CN101145060A - 用于微流控芯片的温控阵列 - Google Patents

用于微流控芯片的温控阵列 Download PDF

Info

Publication number
CN101145060A
CN101145060A CNA2007101221001A CN200710122100A CN101145060A CN 101145060 A CN101145060 A CN 101145060A CN A2007101221001 A CNA2007101221001 A CN A2007101221001A CN 200710122100 A CN200710122100 A CN 200710122100A CN 101145060 A CN101145060 A CN 101145060A
Authority
CN
China
Prior art keywords
temperature
actuator
micro
chip
fluidic chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101221001A
Other languages
English (en)
Inventor
孙一
马雪梅
钟儒刚
曾毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CNA2007101221001A priority Critical patent/CN101145060A/zh
Publication of CN101145060A publication Critical patent/CN101145060A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

本发明涉及一种用于微流控芯片的温控阵列,是能够对各种微流控芯片加热的通用温度控制平台。包括有按阵列排布的温控单元、接口电路和计算机,温控单元包括有执行器(1)和设置在执行器(1)周围的温度传感器(2),在温控单元之间设置有隔热栅(3)。每个温度传感器(2)通过接口电路经A/D转换器与计算机相连,将执行器(1)周围的温度信号传递给计算机。每个执行器(1)通过接口电路经D/A转换器与计算机相连,计算机根据设定的温度值和执行器(1)周围的温度传感器(2)的温度值来调节执行器(1)的驱动电流,使执行器(1)达到设定的温度值。该温控平台可满足各种微流控芯片对温度的要求,具有通用性。

