CN101135471A - 热泵热水系统动态节能运行的预测与控制方法 - Google Patents

热泵热水系统动态节能运行的预测与控制方法 Download PDF

Info

Publication number
CN101135471A
CN101135471A CNA2007100466656A CN200710046665A CN101135471A CN 101135471 A CN101135471 A CN 101135471A CN A2007100466656 A CNA2007100466656 A CN A2007100466656A CN 200710046665 A CN200710046665 A CN 200710046665A CN 101135471 A CN101135471 A CN 101135471A
Authority
CN
China
Prior art keywords
water
hot
time series
prediction
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100466656A
Other languages
English (en)
Other versions
CN100520190C (zh
Inventor
王天舒
王玉军
顾小刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Tianshu Electric Appliance Co Ltd
Original Assignee
Jiangsu Tianshu Electric Appliance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Tianshu Electric Appliance Co Ltd filed Critical Jiangsu Tianshu Electric Appliance Co Ltd
Priority to CNB2007100466656A priority Critical patent/CN100520190C/zh
Publication of CN101135471A publication Critical patent/CN101135471A/zh
Application granted granted Critical
Publication of CN100520190C publication Critical patent/CN100520190C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及一种热泵热水系统动态节能运行的预测与控制方法,包括(1)从历史数据库中获取热泵热水机组热水用水量历史数据、历史用水人数,得到人均热水用水量时间序列;(2)根据得到的时间序列,确定预测模型形式;(3)建立人均热水用水量预测模型;(4)根据已经建立的预测模型,对未来热水用水量进行预测,并将其数据传给控制模块;(5)控制模块从数据库中调出热泵机组的基本信息及当前机组运行情况,对机组的起停时间和补水量做出决策,将决策结果发给控制器执行。本发明为机组的加热水量提供指导,避免了大量热水—因当天使用不完而形成热量的大量散发,造成浪费,提高经济性。本发明可广泛应用于宾馆、饭店、学校和公共浴室等单位。

