comprises the constituent of granularity, polymolecularity and nanostructure chemical preparations, separate and the use of partition method, catalyzer or promotor, solvent and solubility promoter.In addition, the dynamic (dynamical) and thermodynamic (al) means that control synthesis mechanism, speed and product distribute are known industry instruments, and they can influence quality product and economic benefit.
Embodiment 1
[(isobutyl-SiO 1.5) 7(methacryloyl propyl group SiO 1.0) 1] ∑ 8Synthetic:
With [(isobutyl-SiO 1.5) 4(isobutyl-(OH) SiO 1.0) 3] ∑ 7(688g, 0.87 mole) is dissolved in THF, adds methacryloyl propyl trimethoxy silicane (204g, 0.87 mole) and cooling solution to 5 ℃ then.(FW 234.32, and 15.72mmol), mixture at room temperature stirred 3 days to add the super alkali of phosphonitrile then.Use acetate (1.5g) quench solution then.Add 1 liter of methyl alcohol subsequently, mixture is stirred and filters.Drying solid obtains the pure white product of 75% productive rate.
Embodiment 2
[(ethyl SiO 1.5) 7(epoxypropyl SiO 1.0) 1] ∑ 8Synthetic:
With [(ethyl SiO 1.5) 4(ethyl (OH) SiO 1.0) 3] ∑ 7(50g 84mmol) is dissolved in methyl alcohol, add then the 3-glycidoxypropyltrime,hoxysilane (19.86g, 84mmol) and cooling solution to 5 ℃.(FW 234.32, and 15.72mmol), mixture stirred 3 days down at 5 ℃ to add the super alkali of phosphonitrile then.Use acetate (87mg) quench solution then, filter, remove volatile matter, drying obtains solid.With methyl alcohol (1400ml) washing solid, drying obtains the pure white product of 415g, and productive rate is 87%.
Embodiment 3
[(ethyl SiO 1.5) 7(ethyl norbornene SiO 1.0) 1] ∑ 8Synthetic:
With [(ethyl SiO 1.5) 4(ethyl (OH) SiO 1.0) 3] ∑ 7(12g 20mmol) is dissolved in methyl alcohol, add then outer-norbornenylethyl Trimethoxy silane (4.84g, 20mmol) and cooling solution to 5 ℃.Add the super alkali of phosphonitrile then, mixture stirred 2 days down at 5 ℃.Use acetate (87mg) quench solution then, filter, remove volatile matter, with other methanol wash, drying obtains white products.
Embodiment 4
[(cyclohexyl SiO 1.5) 7(amino-ethyl aminopropyl SiO 1.0) 1] ∑ 8Synthetic:
With [(cyclohexyl SiO 1.5) 4(cyclohexyl (OH) SiO 1.0) 3] ∑ 7(10g 10.3mmol) is dissolved in THF, and (2.32g, 10.27mmol), (FW 234.32, and 15.72mmol), mixture at room temperature stirs to add the super alkali of phosphonitrile then to add 3-(N-amino-ethyl) TSL 8330 then.Then with the acetate quench solution and add methyl alcohol.Remove the volatile matter drying products and obtain pure white solid with 62% productive rate.
Embodiment 5
[(phenyl SiO 1.5) 7(aminopropyl SiO 1.0) 1] ∑ 8Synthetic:
With [(phenyl SiO 1.5) 4(phenyl (OH) SiO 1.0) 3] ∑ 7(5.9g 6.3mol) is dissolved in toluene, and (2.0g, 11mmol) 3-TSL 8330 at room temperature stirred 12 hours then in interpolation then.Add acetonitrile and filtering solution, drying products obtains pure white solid with 40% productive rate.
Although in order to illustrate that the present invention has provided some representative embodiment and detailed description, but those of skill in the art should understand, and can carry out various changes to method and apparatus disclosed herein under not departing from as the prerequisite of the defined scope of the present invention of additional claims.