Description

用于微流控芯片的温控阵列
技术领域
本发明涉及一种用于微流控芯片的温控阵列,是能够对各种微流控芯片加热的通用温度控制平台。
背景技术
微流控(microfluidic)芯片,也叫微全分析系统(μTAS),或称芯片实验室(Lab-on-a-chip),是生命科学、化学、医学、药学、环境、法医等学科发展的一个新的里程碑。它旨于通过仪器的自动化、微型化、集成化和实验步骤的优化,在芯片上快速、高通量、准确地完成传统的样品处理、分离、纯化、反应、分析、合成、诊断、药物筛选等工作,从而大大提高相关领域的效率。
通常的生物化学反应过程包括三步,即样品的制备,生化反应、结果的检测和分析。可将这三个不同步骤集成为不同用途的芯片,所以据此可将芯片分为不同的类型。例如用于样品制备的芯片,生化反应芯片及各种检测用芯片等。因此,对于不同的应用场合,微流控芯片将具有不同的结构设计。有研究人员试图将整个生化检测分析过程缩微到芯片上,并实现芯片的通用化,但目前离实现尚需时日。
在生命科学、医学、化学、环境等领域的研究与应用中常常需要适宜的温度环境,尤其是涉及生物活性的研究,表现出高度的温度敏感性。同时,研究人员还希望这一温度环境可以在不同实验间分别制定,甚至在同一实验中动态变化。因此,要实现全部生化分析的片上集成,必须为芯片提供复杂多变且稳定可靠的温度环境。例如,在分子生物学中广泛应用的聚合酶链式反应(PCR)技术,需要在三个温度区间之间随时间反复循环多次,从而将少量的DNA进行大量复制。PCR技术类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。再例如,在酶联免疫吸附测定(ELISA)中,需要在37℃进行反应。而酶的催化反应对温度的敏感性极高。此外,在基因工程中,DNA连接重组在16℃下进行;等温扩增在42℃、65℃等温度进行;很多生物试剂可以在4℃下进行暂时存放。
由于在当前的微流控芯片的设计中,尚不能实现通用芯片,因此,需要为不同的应用设计不同结构的芯片。而为了驱动芯片,并为芯片提供适当的温度湿度等环境条件,则需要一个驱动平台。这一平台的复杂性常常远超过芯片本身。为不同结构的芯片设计不同的驱动平台显然不利用微流控技术的推广。通过设计通用的驱动平台,结合适用于不同应用的微流控芯片,对于微流控芯片的发展有重要意义。
具体到驱动平台的温控部分。目前对于微流控芯片温控平台的研究主要集中在PCR芯片方面。一方面,PCR在分子生物学中有不可替代的地位,另一方面,PCR反应需要较复杂的温度循环条件,是微流控芯片温度控制研究中的一个难点。以下介绍以PCR为例。
在传统的PCR反应仪器温控系统的设计基本采取原位加热的形式。加热系统结构上一般采用多孔板制式,特别是96孔。PCR反应体系加入反应管中,反应管插入相应反应室。如Bio-rad、Eppendorf、Biometria、Strategene等。Roche的lightcycler采用离心式设计,微量反应体系加入专用的离心管中,可用于野外作业。Cepheid公司的SmartCycler采用独特的微流体反应管,反应量小,热容量小,特别适用于野外作业。这些传统PCR反应仪器的温控系统常采用体积庞大可靠性差的传统加热方法如热气流加热、水浴加热等。
现有的PCR反应仪器能够基本满足研究型实验室的需要,但是反应时间长,试剂消耗量大,业已成为阻碍PCR大规模临床应用的一个主要制约因素。此外,在某些研究中实验样品珍贵稀少,需要适用于微量样品的PCR反应设备。在这样的背景下,产生了基于微流体芯片的PCR反应设备。
在PCR微型化的道路上,早期的研究集中在原位加热静态PCR扩增,即将PCR反应管进行微型化。Northrup等最早提出了采用硅基材料微流控芯片的微室静态PCR扩增(Northrup,M.A.;Gonzalez,C.;Hadley,D.;Hills,R.F.;Landre,P.;Lehew,S.;Saiki,R.;Sinski,J.J.;Watson,R.;Whatson,J.R.,Transducers 95,Stockholm,Sweden,June 25-29,1995;pp 746-767.)。由于纯硅的介电性、透光性和抗腐蚀性能较差,又出现了基于玻璃和有机材料的微反应器。这些静态原位PCR芯片采用金属电阻加热等,为反应微室提供均一的随时间变化的温度环境。加热部分常常和芯片集成,故芯片设计固定。