Description

热泵热水系统动态节能运行的预测与控制方法
技术领域
本发明涉及热泵热水系统动态节能运行的预测与控制方法,尤其涉及基于时间序列预测和回归预测方法相结合的热水用水量预测与机组加热控制方法。
背景技术
热泵热水机组是一种新型热水和供暖热泵产品,是一种可替代锅炉的供暖设备和热水装置。与传统太阳能相比,热泵热水机组不仅可吸收空气中的热量,还可吸收太阳能。热泵热水机组通过制冷剂温差吸热和压缩机压缩制热后,与水换热,大大提高热效率,充分利用了新能源,是将电热水器和太阳能热水器的各自优点完美的结合于一体的新型热水器。在目前能源供应紧张的情况下,热泵因具有节能、安全、环保等特点,在宾馆、饭店、学校和公共浴室等单位得到越来越广泛的应用。在这些单位,热泵主要是用来制取60℃以下的热水,供洗浴和洗刷用。
目前,为保证用户有充足的热水使用,热水器每天加热的热水量都大于用户的实际用水需求,使很多热水当天使用不完而形成热量的大量散发,造成了浪费。虽然,现在很多厂家生产的热泵机组都能实现低谷电加热,以节约加热费用,但应该加热的热水量不确定,往往是按用户最大用水需求来加热。同时应该考虑到,在环境温度较低时,如果提前用低谷电加热好热水,而用水时段一般集中在晚上,保温水箱内的热水经过一天的散热,水温会有较大幅度的下降,很可能起不到节约加热费用的效果。
发明内容
本发明的目的是根据热泵热水机组用户的用水特点,利用时间序列预测和回归预测相结合的方法,对未来热水用水量进行预测,结合热泵系统的基本信息、运行情况及外部环境条件,在“充分利用低谷电”的前提下,得出冷水补水量和机组启停的控制决策。为实现上述目的,本发明的技术方案包括以下步骤:
(1)获取热泵热水机组热水用水量历史数据,历史用水人数,得到人均热水用水量时间序列;
(2)根据得到的时间序列,确定预测模型形式;
(3)建立人均热水用水量预测模型;
(4)根据已经建立的预测模型,对未来热水用水量进行预测,并将其数据传给控制模块;
(5)控制模块从数据库中调出热泵机组的基本信息及当前机组运行情况,对机组的起停时间和补水量做出决策,将决策结果发给控制器执行。
所述的预测模型有两种形式:时间序列预测方法和回归预测方法;在时间序列长度小于等于60时,选用回归预测方法;在时间序列长度大于60时,选用时间序列预测方法中的季节性时间序列预测方法。
所述的用户类型分为:24小时用水方式,单一时间段用水方式,两个时间段用水方式,三个时间段用水方式。
所述的用水人数的确定方法是:对用水人数相对固定的用户,用水人数人工设定,当用水人数发生变化时,可在用水前日即时修改,否则就默认上次输入的用水人数;对用水人数变化较大的用户来说,用水人数可人工设定,也可根据过去用水人数建立时间序列模型预测出未来用水人数。
上述的热泵热水系统动态节能运行的预测与控制方法,其中,
所述的步骤(1)具体过程如下:
从数据库中读取热水用水量历史数据、历史用水人数,把每日各时段的热水用水总量除以该日热水用水人数,得出每日各时段的人均热水用水量,构成人均热水用水量时间序列。如果用户类型是宾馆24小时用水方式,则各时段是指每小时;如果用户类型是单一时间段用水,则各时段是指该单一时间段;如果用户类型是两个时间段用水,则各时段是指这两个时间段;如果用户类型是三个时间段用水,则各时段是指这三个时间段。
所述的步骤(2)具体过程如下:
如果时间序列长度小于等于60分钟,则建立回归预测模型;如果时间序列长度大于60分钟,则建立季节性时间序列模型。
所述的步骤(3)具体过程如下:
如果步骤(2)中,确定的是回归预测模型,则建立回归预测模型,如果步骤(2)中,确定的是季节性时间序列模型,则建立季节性时间序列模型。
所述的建立回归预测模型为:
时间序列模型的建立需要用到过去的历史数据,在系统刚开始运行时,历史数据较少,只能用回归预测模型。经过对已获数据的分析,人均热水用水量与环境最高温度、环境最低温度、天气状况量、热水温度等因素有关。
所以回归预测模型的形式为:
所以回归预测模型的形式为:
Q=a0Tmax 2+a1Tmax+a2Tmin 2+a3Tmin+a4ω+a5Thot+a6    (1)Q—日人均热水用水量;Tmax—环境最高温度;Tmin—环境最低温度;Thot—热水温度;ω—天气状况量。天气状况量,量化为七级:0:大雨,1:中雨,2:小雨,3:阴,4:阴日人均热水用水量;  环境最高温度;  环境最低温度;  热水温度;  天气状况量;拟合参数。天气状况量,量化为七级:0:大雨,1:中雨,2:小雨,3:阴,4:阴转多云,5:多云,6:多云转晴,7:晴;
a0,a1,a2,a3,a4,a5,a6—拟合参数
所述的建立季节性时间序列模型为:
系统运行一段时间后,就可以根据人均历史用水量数据建立季节性时间序列模型。根据不同用户的用水特点,对人均热水用水量进行相应的季节差分,如果用户类型是宾馆24小时用水方式,则进行周期为24的季节差分;如果用户类型是单一时间段用水,则不进行季节差分;如果用户类型是两个时间段用水,则进行周期为2的季节差分;如果用户类型是三个时间段用水,则进行周期为3的季节差分。对差分后的时间序列建立AR模型,然后再还原成为对原时间序列的季节性模型。
AR模型的形式为:
Figure A20071004666500051
αl~NID(0,σa 2)
AR模型参数由U-C算法估计得到,模型阶数由BIC准则确定,模型阶数和模型参数由系统运行时动态获得。
还原后的季节性模型为:
Figure A20071004666500052
{xt}为人均热水用水量时间序列,{yt}为{xt}作季节差分后的时间序列。
所述的步骤(4)具体过程如下:
如果步骤(3)中建立的是回归预测模型,则用回归预测模型预测热水用水量;如果步骤(3)中建立的是时间序列模型,则用季节性时间序列模型预测热水用水量。
所述的用回归预测模型预测热水用水量为:
用回归预测模型预测热水用水量时,预测的是第二日人均总用水量,式中环境最高温度、环境最低温度、天气状况量由天气预报值确定,热水温度由热水平均温度50℃代入计算,算出的日人均总用水量乘以日用水人数,得日总用水量。
所述的用季节性时间序列模型预测热水用水量为:
季节性模型的预测模型为:
Figure A20071004666500053
利用季节性时间序列模型进行预测时,如果用户类型是宾馆24小时用水方式,则进行向前24步预测;如果用户类型是单一时间段用水,则进行向前1步预测;如果用户类型是两个时间段用水,则进行向前(2)步预测;如果用户类型是三个时间段用水,则进行向前(3)步预测。
预测出的各时段人均热水用水量乘以当日用水人数得各时段总热水用水量。
这里用水人数是这样确定的,对于工厂学校等用水人数相对固定的用户来说,用水人数人工设定,当用水人数发生变化时,可在用水前日即时修改,否则就默认上次输入的用水人数。对于宾馆等用水人数变化较大的用户来说,用水人数可由宾馆工作人员人工设定,也可根据过去用水人数建立AR模型预测未来用水人数。
所述的步骤(5)具体过程如下:
如果步骤(4)中是利用回归预测模型预测热水用水量的,则进行回归预测模型预测的热水用水量是日总用水量;如果步骤(4)中是利用季节性时间序列模型预测热水用水量的,则进行季节性时间序列模型预测的热水用水量是各用水时段的热水用水量。
回归预测模型预测的热水用水量是日总用水量,根据水箱内剩余水量,计算出需要加热的热水量,即补水量,再根据机组型号、外界环境温度、冷水温度,计算出所需加热时间,在低谷电结束时刻前加热好所需热水,确定机组开启时间,把补水量和机组开启时间传给下面的控制器执行。
机组加热时间计算公式: t = V ( T HOT - T cold ) 6 7 · cop · P in
V—补水量;THOT—热水温度设定值;Tcold—冷水温度;cop—机组能效比;Pin—机组输入功率。
季节性时间序列模型预测的热水用水量是各用水时段的热水用水量,假设全天用水都在低谷电时段加热好,根据保温水箱的热阻、外界环境温度等,计算各时段用水从低谷电时段到用水时段的温降,如果温降大于温降上限,则该时段用水无需在低谷电时段加热,而是在用水时段前加热;如果温降小于温降上限,则该时段用水可以在低谷电时段加热好。根据保温水箱内的剩余水量,确定每次加热的补水量和机组开启时间。
