CN101125652A - 一种碳化铝纳米带的合成方法 - Google Patents
一种碳化铝纳米带的合成方法 Download PDFInfo
- Publication number
- CN101125652A CN101125652A CNA2007100710852A CN200710071085A CN101125652A CN 101125652 A CN101125652 A CN 101125652A CN A2007100710852 A CNA2007100710852 A CN A2007100710852A CN 200710071085 A CN200710071085 A CN 200710071085A CN 101125652 A CN101125652 A CN 101125652A
- Authority
- CN
- China
- Prior art keywords
- aluminum carbide
- carbide nano
- aluminum
- nano belt
- crucible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 239000002127 nanobelt Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 8
- 230000002194 synthesizing effect Effects 0.000 title abstract 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000007789 gas Substances 0.000 claims abstract description 15
- 239000010439 graphite Substances 0.000 claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 10
- 239000000956 alloy Substances 0.000 claims abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 9
- 229910052786 argon Inorganic materials 0.000 claims abstract description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910000676 Si alloy Inorganic materials 0.000 claims description 13
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 13
- 241000209456 Plumbago Species 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 238000010189 synthetic method Methods 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 abstract description 7
- 229910002804 graphite Inorganic materials 0.000 abstract description 3
- 239000012535 impurity Substances 0.000 abstract description 3
- 238000003912 environmental pollution Methods 0.000 abstract description 2
- 229920001296 polysiloxane Polymers 0.000 abstract 1
- 230000001681 protective effect Effects 0.000 abstract 1
- TWHBEKGYWPPYQL-UHFFFAOYSA-N aluminium carbide Chemical compound [C-4].[C-4].[C-4].[Al+3].[Al+3].[Al+3].[Al+3] TWHBEKGYWPPYQL-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KMWBBMXGHHLDKL-UHFFFAOYSA-N [AlH3].[Si] Chemical compound [AlH3].[Si] KMWBBMXGHHLDKL-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- ARNWQMJQALNBBV-UHFFFAOYSA-N lithium carbide Chemical compound [Li+].[Li+].[C-]#[C-] ARNWQMJQALNBBV-UHFFFAOYSA-N 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种碳化铝纳米带的合成方法。装有铝硅合金的坩埚置于炉内,关闭炉门抽真空至50Pa~10-3Pa,然后充入保护气氩气,再升温到700℃~1600℃之间保温1-20小时,然后自然冷却至常温,在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带。本发明制备的碳化铝纳米带厚度薄、杂质少;碳化铝纳米带的长度长,能达到几个毫米;生长碳化铝纳米带的成本很低;不存在环境污染、制备设备简单。
Description
技术领域
本发明涉及一种碳化铝纳米带的合成方法。
背景技术
近年来,一维量子线以其小的直径、大的长径比、高的各向异性、各种奇异的结构和奇特的性能成为当今纳米科技的研究热点。一维纳米材料(纳米线、纳米带、纳米棒)代表了能有效的传输电子、空穴、光波和各种激子的最小维数的结构,它们是构成纳米电子、纳米机械和纳米光子学器件的基本单元。碳化铝纳米带是一种带状的一维纳米结构材料,在构建纳米电子器件、催化和传感等领域有一定的应用前景。
华盛顿州立大学Lai-Sheng Wang等(Nano Letters 2002Vol.2,No.2,105-108)报道以锂为催化剂制备碳化铝纳米线(带)的方法,加热Al/C/Li(原子比为5/3/1)混合物到780℃,保温72小时,然后迅速冷却到常温,合成了六角形的碳化铝微晶,当以3℃/h的速度冷却到常温时得到几十微米长的碳化铝纳米线(直径5至70nm)和纳米带(厚5~70nm、宽20~500nm)。以锂为催化剂制备碳化铝纳米线(带)的合成温度较低,但是会引入碳化锂杂质。
P.Schulz等在采用铝硅合金750℃熔渗石墨预制件制备石墨/铝复合物的实验中,在复合物的内部发现少量的碳化铝晶须,讨论了碳化铝晶须对复合物力学性能的影响(Materials Science and Engineering A448(2007)1-6)。此外关于碳化铝一维纳米材料的报道还很少。现有制备碳化铝纳米线(带)的方法还有许多不足之处,进一步探求更先进的制备碳化铝一维纳米材料的方法是非常必要的。