但是,静态PCR只是传统PCR的等比例缩小,缺乏技术上的突破,且存在热扩散时间长等问题。针对这一问题,有研究人员提出了连续流动PCR微反应器,在时间域的温度变化变换到空间域的温度变化。Kopp等提出了一种逶迤形PCR微反应器。采用三温区的加热系统,反应体系沿逶迤形通道反复流经三个不同温区,实现温度循环(Kopp,M.U.;de Mello,A.J.;Manz,A.Science,1998,280,1046-1048.)。逶迤形PCR是芯片PCR的创新。同时为温控系统提出了空间温度梯度的要求。此后出现了大量的流动PCR反应芯片。这些芯片的加热系统往往采用与芯片温区相匹配的加热系统设计。以三温区系统为例,加热系统即为三个温度均一的金属电阻加热器。但对于不同的芯片结构,这类加热系统需要不同的温控系统设计。
在上述PCR温控系统中,精确的温度控制是由和微流控芯片相匹配的温控系统共同实现的。芯片的结构设计和温控系统的结构设计彼此牵制。同时,随着芯片实验室技术的发展,片上集成程度越来越高,大量功能单元的高密度集成需要温控系统能够在微尺度内实现复杂的温度分布。在这一背景下,温控系统和芯片设计相匹配地设计理念将面临严重挑战。显然,设计一种能够实用于不同芯片的,能够根据应用需要提供不同的温度时空分布的温控系统将一劳永逸地解决微流控芯片温控系统设计的问题。
发明内容
本发明的目的在于克服了现有微流控芯片温控模块的局限性,提供一种通用的温控平台,该温控平台可以为逶迤形等多种PCR反应加热,具有通用性。
为了实现上述目的,本发明采取了如下技术方案。包括有按阵列排布的温控单元和计算机,温控单元包括有执行器1和设置在执行器1周围的温度传感器2,在温控单元之间设置有隔热栅3;
每个温度传感器2通过A/D转换器独立与计算机通讯,将执行器1周围的温度信号传递给计算机;
每个执行器1通过D/A转换器独立与计算机通讯,计算机根据设定的温度值驱动执行器1,并利用执行器1周围的温度传感器2反馈的温度值来校正执行器1,使执行器1达到设定的温度值。
所述的执行器1为可双向控温的热电半导体芯片。
所述的温度传感器2为薄膜铂热电阻温度传感器。
在执行器1的背面依次设置有铜散热器5和鳍片散热器6。
执行器1和温度传感器2相互独立工作,电路一方面驱动执行器,另一方面获得温度传感器电阻值的变化。计算机通过外围电路控制接口电路并最终控制阵列。
根据预设的温度变化要求,计算机发出控制信号通过DA变换变为驱动相应执行器的电流信号。该电流独立驱动相应的执行器,使其按预设的温度工作,同时,温度传感器获得电阻值形式的温度数据,通过AD变换输入计算机,控制系统利用此实际温度数据与预设温度进行对比,根据相应控制算法输出修正控制信号到执行器,修正执行器的工作状况。
本温控阵列的通用性是由于其具有空间域的可控性和时间域的可控性。
空间域的可控性是通过每个温控单元可以进行独立的温度控制实现的。时间域的可控性通过每个温控单元的温度可实时变化实现的。
每个执行器能够独立升降温,从而在其周围形成一个特定的独立温度环境。温度传感器获得实际的温度分布并作为反馈信号对执行器温度输出进行校正。
由于可能在较小的空间内造成较大的温差,系统中可能出现强烈的对流现象,从而增加了实现大温度梯度的难度。为此,设置了隔热栅。隔热栅以网状分布在执行器之间,在执行器间形成隔热层,从而便于制造较大的温度梯度。温度传感器可以固定在隔热栅上,保持隔热栅与执行器的平整。
由大量温控单元组成的整个温控阵列可形成不同的温度分布,由隔热栅保证该温度分布的相对稳定。该分布的最小特征尺度决定于温控单元的尺度。通过设计温控单元并结合微加工技术使其最小特征尺寸小于微流控芯片对温度梯度的最小尺度要求,即可满足不同的微流控芯片设计对温度环境的要求。
由于微流控芯片材料较好的导热性以及微流控芯片近似平面的结构,通过产生平面上的实时变化的温度分布,可对芯片内微通道和微反应腔中的反应体系提供灵活的温度环境。
散热部分在阵列接口电路背面安装散热器,保证温控阵列和电气部分的正常运行。同时,散热器可加强该结构的机械强度,为芯片提供平整的支持平台,便于光学检测等需要。
本发明在达到现有温控系统对芯片进行温控的性能的基础上可以适用于各种常规的微流控芯片。即实现了微流控芯片温控系统的通用化。
附图说明
图1本发明的总体结构图
图2本发明的俯视图
图3本发明的侧视图
图4本发明的局部放大图
图5一个温控单元及其周边八个温控单元局部
图6平行PCR反应
图7逶迤形PCR反应
图8控制系统结构图
图9执行器接口电路
图10温度传感器接口电路