Claims (12)

1. the method for preparing functionalized poss monomers is included in to make under the existence of solvent and the super alkali of phosphonitrile and has general formula R SiX 3The step of silane coupling agent reaction.
2. the process of claim 1 wherein that super alkali is selected from P1, P2, P3 and P4 type phosphonitrile.
3. the process of claim 1 wherein that the mixture reaction that makes different silane coupling agents prepares functionalized poss monomers.
4. the process of claim 1 wherein that the mixture that uses different super alkali is as homogeneous catalyst or coreagent.
5. the process of claim 1 wherein the mixture that uses different solvents.
6. the process of claim 1 wherein and use continuous processing that functionalized poss monomers is provided, it uses super alkali as heterogeneous catalyst or coreagent.
7. the method for preparing functionalized poss monomers, the existence that is included in solvent and the super alkali of phosphonitrile is down with the step of silane coupling agent silication polyhedral oligomeric silsesquioxane silanols, and the general formula of silane coupling agent is selected from RSiX 3, R 1R 2SiX 2, and R 1R 2R 3SiX.
8. the method for claim 7, wherein super alkali is selected from P1, P2, P3 and P4 type phosphonitrile.
9. the method for claim 7, wherein the mixture with different polyhedral oligomeric silsesquioxane silanols and silane coupling agent carries out silication.
10. the method for claim 7 wherein uses the mixture of different super alkali as homogeneous catalyst or coreagent.
11. the method for claim 7 is wherein used the mixture of different solvents.
12. the method for claim 7 is wherein used continuous silicification, it uses super alkali as heterogeneous catalyst or coreagent.
CN2006800073735A 2005-03-07 2006-03-07 Process for assembly of poss monomers Expired - Fee Related CN101151298B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US65972205P 2005-03-07 2005-03-07
US60/659,722 2005-03-07
PCT/US2006/008262 WO2006096775A2 (en) 2005-03-07 2006-03-07 Process for assembly of poss monomers

Publications (2)

Publication Number Publication Date
CN101151298A true CN101151298A (en) 2008-03-26
CN101151298B CN101151298B (en) 2012-07-11

Family

ID=36954009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800073735A Expired - Fee Related CN101151298B (en) 2005-03-07 2006-03-07 Process for assembly of poss monomers

Country Status (7)

Country Link
EP (1) EP1856190A4 (en)
JP (1) JP2008537731A (en)
KR (1) KR101208460B1 (en)
CN (1) CN101151298B (en)
RU (1) RU2007137027A (en)
TW (1) TWI433871B (en)
WO (1) WO2006096775A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793327A (en) * 2013-10-28 2016-07-20 亨茨曼国际有限公司 Synthesis and use of metalized polyhedral oligomeric silsequioxane catalyst compositions
CN116102734A (en) * 2022-12-29 2023-05-12 广州硅碳新材料有限公司 Phosphorus-nitrogen-containing cage polysilsesquioxane, preparation method thereof and application thereof as crusting and carbonizing agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376662B (en) * 2007-08-31 2011-05-25 中国石油天然气股份有限公司 Method for refining organosilicon hybrid ring body
US7915436B2 (en) * 2008-11-03 2011-03-29 3M Innovative Properties Company Phosphorus-containing silsesquioxane derivatives as flame retardants