热水每小时温降计算公式: ΔT = 6 · ( T hot - T env ) 7000 · V · R
Thot—热水温度;Tenv—环境温度;V—热水体积;R—保温水箱热阻。
温降上限计算公式: T max = ( 1 - 1 N · cop 2 cop 1 ) ( T hot - T cold )
N一峰谷电价比;cop1—低谷电时段机组能效比;cop2—用水时段前机组能效比。
本发明的有益效果是:
①对热泵热水机组的热水用水量进行预测,为机组的加热水量提供指导,避免了大量热水当天使用不完而形成热量的大量散发,造成浪费。
②在“充分利用低谷电”的前提下,根据环境温度、低谷电时段和各用水时段的不同情况,得出优化运行控制策略,提高经济性。
附图说明
图1是本发明的预测与控制系统框图。
图2是预测与控制系统流程图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
如图1所示,系统每天保存当日各时段热水用水量、用水人数。预测模块在每日00:00时刻从数据库中把历史用水数据调出来,根据样本数据的长度和用户用水类型建立预测模型,并用该模型进行热水用水量预测,得出未来时段的用水量数据后传给控制模块,控制模块从数据库中调出热泵机组的基本信息及当前机组运行情况,对机组的起停时间和补水量做出决策,传给下面的控制器去执行。
下面举一个应用上述方法的预测与控制实例:
以某宾馆24小时用水方式为例,该宾馆使用的热泵系统由一台KRS-960/G-A热泵机组与一个6吨的圆柱形保温水箱组成;为使水箱内水温波动不大,低液位设为1.55米,高液位1.96米。
该实例的用电时段为:低谷:00:00~08:00;平段:12:00~17:00,21:00~24:00;高峰:8:00~12:00,17:00~21:00。峰平谷电价比=5∶3∶1。按规定,宾馆用电,谷时按谷电价格,其它按平段价格,即00:00~08:00为低谷时段,其它为平电时段,平谷电价比=3∶1。设谷时电价为M,则平段电价为3M。
(1)原方案运行情况
一天中机组工作三次,一天总用水量3047L,24小时用水量分别为:{0,0,0,0,0,509,102,64,165,100,127,89,89,127,204,204,229,178,0,178,76,114,390,102}
机组运行情况:
00:00时刻,保温水箱内热水液位1.88米(高出低液位0.33米),热水温度50℃;07:00~08:00,机组第一次加热,把1.6米高的热水从46℃加热到50℃;09:00~10:00,机组第二次加热,1.55米高的50℃的水,补25℃的冷水到1.96米同时加热到50℃;
16:00~17:00,机组第三次加热,1.55米高的47℃的水,补25℃的冷水到1.96米同时加热到50℃;
24:00时刻,保温水箱内热水液位1.55米,热水温度48℃。该方案运行总费用S=49.764*M元。
(2)若使用本发明中方法
根据历史用水量数据,预测得到该日总用水量2925L,24小时用水量分别为:{0,0,0,0,0,609,76,76,76,114,64,76,152,25,102,242,204,165,53,204,25,127,331,204}
总用水量预测绝对误差为122L,相对误差为4%。机组运行决策:
原来低液位设得相对较高,是为了保证用水高峰时段的用水量,如果引入了预测技术,低液位就可以适当调低,避免过多用水使用不完造成的浪费,把低液位调到0.8米。为了和原方案在同一初始条件下做比较,相当于,00:00时刻,保温水箱内热水液位1.13米(同样,高出低液位0.33米),热水温度50℃。
水箱内高出低液位的水量839L,够前9个小时使用。由于正值夏季,水箱散热量很小,所以可以在低谷电时刻前加热好一天中其他时间所需水量,考虑到一天中水温的下降,这里把水加热到52℃。
06:19时刻机组第一次开启,逐渐补25℃的冷水2086L,从25℃的冷水加热到52℃。该方案运行费用S=16.875*M元,运行费用大大减少,仅为原来的1/3。

Claims (4)

1.一种热泵热水系统动态节能运行的预测与控制方法,包括以下步骤:
(1)从历史数据库中获取热泵热水机组热水用水量历史数据、历史用水人数,得到人均热水用水量时间序列;
(2)根据得到的时间序列,确定预测模型形式;
(3)建立人均热水用水量预测模型;
(4)根据已经建立的预测模型,对未来热水用水量进行预测,并将其数据传给控制模块;
(5)控制模块从数据库中调出热泵机组的基本信息及当前机组运行情况,对机组的起停时间和补水量做出决策,将决策结果发给控制器执行。
2.按照权利要求1所述的一种热泵热水系统动态节能运行的预测与控制方法,所述的预测模型有两种形式:时间序列预测方法和回归预测方法;在时间序列长度小于等于60时,选用回归预测方法;在时间序列长度大于60时,选用时间序列预测方法中的季节性时间序列预测方法。
3.按照权利要求1所述的一种热泵热水系统动态节能运行的预测与控制方法,所述的用户类型分为:24小时用水方式,单一时间段用水方式,两个时间段用水方式,三个时间段用水方式。
4.按照权利要求1所述的一种热泵热水系统动态节能运行的预测与控制方法,所述的用水人数的确定方法是:对用水人数相对固定的用户,用水人数人工设定,当用水人数发生变化时,可在用水前日即时修改,否则就默认上次输入的用水人数;对用水人数变化较大的用户来说,用水人数可人工设定,也可根据过去用水人数建立时间序列模型预测出未来用水人数。
CNB2007100466656A 2007-09-29 2007-09-29 热泵热水系统动态节能运行的预测与控制方法 Expired - Fee Related CN100520190C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100466656A CN100520190C (zh) 2007-09-29 2007-09-29 热泵热水系统动态节能运行的预测与控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100466656A CN100520190C (zh) 2007-09-29 2007-09-29 热泵热水系统动态节能运行的预测与控制方法

Publications (2)

Publication Number Publication Date
CN101135471A true CN101135471A (zh) 2008-03-05
CN100520190C CN100520190C (zh) 2009-07-29

Family

ID=39159701

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100466656A Expired - Fee Related CN100520190C (zh) 2007-09-29 2007-09-29 热泵热水系统动态节能运行的预测与控制方法

Country Status (1)

Country Link
CN (1) CN100520190C (zh)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221237A (zh) * 2010-10-25 2011-10-19 中华电信股份有限公司 热水供给装置与方法及其制造与供给热水控制方法
CN102230672A (zh) * 2011-06-09 2011-11-02 海尔集团公司 热水器及其控制方法
CN102374645A (zh) * 2010-08-17 2012-03-14 博西华电器(江苏)有限公司 智能热水器
CN102401473A (zh) * 2010-09-17 2012-04-04 乐金电子(天津)电器有限公司 热泵热水器的运行方法
CN102542637A (zh) * 2010-12-15 2012-07-04 中兴保全股份有限公司 以门禁为基础的节能装置及其方法
CN102997443A (zh) * 2012-11-26 2013-03-27 顺德职业技术学院 热泵与燃气热水器组合的优化控制方法
CN103267358A (zh) * 2012-11-26 2013-08-28 顺德职业技术学院 空气源热泵热水器的节能控制方法
CN103562806A (zh) * 2011-06-21 2014-02-05 西门子公司 用于控制技术装置的方法
CN104613651A (zh) * 2014-12-12 2015-05-13 顺德职业技术学院 一种变频热泵热水器频率调节方法
CN106016739A (zh) * 2016-07-14 2016-10-12 上海东方延华节能技术服务股份有限公司 一种节能型热水系统及其实现方法
CN106056474A (zh) * 2016-06-03 2016-10-26 武汉企鹅能源数据有限公司 一种基于能源供应系统的自适应运维和参数调节方法
CN106127346A (zh) * 2016-06-29 2016-11-16 新奥泛能网络科技股份有限公司 一种集中供热水系统的设计小时热水量的预测方法及装置
CN106663235A (zh) * 2014-07-21 2017-05-10 万隆系统私人有限公司 用于监测、传送和控制水耗及可用性的方法及其系统
JP2017083045A (ja) * 2015-10-26 2017-05-18 パナソニックIpマネジメント株式会社 ヒートポンプ給湯装置
CN107036287A (zh) * 2017-05-11 2017-08-11 珠海格力电器股份有限公司 热泵热水机及其控制方法和系统
CN107131552A (zh) * 2017-05-19 2017-09-05 上海交通大学 一种太阳能复合热源热水系统及其控制方法
CN107655212A (zh) * 2017-09-29 2018-02-02 深圳和而泰智能控制股份有限公司 加热处理方法及装置
CN107726632A (zh) * 2017-09-29 2018-02-23 深圳和而泰智能控制股份有限公司 加热控制方法及服务器
CN107830641A (zh) * 2017-09-29 2018-03-23 深圳和而泰智能控制股份有限公司 加热处理方法及装置
CN107976905A (zh) * 2017-11-17 2018-05-01 深圳和而泰数据资源与云技术有限公司 一种设备控制方法、装置、电子设备及存储介质
CN108603684A (zh) * 2015-12-22 2018-09-28 温思林姆公司 热水储存式多水箱家用热水器
CN109282499A (zh) * 2017-07-21 2019-01-29 青岛经济技术开发区海尔热水器有限公司 一种热水器预测用户用水行为的方法及热水器
CN109634313A (zh) * 2018-12-28 2019-04-16 广东顺德禾庄能源科技有限公司 一种热水系统的水箱水位控制方法
CN109726854A (zh) * 2018-12-05 2019-05-07 新奥数能科技有限公司 一种热水负荷预测的方法和装置
CN109990477A (zh) * 2017-12-29 2019-07-09 芜湖美的厨卫电器制造有限公司 电热水器及其控制方法、系统和服务器
CN110057117A (zh) * 2019-04-26 2019-07-26 苏州热立方新能源有限公司 一种太阳能热水系统辅助能源的智能控制方法
CN111023079A (zh) * 2019-12-25 2020-04-17 浙江中智达科技有限公司 一种mah生产控制方法及装置
CN111898813A (zh) * 2020-07-20 2020-11-06 中南大学 一种基于历史数据的大型热水系统节水节能方法
CN112524817A (zh) * 2020-12-10 2021-03-19 芜湖美的厨卫电器制造有限公司 用于确定用水量的方法、装置、热水器及存储介质
CN112762639A (zh) * 2021-01-08 2021-05-07 青岛海信日立空调系统有限公司 一种热泵系统及控制方法
CN112833554A (zh) * 2020-05-26 2021-05-25 青岛经济技术开发区海尔热水器有限公司 用水预测模型的建立方法、热水器及控制方法、存储介质
CN113551296A (zh) * 2021-06-21 2021-10-26 顺德职业技术学院 基于周期变化的日用水量调节方法
CN115164416A (zh) * 2022-06-30 2022-10-11 青岛海尔空调电子有限公司 用于控制热水器的方法及装置、电子设备、存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3045898A1 (fr) 2015-12-17 2017-06-23 Commissariat Energie Atomique Methode de prevision de la consommation d'eau chaude, methode et systeme d'optimisation de la production d'eau chaude