图中:1、执行器,2、传感器,3、隔热栅,4、阵列接口电路,5、铜散热器,6、鳍片散热器。
具体实施方式
根据附图,以下描述本发明的优选实施例。
图1是系统总体结构图。整体尺寸比标准微孔板略大。整个系统结构大概可以分成三部分,在图1中从左到右,首先是包括执行器1阵列、传感器2阵列和隔热栅3的功能执行部分,其次是以阵列接口电路4为核心的电气部分,最后是右侧包括铜散热器5和铝鳍片散热器6的散热部分。实际使用时按图3方式放置,即功能执行部分在上侧,散热部分在下侧。此外,阵列接口电路通过排线和外围电路连接以提供电源并对系统进行控制,此处排线未在系统中表示。
图2是系统俯视图。由图可见,执行器阵列由12行17列热电半导体芯片1构成,可以通过控制热电半导体芯片的驱动电流的方向来使半导体芯片实现加热或制冷的功能。在每块热电半导体芯片周围镶嵌了隔热材料3。隔热材料纵横交错,构成隔热栅阵列。在隔热材料相交的位置,亦即每块热电半导体芯片四周,各放置一块薄膜铂热电阻温度传感器。
图3是沿较长边的侧视图。由图可以清楚看出系统的层级结构。由组成执行器阵列、传感器2阵列和隔热栅3的大量芯片、传感器和隔热材料有序构成的功能执行部分位于阵列接口电路4上侧。热电半导体芯片和温度传感器从阵列接口电路引线。下侧铜散热器5和铝散热鳍片6与阵列接口电路4紧密连接,将电气元件运行产生的焦耳热,尤其是热电半导体芯片产生的大量热量及时散去,从而保证系统的有效运行。采用铜/铝复合散热器可以在散热效率和重量间取得最佳平衡。阵列接口电路是系统结构、供电和控制的中心。电路板通过排线和外围电路连接。
图4是系统一角的局部放大。由该图可以清楚看到系统各组成部分的结构关系。在整个系统的四周,均使用隔热材料3进行隔热处理。
图5显示了一个温控单元及其周边八个温控单元局部的几何关系。每个温控单元由执行器件热电半导体芯片1、传感器件薄膜铂热电阻温度传感器2和隔热材料3构成。陶瓷基板上的薄膜铂热电阻长宽各1毫米,高0.5毫米。每个温控单元可对其上的芯片进行温度控制和检测,并可通过隔热材料与其周边其它温控单元间造成温度梯度。热电半导体芯片和温度传感器由控制电路分别控制。
图8是控制系统的总体结构。通过自行编写的Labview程序进行控制。该程序的控制算法采用经典的PID控制。计算机发出的指令经过数模转换,通过多路复用器依次选通每个执行器,对其输入相应驱动电流。通过依次读取每个温度传感器的电阻值通过模数转换输入计算机,从而获得整个阵列的温度分布。
图9是执行器接口电路。计算机发出指令通过行驱动器选通一行,列驱动器选通相应列。即可选通驱动指定的执行器。
图10是温度传感器接口电路。行/列扫描器逐个选通每个温度传感器,通过门控电路读取该温度数据经模数转换输入到计算机。
在使用原位PCR时,微流控芯片上加工了微反应腔,微反应腔中含有微量的完整PCR反应体系。微流控芯片置于本系统上。一般微流控芯片的尺寸均小于微孔板尺寸,所以,本实施例中的系统尺寸足以满足一般要求。为了减少因系统与环境的温差导致的系统与环境的热交换,可将芯片置于系统中间。微流控芯片与系统上表面直接接触,利用有机材料较好的导热性和芯片的薄壁特性,可以较快地在执行器阵列和芯片间建立热平衡。同时,温度传感器紧贴芯片,考虑到芯片的薄壁特性,在热平衡状态下,可以获得芯片下表面的温度,该温度接近于反应腔中反应体系的温度。
对于相互独立的平行反应,如图6所示。微流控芯片上有12个微反应腔7,需要对其中的不同的反应体系按照不同的条件进行PCR反应。将图中所示芯片置于本系统上,通过为位于不同反应腔下的热电半导体芯片设计不同的热循环曲线,并通过隔热栅阵列避免相互干扰,可满足平行反应的要求。通过在芯片上设计更密集的微反应腔,可实现高通量。当每个反应腔尺寸大于单个温控单元(5)时,系统均可满足相应的温控要求。对于更小尺寸的芯片,可以通过设计由更小尺寸的温控单元构成的系统满足相应要求。通过选择更小尺寸的热电半导体芯片可构建更小尺寸的温控单元。实际上,通过微加工工艺可以实现几乎任意密度的系统,对于宏观的反应体系(非单分子体系),均可满足其要求。
图7所示是另一个优选实施例。对于逶迤形PCR反应,反应体系沿微通道流经不同温区,通过控制流速控制在不同温区的停留时间,亦即相应反应时间。可将对应不同温区的相应热电半导体芯片设置为不同的恒定温度,即可形成三温区的稳定温度梯度。
本发明正是针对微流控芯片温控平台的通用化和时空可控性这一需要而提出的。同时,基于阵列结构的温度控制系统也可以延伸至其它相关涉及温度控制的领域。