发明内容
本发明的目的在于提供一种碳化铝纳米带的合成方法,
本发明采用的技术方案是,该方法的步骤如下::
装有铝硅合金的坩埚置于炉内,关闭炉门抽真空至50Pa~10-3pa,然后充入保护气氩气,再升温到700℃~1600℃之间保温1-20小时,然后自然冷却至常温,在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带。
所述的铝硅合金,其铝原子百分数含量在10%-90%。
所述的石墨坩埚既为容器也为碳源。
采用铝硅合金为原料,硅在反应体系中起到催化剂的作用,石墨坩埚上的碳作为碳源参与了反应。碳化铝纳米带制备的反应机理是:高温下,合金为液态,气氛中铝硅有一定的饱和蒸气压,由于少量氧的存在,体系中一氧化碳也具有一定的饱和蒸气压,然后通过气固反应机理(VS机理)合成碳化铝纳米带。
与背景技术相比,本发明具有的有益效果是:
本发明采用铝硅合金为原料,在石墨坩埚为碳源,加热到700~1600℃的温度范围内,然后随炉冷却到常温,制备了碳化铝纳米带。本发明制备的碳化铝纳米带厚度薄、杂质少;碳化铝纳米带的长度长,能达到几个毫米;生长碳化铝纳米带的成本很低;不存在环境污染、制备设备简单。
附图说明
图1是实施例1的碳化铝纳米带。
图2是实施例2的碳化铝纳米带。
具体实施方式
一种以铝硅合金为原料,石墨坩埚为碳源,采用碳热还原法生长碳化铝纳米带的实施例:
实施例1:
装有铝硅合金(Al原子百分数含量为50%)的坩埚置于炉内,关闭炉门抽真空至10-1Pa,然后充入保护气氩气,再升温到1400℃保温5小时,然后自然冷却至常温。在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带(如图1)。
实施例2:
装有铝硅合金(Al原子百分数含量为70%)的坩埚置于炉内,关闭炉门抽真空至10-2pa,然后充入保护气氩气,再升温到1000℃保温20小时,然后自然冷却至常温。在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带(如图2)。
实施例3:
装有铝硅合金(Al原子百分数含量为10%)的坩埚置于炉内,关闭炉门抽真空至10-3pa,然后充入保护气氩气,再升温到1200℃保温1小时,然后自然冷却至常温。在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带。
实施例4:
装有铝硅合金(Al原子百分数含量为90%)的坩埚置于炉内,关闭炉门抽真空至50Pa,然后充入保护气氩气,再升温到700℃保温10小时,然后自然冷却至常温。在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带。
实施例5:
装有铝硅合金(Al原子百分数含量为40%)的坩埚置于炉内,关闭炉门抽真空至1Pa,然后充入保护气氩气,再升温到1600℃之间保温10小时,然后自然冷却至常温。在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带。
Claims (3)
1.一种碳化铝纳米带的合成方法,其特征在于该方法的步骤如下:装有铝硅合金的坩埚置于炉内,关闭炉门抽真空至50Pa~10-3Pa,然后充入保护气氩气,再升温到700℃~1600℃之间保温1-20小时,然后自然冷却至常温,在合金表面及石墨坩埚内壁上生成许多黄色的碳化铝纳米带。
2.根据权利要求1所述的一种碳化铝纳米带的合成方法,其特征在于:所述的铝硅合金,其铝原子百分数含量在10%-90%。
3.根据权利要求1所述的一种碳化铝纳米带的合成方法,其特征在于:所述的石墨坩埚既为容器也为碳源。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100710852A CN100546908C (zh) | 2007-09-04 | 2007-09-04 | 一种碳化铝纳米带的合成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100710852A CN100546908C (zh) | 2007-09-04 | 2007-09-04 | 一种碳化铝纳米带的合成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101125652A true CN101125652A (zh) | 2008-02-20 |
CN100546908C CN100546908C (zh) | 2009-10-07 |
Family
ID=39093807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100710852A Expired - Fee Related CN100546908C (zh) | 2007-09-04 | 2007-09-04 | 一种碳化铝纳米带的合成方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100546908C (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017184760A2 (en) | 2016-04-20 | 2017-10-26 | West Virginia University Research Corporation | Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds |
US10494264B2 (en) | 2013-03-15 | 2019-12-03 | West Virginia University Research Corporation | Process for pure carbon production, compositions, and methods thereof |
US11306401B2 (en) | 2014-10-21 | 2022-04-19 | West Virginia University Research Corporation | Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions |
-
2007
- 2007-09-04 CN CNB2007100710852A patent/CN100546908C/zh not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10494264B2 (en) | 2013-03-15 | 2019-12-03 | West Virginia University Research Corporation | Process for pure carbon production, compositions, and methods thereof |
US10696555B2 (en) | 2013-03-15 | 2020-06-30 | West Virginia University Research Corporation | Process for pure carbon production |