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510441A (en) * 1993-07-15 1996-04-23 General Electric Company Process for producing octamethyltrisiloxane
US5420221A (en) * 1993-07-15 1995-05-30 General Electric Company Process for the production of linear organosiloxane polymers by disproportionation
US5457220A (en) * 1994-04-29 1995-10-10 General Electric Company Process for the production of crosslinked siloxanes by disproportionation
US5688888A (en) * 1996-04-08 1997-11-18 General Electric Company Peralkylated phosphazene base-catalyzed silanol condensation method
US5855962A (en) * 1997-01-09 1999-01-05 International Business Machines Corporation Flowable spin-on insulator
GB9703552D0 (en) * 1997-02-20 1997-04-09 Dow Corning Polymerisation of cyclosiloxanes in the presence of fillers
DE19719340A1 (en) * 1997-05-07 1998-11-12 Wacker Chemie Gmbh Process for equilibrating and / or condensing organosilicon compounds
US6770724B1 (en) * 1998-03-03 2004-08-03 The United States Of America As Represented By The Secretary Of The Air Force Altering of poss rings
GB9827068D0 (en) * 1998-12-09 1999-02-03 Dow Corning Polymerisation of siloxanes
DE60031134T2 (en) * 1999-08-04 2007-08-16 Hybrid Plastics, Fountain Valley PROCESS FOR PREPARING POLYHEDRIC OLIGOMER SILSESQUIOXANE
WO2003064490A2 (en) 2001-06-27 2003-08-07 Hybrid Plastics Llp Process for the functionalization of polyhedral oligomeric silsesquioxanes
DE10156619A1 (en) * 2001-11-17 2003-05-28 Creavis Tech & Innovation Gmbh Process for the preparation of functionalized oligomeric silasesquioxanes and their use
JP4033731B2 (en) * 2002-07-22 2008-01-16 旭化成株式会社 Method for producing silicon compound
TW200528462A (en) * 2003-12-18 2005-09-01 Hybrid Plastics Llc Polyhedral oligomeric silsesquioxanes and metallized polyhedral oligomeric silsesquioxanes as coatings, composites and additives
WO2006132656A2 (en) * 2004-09-10 2006-12-14 Hybrid Plastics, Inc. High use temperature nanocompositie resins
WO2006063127A2 (en) * 2004-12-07 2006-06-15 Hybrid Plastics, Inc. Process for highly purified polyhedral oligomeric silsesquioxane monomers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793327A (en) * 2013-10-28 2016-07-20 亨茨曼国际有限公司 Synthesis and use of metalized polyhedral oligomeric silsequioxane catalyst compositions
CN116102734A (en) * 2022-12-29 2023-05-12 广州硅碳新材料有限公司 Phosphorus-nitrogen-containing cage polysilsesquioxane, preparation method thereof and application thereof as crusting and carbonizing agent
CN116102734B (en) * 2022-12-29 2023-10-24 广州硅碳新材料有限公司 Phosphorus-nitrogen-containing cage polysilsesquioxane, preparation method thereof and application thereof as crusting and carbonizing agent

Also Published As

Publication number Publication date
KR20080002803A (en) 2008-01-04
TW200702361A (en) 2007-01-16
CN101151298B (en) 2012-07-11
TWI433871B (en) 2014-04-11
JP2008537731A (en) 2008-09-25
WO2006096775A2 (en) 2006-09-14
KR101208460B1 (en) 2012-12-05
WO2006096775A3 (en) 2007-09-20
RU2007137027A (en) 2009-04-20
EP1856190A4 (en) 2011-02-09
EP1856190A2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
EP1208105B1 (en) Process for the formation of polyhedral oligomeric silsesquioxanes
US5262558A (en) Method of making organo-silicon polymers having mono- and tetra-functional siloxane units
CN107868256B (en) Preparation method of organic silicon polyether surfactant
CN100569834C (en) Preparation has the method for the organopolysiloxane of three organic siloxyies
EP0508490B1 (en) Process for preparing organopolysiloxanes
CN100436458C (en) Process for the production of silanol containing organopolysiloxanes
CN102532186B (en) Method for preparing hydroxyimino organosilicon compounds
CN101151298B (en) Process for assembly of poss monomers
KR101570512B1 (en) Synthesis of fluorocarbofunctional silsesquioxanes
CN104860977A (en) Silicon-containing aromatic diamine and preparation method thereof
US7491783B2 (en) Process for highly purified polyhedral oligomeric silsesquioxane monomers
KR101028432B1 (en) Organopolysiloxanes and method for the production thereof
CN1648130A (en) Amino phenyl cage type sesqui siloxane and its preparing method
JP2007016125A (en) Silicon compound
JP5440381B2 (en) Method for producing low molecular weight linear organopolysiloxane having silanol groups at both ends
CN101220051A (en) Method for preparing double-octamer sesquialter siloxane with double-function substitutions
CN105085567A (en) Multiple functional groups co-substituted cyclosiloxane, cyclosiloxane mixture, and preparation method and application of cyclosiloxane mixture
CN115916793A (en) Process for preparing siloxanes
WO2019044793A1 (en) Method for manufacturing silsesquioxane compound
US20070232823A1 (en) Process for assembly of POSS monomers
CN102633829A (en) Method for preparing amino siloxane
JP2864952B2 (en) Organic silicon compound and method for producing the same
JPH08239476A (en) Production of low-molecular-weight organosilane or siloxane having silanol group

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120711

Termination date: 20150307

EXPY Termination of patent right or utility model