Claims (4)

1.用于微流控芯片的温控阵列,其特征在于:包括有按阵列排布的温控单元和计算机,温控单元包括有执行器(1)和设置在执行器(1)周围的温度传感器(2),在温控单元之间设置有隔热栅(3);
每个温度传感器(2)通过A/D转换器独立与计算机通讯,将执行器(1)周围的温度信号传递给计算机;
每个执行器(1)通过D/A转换器独立与计算机通讯,计算机根据设定的温度值驱动执行器(1),并利用执行器(1)周围的温度传感器(2)反馈的温度值来校正执行器(1),使执行器(1)达到设定的温度值。
2.根据权利要求1所述的用于微流控芯片的温控阵列,其特征在于:所述的执行器(1)为可双向控温的热电半导体芯片。
3.根据权利要求1所述的用于微流控芯片的温控阵列,其特征在于:所述的温度传感器(2)为薄膜铂热电阻温度传感器。
4.根据权利要求1所述的用于微流控芯片的温控阵列,其特征在于:在执行器(1)的背面依次设置有铜散热器(5)和鳍片散热器(6)。
CNA2007101221001A 2007-09-21 2007-09-21 用于微流控芯片的温控阵列 Pending CN101145060A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007101221001A CN101145060A (zh) 2007-09-21 2007-09-21 用于微流控芯片的温控阵列

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007101221001A CN101145060A (zh) 2007-09-21 2007-09-21 用于微流控芯片的温控阵列

Publications (1)

Publication Number Publication Date
CN101145060A true CN101145060A (zh) 2008-03-19

Family

ID=39207615

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101221001A Pending CN101145060A (zh) 2007-09-21 2007-09-21 用于微流控芯片的温控阵列

Country Status (1)

Country Link
CN (1) CN101145060A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253200A (zh) * 2011-06-28 2011-11-23 中国计量科学研究院 酶标仪、酶标板及其加工方法
CN102854904A (zh) * 2012-09-11 2013-01-02 天津金思德生物技术有限公司 一种半导体基因分子增扩仪
CN101650370B (zh) * 2008-08-13 2013-05-01 中国科学院电子学研究所 一种集成微流控传感芯片及其对微流体进行检测方法
CN103389171A (zh) * 2013-08-07 2013-11-13 苏州扬清芯片科技有限公司 一种具有感温特性的微流控芯片
CN105138042A (zh) * 2015-10-08 2015-12-09 北京化工大学 一种高通量等温扩增装置
CN105400692A (zh) * 2015-12-15 2016-03-16 上海海洋大学 等温核酸扩增装置及等温核酸扩增实验方法
CN110205242A (zh) * 2019-06-18 2019-09-06 苏州锐讯生物科技有限公司 一种快速实现数字pcr反应的微流控芯片组件及其应用
CN110554651A (zh) * 2019-09-19 2019-12-10 哈尔滨工业大学 微流控芯片温度测量及控制的私有物联网系统
CN111495295A (zh) * 2020-04-24 2020-08-07 太原理工大学 微反应器内温度场的检测方法及一种微反应器

