CN101125652A - 一种碳化铝纳米带的合成方法 - Google Patents

一种碳化铝纳米带的合成方法 Download PDF

Info

Publication number
CN101125652A
CN101125652A CNA2007100710852A CN200710071085A CN101125652A CN 101125652 A CN101125652 A CN 101125652A CN A2007100710852 A CNA2007100710852 A CN A2007100710852A CN 200710071085 A CN200710071085 A CN 200710071085A CN 101125652 A CN101125652 A CN 101125652A
Authority
CN
China
Prior art keywords
aluminum carbide
carbide nano
aluminum
nano belt
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100710852A
Other languages
English (en)
Other versions
CN100546908C (zh
Inventor
陈建军
王耐艳
高林辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Zhejiang University of Science and Technology ZUST
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CNB2007100710852A priority Critical patent/CN100546908C/zh
Publication of CN101125652A publication Critical patent/CN101125652A/zh
Application granted granted Critical
Publication of CN100546908C publication Critical patent/CN100546908C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种碳化铝纳米带的合成方法。装有铝硅合金的坩埚置于炉内,关闭炉门抽真空至50Pa~10-3Pa,然后充入保护气氩气,再升温到700℃~1600℃之间保温1-20小时,然后自然冷却至常温,在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带。本发明制备的碳化铝纳米带厚度薄、杂质少;碳化铝纳米带的长度长,能达到几个毫米;生长碳化铝纳米带的成本很低;不存在环境污染、制备设备简单。

Description

一种碳化铝纳米带的合成方法
技术领域
本发明涉及一种碳化铝纳米带的合成方法。
背景技术
近年来,一维量子线以其小的直径、大的长径比、高的各向异性、各种奇异的结构和奇特的性能成为当今纳米科技的研究热点。一维纳米材料(纳米线、纳米带、纳米棒)代表了能有效的传输电子、空穴、光波和各种激子的最小维数的结构,它们是构成纳米电子、纳米机械和纳米光子学器件的基本单元。碳化铝纳米带是一种带状的一维纳米结构材料,在构建纳米电子器件、催化和传感等领域有一定的应用前景。
华盛顿州立大学Lai-Sheng Wang等(Nano Letters 2002Vol.2,No.2,105-108)报道以锂为催化剂制备碳化铝纳米线(带)的方法,加热Al/C/Li(原子比为5/3/1)混合物到780℃,保温72小时,然后迅速冷却到常温,合成了六角形的碳化铝微晶,当以3℃/h的速度冷却到常温时得到几十微米长的碳化铝纳米线(直径5至70nm)和纳米带(厚5~70nm、宽20~500nm)。以锂为催化剂制备碳化铝纳米线(带)的合成温度较低,但是会引入碳化锂杂质。
P.Schulz等在采用铝硅合金750℃熔渗石墨预制件制备石墨/铝复合物的实验中,在复合物的内部发现少量的碳化铝晶须,讨论了碳化铝晶须对复合物力学性能的影响(Materials Science and Engineering A448(2007)1-6)。此外关于碳化铝一维纳米材料的报道还很少。现有制备碳化铝纳米线(带)的方法还有许多不足之处,进一步探求更先进的制备碳化铝一维纳米材料的方法是非常必要的。
发明内容
本发明的目的在于提供一种碳化铝纳米带的合成方法,
本发明采用的技术方案是,该方法的步骤如下::
装有铝硅合金的坩埚置于炉内,关闭炉门抽真空至50Pa~10-3pa,然后充入保护气氩气,再升温到700℃~1600℃之间保温1-20小时,然后自然冷却至常温,在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带。
所述的铝硅合金,其铝原子百分数含量在10%-90%。
所述的石墨坩埚既为容器也为碳源。
采用铝硅合金为原料,硅在反应体系中起到催化剂的作用,石墨坩埚上的碳作为碳源参与了反应。碳化铝纳米带制备的反应机理是:高温下,合金为液态,气氛中铝硅有一定的饱和蒸气压,由于少量氧的存在,体系中一氧化碳也具有一定的饱和蒸气压,然后通过气固反应机理(VS机理)合成碳化铝纳米带。
与背景技术相比,本发明具有的有益效果是:
本发明采用铝硅合金为原料,在石墨坩埚为碳源,加热到700~1600℃的温度范围内,然后随炉冷却到常温,制备了碳化铝纳米带。本发明制备的碳化铝纳米带厚度薄、杂质少;碳化铝纳米带的长度长,能达到几个毫米;生长碳化铝纳米带的成本很低;不存在环境污染、制备设备简单。
附图说明
图1是实施例1的碳化铝纳米带。
图2是实施例2的碳化铝纳米带。
具体实施方式
一种以铝硅合金为原料,石墨坩埚为碳源,采用碳热还原法生长碳化铝纳米带的实施例:
实施例1:
装有铝硅合金(Al原子百分数含量为50%)的坩埚置于炉内,关闭炉门抽真空至10-1Pa,然后充入保护气氩气,再升温到1400℃保温5小时,然后自然冷却至常温。在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带(如图1)。
实施例2:
装有铝硅合金(Al原子百分数含量为70%)的坩埚置于炉内,关闭炉门抽真空至10-2pa,然后充入保护气氩气,再升温到1000℃保温20小时,然后自然冷却至常温。在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带(如图2)。
实施例3:
装有铝硅合金(Al原子百分数含量为10%)的坩埚置于炉内,关闭炉门抽真空至10-3pa,然后充入保护气氩气,再升温到1200℃保温1小时,然后自然冷却至常温。在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带。
实施例4:
装有铝硅合金(Al原子百分数含量为90%)的坩埚置于炉内,关闭炉门抽真空至50Pa,然后充入保护气氩气,再升温到700℃保温10小时,然后自然冷却至常温。在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带。
实施例5:
装有铝硅合金(Al原子百分数含量为40%)的坩埚置于炉内,关闭炉门抽真空至1Pa,然后充入保护气氩气,再升温到1600℃之间保温10小时,然后自然冷却至常温。在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带。