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208646A (ja) * 1988-02-15 1989-08-22 Sanden Corp 冷暖房給湯システムの制御装置

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102374645A (zh) * 2010-08-17 2012-03-14 博西华电器(江苏)有限公司 智能热水器
CN102374645B (zh) * 2010-08-17 2016-02-03 博西华电器(江苏)有限公司 智能热水器
CN102401473A (zh) * 2010-09-17 2012-04-04 乐金电子(天津)电器有限公司 热泵热水器的运行方法
CN102401473B (zh) * 2010-09-17 2015-04-29 乐金电子(天津)电器有限公司 热泵热水器的运行方法
CN102221237B (zh) * 2010-10-25 2014-09-10 中华电信股份有限公司 热水供给装置与方法
CN102221237A (zh) * 2010-10-25 2011-10-19 中华电信股份有限公司 热水供给装置与方法及其制造与供给热水控制方法
CN103471173B (zh) * 2010-10-25 2016-04-13 中华电信股份有限公司 制造与供给热水控制方法
CN103471173A (zh) * 2010-10-25 2013-12-25 中华电信股份有限公司 制造与供给热水控制方法
CN102542637A (zh) * 2010-12-15 2012-07-04 中兴保全股份有限公司 以门禁为基础的节能装置及其方法
CN102230672A (zh) * 2011-06-09 2011-11-02 海尔集团公司 热水器及其控制方法
CN103562806A (zh) * 2011-06-21 2014-02-05 西门子公司 用于控制技术装置的方法
CN103267358A (zh) * 2012-11-26 2013-08-28 顺德职业技术学院 空气源热泵热水器的节能控制方法
CN102997443A (zh) * 2012-11-26 2013-03-27 顺德职业技术学院 热泵与燃气热水器组合的优化控制方法
CN106663235A (zh) * 2014-07-21 2017-05-10 万隆系统私人有限公司 用于监测、传送和控制水耗及可用性的方法及其系统
CN104613651A (zh) * 2014-12-12 2015-05-13 顺德职业技术学院 一种变频热泵热水器频率调节方法
CN104613651B (zh) * 2014-12-12 2017-08-25 顺德职业技术学院 变频空气源热泵热水器频率调节方法
JP2017083045A (ja) * 2015-10-26 2017-05-18 パナソニックIpマネジメント株式会社 ヒートポンプ給湯装置
CN108603684A (zh) * 2015-12-22 2018-09-28 温思林姆公司 热水储存式多水箱家用热水器
CN106056474B (zh) * 2016-06-03 2019-08-09 武汉企鹅能源数据有限公司 一种基于能源供应系统的自适应运维和参数调节方法
CN106056474A (zh) * 2016-06-03 2016-10-26 武汉企鹅能源数据有限公司 一种基于能源供应系统的自适应运维和参数调节方法
CN106127346A (zh) * 2016-06-29 2016-11-16 新奥泛能网络科技股份有限公司 一种集中供热水系统的设计小时热水量的预测方法及装置
CN106016739A (zh) * 2016-07-14 2016-10-12 上海东方延华节能技术服务股份有限公司 一种节能型热水系统及其实现方法
CN107036287B (zh) * 2017-05-11 2019-08-02 珠海格力电器股份有限公司 热泵热水机及其控制方法和系统
CN107036287A (zh) * 2017-05-11 2017-08-11 珠海格力电器股份有限公司 热泵热水机及其控制方法和系统
CN107131552A (zh) * 2017-05-19 2017-09-05 上海交通大学 一种太阳能复合热源热水系统及其控制方法
CN109282499B (zh) * 2017-07-21 2021-09-07 青岛经济技术开发区海尔热水器有限公司 一种热水器预测用户用水行为的方法及热水器
CN109282499A (zh) * 2017-07-21 2019-01-29 青岛经济技术开发区海尔热水器有限公司 一种热水器预测用户用水行为的方法及热水器
CN107830641B (zh) * 2017-09-29 2020-08-25 深圳和而泰智能控制股份有限公司 加热处理方法及装置
CN107655212A (zh) * 2017-09-29 2018-02-02 深圳和而泰智能控制股份有限公司 加热处理方法及装置
CN107830641A (zh) * 2017-09-29 2018-03-23 深圳和而泰智能控制股份有限公司 加热处理方法及装置
CN107726632A (zh) * 2017-09-29 2018-02-23 深圳和而泰智能控制股份有限公司 加热控制方法及服务器
CN107976905B (zh) * 2017-11-17 2021-05-25 深圳和而泰数据资源与云技术有限公司 一种设备控制方法、装置、电子设备及存储介质
CN107976905A (zh) * 2017-11-17 2018-05-01 深圳和而泰数据资源与云技术有限公司 一种设备控制方法、装置、电子设备及存储介质
CN109990477A (zh) * 2017-12-29 2019-07-09 芜湖美的厨卫电器制造有限公司 电热水器及其控制方法、系统和服务器
CN109726854A (zh) * 2018-12-05 2019-05-07 新奥数能科技有限公司 一种热水负荷预测的方法和装置
CN109634313A (zh) * 2018-12-28 2019-04-16 广东顺德禾庄能源科技有限公司 一种热水系统的水箱水位控制方法
CN110057117A (zh) * 2019-04-26 2019-07-26 苏州热立方新能源有限公司 一种太阳能热水系统辅助能源的智能控制方法
CN111023079A (zh) * 2019-12-25 2020-04-17 浙江中智达科技有限公司 一种mah生产控制方法及装置
CN112833554A (zh) * 2020-05-26 2021-05-25 青岛经济技术开发区海尔热水器有限公司 用水预测模型的建立方法、热水器及控制方法、存储介质
CN111898813A (zh) * 2020-07-20 2020-11-06 中南大学 一种基于历史数据的大型热水系统节水节能方法
CN112524817A (zh) * 2020-12-10 2021-03-19 芜湖美的厨卫电器制造有限公司 用于确定用水量的方法、装置、热水器及存储介质
CN112524817B (zh) * 2020-12-10 2022-03-25 芜湖美的厨卫电器制造有限公司 用于确定用水量的方法、装置、热水器及存储介质
CN112762639A (zh) * 2021-01-08 2021-05-07 青岛海信日立空调系统有限公司 一种热泵系统及控制方法
CN112762639B (zh) * 2021-01-08 2023-06-13 青岛海信日立空调系统有限公司 一种热泵系统及控制方法
CN113551296A (zh) * 2021-06-21 2021-10-26 顺德职业技术学院 基于周期变化的日用水量调节方法
CN113551296B (zh) * 2021-06-21 2022-06-07 顺德职业技术学院 基于周期变化的日用水量调节方法
CN115164416A (zh) * 2022-06-30 2022-10-11 青岛海尔空调电子有限公司 用于控制热水器的方法及装置、电子设备、存储介质

Also Published As

Publication number Publication date
CN100520190C (zh) 2009-07-29

Similar Documents

Publication Publication Date Title
CN100520190C (zh) 热泵热水系统动态节能运行的预测与控制方法
Wang et al. Multi-objective optimization model of source–load–storage synergetic dispatch for a building energy management system based on TOU price demand response
Harkouss et al. Optimal design of renewable energy solution sets for net zero energy buildings
Nyholm et al. Demand response potential of electrical space heating in Swedish single-family dwellings
CN111550861B (zh) 一种热泵与电蓄热设备自适应优化控制方法、系统及装置
CN110866641A (zh) 计及源储荷协同的多能互补系统两级优化调度方法及系统
CN108932560A (zh) 基于模型预测控制的园区综合能源系统优化调度方法
Piacentino et al. Sustainable and cost-efficient energy supply and utilisation through innovative concepts and technologies at regional, urban and single-user scales
CN105160159A (zh) 一种多能源技术量化筛选方法
CN112165122A (zh) 一种综合能源系统的运行方法及系统
Vrettos et al. Maximizing local PV utilization using small-scale batteries and flexible thermal loads
Kang et al. Performance of distributed energy systems in buildings in cooling dominated regions and the impacts of energy policies
CN109886463A (zh) 考虑需求响应不确定性的用户侧优化控制方法
CN105737342A (zh) 一种办公楼宇内节能控制的方法
CN107194543A (zh) 一种区域能源规划设计阶段的能源站配置方法
CN101551646B (zh) 一种供暖优化节能控制方法
Gaonwe et al. Optimal energy management of a solar-assisted heat pump water heating system with a storage system
Beretta et al. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?
Dumoulin et al. Operation and grid interaction modeling of a house with a building integrated photovoltaic thermal (BIPV/T) system coupled to an air-source heat pump
CN114322044B (zh) 一种综合能源系统及其运行控制方法
CN104216368A (zh) 一种基于需求响应的分布式联供系统优化运行控制方法
CN106091438A (zh) 一种并联式太阳能热泵热水系统动态控制方法
Changliang et al. Energy management strategy research for residential microgrid considering virtual energy storage system at demand side
CN112926201B (zh) 综合能源系统供热规划方法、系统及装置
Wu et al. Multi-parameter optimization design method for energy system in low-carbon park with integrated hybrid energy storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090729

Termination date: 20160929

CF01 Termination of patent right due to non-payment of annual fee