US11306401B2 (en) | 2014-10-21 | 2022-04-19 | West Virginia University Research Corporation | Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions |
WO2017184760A2 (en) | 2016-04-20 | 2017-10-26 | West Virginia University Research Corporation | Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds |
US11332833B2 (en) | 2016-04-20 | 2022-05-17 | West Virginia Research Corporation | Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds |
Also Published As
Publication number | Publication date |
---|---|
CN100546908C (zh) | 2009-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Deng et al. | Synthesis of silicon carbide nanowires in a catalyst-assisted process | |
Chen et al. | A simple catalyst-free route for large-scale synthesis of SiC nanowires | |
Chen et al. | Thermochemistry and growth mechanism of SiC nanowires | |
Luo et al. | Synthesis and photoluminescence property of silicon carbide nanowires via carbothermic reduction of silica | |
Wang et al. | Synthesis of aluminium borate nanowires by sol–gel method | |
Zong et al. | Synthesis and characterization of magnesium nitride powder formed by Mg direct reaction with N2 | |
Sun et al. | Mechanical and thermal physical properties of amorphous SiCN (O) ceramic bulks prepared by hot-press sintering | |
Wang et al. | In situ formation of Si3N4–SiC nanocomposites through polymer-derived SiAlCN ceramics and spark plasma sintering | |
Carvajal-Campos et al. | Synthesis and characterization of tantalum carbide nanoparticles using concentrated solar energy | |
CN101864619A (zh) | 利用稻壳制备微纳米直径碳化硅短纤维和晶须的方法 | |
CN100546908C (zh) | 一种碳化铝纳米带的合成方法 | |
Zhang et al. | Observation of SiC nanodots and nanowires in situ growth in SiOC ceramics | |
Liu et al. | Formation of different Si3N4 nanostructures by salt-assisted nitridation | |
Peng et al. | Growth and mechanism of network‐like branched Si3N4 nanostructures | |
Wang et al. | Self‐Catalytic Ternary Compounds for Efficient Synthesis of High‐Quality Boron Nitride Nanotubes | |
Li et al. | Synthesis of cupric oxide nanowires on spherical surface by thermal oxidationmethod | |
Su et al. | Green synthesis, formation mechanism and oxidation of Ti3SiC2 powder from bamboo charcoal, Ti and Si | |
CN102534796B (zh) | 一种纯α碳化硅晶须的制备方法 | |
Tu et al. | Effect of substrate temperature on structural and optical properties of ZnO nanostructures grown by thermal evaporation method | |
CN101560728A (zh) | 一种碳纤维表面生成碳化硅涂层的方法 | |
Yuan et al. | Characterization of crystalline SiCN formed during the nitridation of silicon and cornstarch powder compacts | |
Li et al. | Long silicon nitride nanowires synthesized in a simple route | |
Sahoo et al. | Formation of CuO on thermal and laser-induced oxidation of Cu 3 N thin films prepared by modified activated reactive evaporation | |
Dong et al. | Synthesis and properties of lightweight flexible insulant composites with a mullite fiber-based hierarchical heterostructure | |
Shi et al. | Formation of MgO whiskers on the surface of bulk MgB 2 superconductors during in situ sintering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091007 Termination date: 20100904 |