Claims (3)

1.一种碳化铝纳米带的合成方法,其特征在于该方法的步骤如下:装有铝硅合金的坩埚置于炉内,关闭炉门抽真空至50Pa~10-3Pa,然后充入保护气氩气,再升温到700℃~1600℃之间保温1-20小时,然后自然冷却至常温,在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带。
2.根据权利要求1所述的一种碳化铝纳米带的合成方法,其特征在于:所述的铝硅合金,其铝原子百分数含量在10%-90%。
3.根据权利要求1所述的一种碳化铝纳米带的合成方法,其特征在于:所述的石墨坩埚既为容器也为碳源。
CNB2007100710852A 2007-09-04 2007-09-04 一种碳化铝纳米带的合成方法 Expired - Fee Related CN100546908C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100710852A CN100546908C (zh) 2007-09-04 2007-09-04 一种碳化铝纳米带的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100710852A CN100546908C (zh) 2007-09-04 2007-09-04 一种碳化铝纳米带的合成方法

Publications (2)

Publication Number Publication Date
CN101125652A true CN101125652A (zh) 2008-02-20
CN100546908C CN100546908C (zh) 2009-10-07

Family

ID=39093807

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100710852A Expired - Fee Related CN100546908C (zh) 2007-09-04 2007-09-04 一种碳化铝纳米带的合成方法

Country Status (1)

Country Link
CN (1) CN100546908C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017184760A2 (en) 2016-04-20 2017-10-26 West Virginia University Research Corporation Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds
US10494264B2 (en) 2013-03-15 2019-12-03 West Virginia University Research Corporation Process for pure carbon production, compositions, and methods thereof
US11306401B2 (en) 2014-10-21 2022-04-19 West Virginia University Research Corporation Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10494264B2 (en) 2013-03-15 2019-12-03 West Virginia University Research Corporation Process for pure carbon production, compositions, and methods thereof
US10696555B2 (en) 2013-03-15 2020-06-30 West Virginia University Research Corporation Process for pure carbon production
US11306401B2 (en) 2014-10-21 2022-04-19 West Virginia University Research Corporation Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions
WO2017184760A2 (en) 2016-04-20 2017-10-26 West Virginia University Research Corporation Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds
US11332833B2 (en) 2016-04-20 2022-05-17 West Virginia Research Corporation Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds

Also Published As

Publication number Publication date
CN100546908C (zh) 2009-10-07

Similar Documents

Publication Publication Date Title
Deng et al. Synthesis of silicon carbide nanowires in a catalyst-assisted process
Chen et al. A simple catalyst-free route for large-scale synthesis of SiC nanowires
Chen et al. Thermochemistry and growth mechanism of SiC nanowires
Luo et al. Synthesis and photoluminescence property of silicon carbide nanowires via carbothermic reduction of silica
Wang et al. Synthesis of aluminium borate nanowires by sol–gel method
Zong et al. Synthesis and characterization of magnesium nitride powder formed by Mg direct reaction with N2
CN100546908C (zh) 一种碳化铝纳米带的合成方法
Carvajal-Campos et al. Synthesis and characterization of tantalum carbide nanoparticles using concentrated solar energy
Peng et al. Growth and Mechanism of Network‐Like Branched Si3N4 Nanostructures
Wang et al. In situ formation of Si3N4–SiC nanocomposites through polymer-derived SiAlCN ceramics and spark plasma sintering
Zhang et al. Observation of SiC nanodots and nanowires in situ growth in SiOC ceramics
Radwan et al. Formation of aluminium nitride whiskers by direct nitridation
Wang et al. Self‐Catalytic Ternary Compounds for Efficient Synthesis of High‐Quality Boron Nitride Nanotubes
Khan et al. Synthesis of metallic Zn microprisms, their growth mechanism and PL properties
CN102534796B (zh) 一种纯α碳化硅晶须的制备方法
Tu et al. Effect of substrate temperature on structural and optical properties of ZnO nanostructures grown by thermal evaporation method
CN101560728A (zh) 一种碳纤维表面生成碳化硅涂层的方法
Yuan et al. Characterization of crystalline SiCN formed during the nitridation of silicon and cornstarch powder compacts
Li et al. Long silicon nitride nanowires synthesized in a simple route
Jung et al. Growth of β-gallium oxide nanostructures by the thermal annealing of compacted gallium nitride powder
Sahoo et al. Formation of CuO on thermal and laser-induced oxidation of Cu 3 N thin films prepared by modified activated reactive evaporation
WO2006103930A1 (ja) 窒化アルミニウム含有物の製造方法
Dong et al. Synthesis and properties of lightweight flexible insulant composites with a mullite fiber-based hierarchical heterostructure
CN102477694A (zh) 热蒸发硅法生成碳化硅涂层的方法
Shi et al. Formation of MgO whiskers on the surface of bulk MgB 2 superconductors during in situ sintering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091007

Termination date: 20100904