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650370B (zh) * 2008-08-13 2013-05-01 中国科学院电子学研究所 一种集成微流控传感芯片及其对微流体进行检测方法
CN102253200A (zh) * 2011-06-28 2011-11-23 中国计量科学研究院 酶标仪、酶标板及其加工方法
CN102253200B (zh) * 2011-06-28 2013-12-25 中国计量科学研究院 酶标仪、酶标板及其加工方法
CN102854904A (zh) * 2012-09-11 2013-01-02 天津金思德生物技术有限公司 一种半导体基因分子增扩仪
CN103389171A (zh) * 2013-08-07 2013-11-13 苏州扬清芯片科技有限公司 一种具有感温特性的微流控芯片
CN105138042A (zh) * 2015-10-08 2015-12-09 北京化工大学 一种高通量等温扩增装置
CN105400692A (zh) * 2015-12-15 2016-03-16 上海海洋大学 等温核酸扩增装置及等温核酸扩增实验方法
CN105400692B (zh) * 2015-12-15 2017-06-27 上海海洋大学 等温核酸扩增装置及等温核酸扩增实验方法
CN110205242A (zh) * 2019-06-18 2019-09-06 苏州锐讯生物科技有限公司 一种快速实现数字pcr反应的微流控芯片组件及其应用
WO2020253461A1 (zh) * 2019-06-18 2020-12-24 苏州锐讯生物科技有限公司 一种快速实现数字pcr反应的微流控芯片组件及其应用
EP3981510A4 (en) * 2019-06-18 2022-11-30 Suzhou Precigenome Ltd. Co. MICROFLUIDIC CONTROL CHIP COMPONENT FOR RAPIDLY PERFORMING DIGITAL PCR REACTION AND APPLICATION THEREOF
CN110205242B (zh) * 2019-06-18 2024-04-26 苏州锐讯生物科技有限公司 一种快速实现数字pcr反应的微流控芯片组件及其应用
CN110554651A (zh) * 2019-09-19 2019-12-10 哈尔滨工业大学 微流控芯片温度测量及控制的私有物联网系统
CN110554651B (zh) * 2019-09-19 2021-07-30 哈尔滨工业大学 微流控芯片温度测量及控制的私有物联网系统
CN111495295A (zh) * 2020-04-24 2020-08-07 太原理工大学 微反应器内温度场的检测方法及一种微反应器
CN111495295B (zh) * 2020-04-24 2021-11-19 太原理工大学 微反应器内温度场的检测方法及一种微反应器

Similar Documents

Publication Publication Date Title
CN101145060A (zh) 用于微流控芯片的温控阵列
CN108393101B (zh) 具有多个温度区的微流体器件
Erickson et al. Integrated microfluidic devices
Chován et al. Microfabricated devices in biotechnology and biochemical processing
Schneegaß et al. Flow-through polymerase chain reactions in chip thermocyclers
JP4213161B2 (ja) 薄膜電子デバイスを有するマイクロ流体デバイス
US6284525B1 (en) Miniature reaction chamber and devices incorporating same
US8926811B2 (en) Digital microfluidics based apparatus for heat-exchanging chemical processes
US7332326B1 (en) Centripetally-motivated microfluidics system for performing in vitro hybridization and amplification of nucleic acids
US20020110492A1 (en) Heat-reduction methods and systems related to microfluidic devices
Hsieh et al. Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction
CN101107507B (zh) 用于具有不同热容的少量流体样品的温度控制器
US20120077260A1 (en) Reservoir-buffered mixers and remote valve switching for microfluidic devices
de Mello Focus DNA amplification: does ‘small’really mean ‘efficient’?
CA2444200A1 (en) Microfluidic system for analyzing nucleic acids
US11364494B2 (en) Array type paper chip for 2019-nCoV virus high-throughput detection and manufacturing method of array type paper chip
Frey et al. Autonomous microfluidic multi-channel chip for real-time PCR with integrated liquid handling
Münchow et al. Automated chip-based device for simple and fast nucleic acid amplification
JP2022547439A (ja) デジタルマイクロ流体デバイスの温度制御
Lee et al. Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules
CN111548927A (zh) 微流控芯片及微流控pcr仪
Lyu et al. Slip-driven microfluidic devices for nucleic acid analysis
CN105316226A (zh) 升降机构及具备该升降机构的生物芯片检测装置
CN201097243Y (zh) 用于微流控芯片的温控阵列
Peham et al. Long target droplet polymerase chain reaction with a microfluidic device for high-throughput detection of pathogenic bacteria at clinical sensitivity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication