CN101124524A - 具有基于定位而自启动的施工设备 - Google Patents

具有基于定位而自启动的施工设备 Download PDF

Info

Publication number
CN101124524A
CN101124524A CNA2005800473061A CN200580047306A CN101124524A CN 101124524 A CN101124524 A CN 101124524A CN A2005800473061 A CNA2005800473061 A CN A2005800473061A CN 200580047306 A CN200580047306 A CN 200580047306A CN 101124524 A CN101124524 A CN 101124524A
Authority
CN
China
Prior art keywords
project data
equipment
data file
signal
local position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800473061A
Other languages
English (en)
Other versions
CN100582981C (zh
Inventor
克里斯托弗·M·迪奇
马克·爱德华兹·尼克尔斯
亚瑟·J·泰勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Trimble Control Technologies LLC
Original Assignee
Caterpillar Trimble Control Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Trimble Control Technologies LLC filed Critical Caterpillar Trimble Control Technologies LLC
Publication of CN101124524A publication Critical patent/CN101124524A/zh
Application granted granted Critical
Publication of CN100582981C publication Critical patent/CN100582981C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0297Fleet control by controlling means in a control room

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种施工设备(16),用于自动地接收基于该设备的地理位置和标识(50)所选择的工程数据文件。所述设备包括自启动收发器(52),用于发送该设备的本地位置和标识,并接收来自工程数据分配器的、用于设备操作的工程数据文件,该工程数据文件是相对于本地位置和标识而选择的。

Description

具有基于定位而自启动的施工设备
技术领域
本发明涉及施工设备,且更为具体地涉及具有基于其地理位置而自动启动的施工设备。
背景技术
数字工程数据文件以及精确的设备定位的使用对于诸如采矿、道路、填埋、工地准备和建筑等施工工程应用变得更为普遍。工程数据文件通常包括数字地形模型。该数字地形模型具有用于当前的和规划设计表面的地理和高度(elevation)坐标。工程现场的工人使用具有精确本地定位的地形模型来操作诸如开凿机、铆合机、推土机、桩穴挖掘机等等的施工设备。工人到达现场,卸载该设备并开始确定位置。然而,在他能够开始工作之前,需要向他提供与他的工程和设备相关的工程数据文件。
将工程数据文件通常存储和维护在某处的工程数据库中,而不是在工程现场。在总部办公室的中央数据库中可以有数十个不同的工程和成百的设备的工程数据文件。这些文件可以以诸如压缩盘的硬件形式带到现场,或者使用无线系统或电话连接而从数据库下载到每个设备。然而,将与特定工程有关的、用于特定设备的数字地形模型从成百个其它的模型中拣选出来并非一件轻而易举的任务。该任务对于覆盖大面积的工程来说成为更困难,原因是数据文件的大小变得难以使用,且地理校准对于该工程内的不同位置来说可能不同。现有系统使用工程和工作单号来完成选择任务。遗憾的是,工程和工作单号的使用可能遇到日常的人为错误,并且在设备移动其位置跨过操作员可能看不见的工程现场内的地理边界线的任何情况下将难以实施。
这就需要一种施工工程数据传送装置,其自动地选择和传送与在工程现场的施工设备有关的工程数据文件。还需要一种施工工程数据传送的装置,当设备在现场内移动时,该装置自动传送新的工程数据。
发明内容
本发明是一种施工设备,其基于位置和标识自动接收所选的工程数据文件。工程数据文件可包括地理坐标校准、通信系统管理、工作单、设计和当前的数字地形模型、背景文件以及应用程序。工程数据分配器(distributor)存储和维护与工程现场位置和工程规划设备标识相关联的工程数据文件。在某些情况下,工程现场位置被分成位置页。
所述施工设备包括用于确定和向工程数据分配器传送地理位置和标识的自启动装置。工程数据分配器使用设备位置和标识来搜索工程数据文件的工程数据库,并仅选择用于与远程装置位置和远程装置标识匹配的工程现场位置和项目规划设备标识的那些工程数据文件。然后,将所选择的工程数据文件传送到所述设备。当该设备在工程现场内移动时,其连续地发送其远程位置。当该远程位置移动到数据库中新的位置页时,工程数据分配器自动地选择用于新位置页的工程数据文件并向所述设备传送。
在一个实施例中,本发明是一种具有用于确定本地位置的定位装置和自启动收发器的施工设备,该自启动收发器用于发送具有本地位置的设备信号和接收来自工程数据分配器的分配信号,该分配信号具有用于设备操作的、根据本地位置来选择的工程数据文件。在该实施例的变形或扩展中,在设备加电时自动地发送设备信号。在该实施例的另一变形或扩展中,设备信号包括用于设备标识的信息,且根据该标识来选择工程数据文件。
在另一实施例中,本发明是一种用于施工设备的方法,包括以下步骤:确定本地位置;发送具有该本地位置的设备信号;以及接收来自工程数据分配器的分配信号,该分配信号具有用于设备操作的、根据本地位置来选择的工程数据文件。在该实施例的扩展的变形中,在所述设备加电时自动发送该设备信号。在该实施例的另一变形或扩展中,该设备信号包括用于设备标识的信息,并且接收根据该标识所选择的工程数据文件。
在另一实施例中,本发明是一种有形介质,其包含使处理器控制设备执行如下步骤的一组指令,所述步骤是:确定本地位置;发送具有本地位置的设备信号;以及接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备操作的、根据本地位置来选择的工程数据文件。在该实施例的变形或扩展中,所述有形介质指示处理器,使得在设备加电时自动发送设备信号。在该实施例的另一变形或扩展中,有形介质指示处理器发送具有用于设备标识的信息的设备信号,并接收具有根据标识来选择的工程数据文件的分配信号。
本发明的施工设备的优点在于,所选择的与特定施工设备有关的工程数据文件由设备自动地接收,从而使得该设备或设备操作员不需要从不必要的文件中进行拣选。另一优点在于,所选择的工程数据文件根据设备的位置和标识被自动地选择,从而不需要使用工作和工程号来传送有关的工程数据文件。又一优点在于,当设备在工程现场内移动位置时,更新的工程数据文件可以被自动地接收。
在阅读完下面的用于执行本发明的最佳模式的详细描述并查看各个附图之后,本发明的这些和其它实施例以及优点对于本领域的普通技术人员来说毫无疑问将变得显而易见。
附图说明
图1是本发明的施工工程数据传送装置的框图;
图2是用于图1的工程数据传送装置的工程数据文件的框图;
图3是用于图2的工程数据文件的图表;
图4是示出用于图2和3的工程数据文件的高度范围的图表;
图5是示出用于图2和3的工程数据文件的时间范围的图表;
图6是本发明的用于分配工程数据文件的方法的流程图;
图7A、7B和7C是图6的方法的、用于组织工程数据文件、接收设备信号以及选择工程数据文件的流程图;以及
图8是本发明的用于接收工程数据文件的方法的流程图。
具体实施方式
现在将描述用于执行本发明的思想的优选实施例的细节。应理解,这些细节的描述并非将本发明限制于这些细节。相反,这些细节的意图仅在于描述发明人知道的用于执行本发明思想的最佳模式。这里所描述的实施例的多种替选方式、修改和等同物由于落在本发明的思想范围内,因而对于本领域的技术人员来说将是显然的。
图1图解说明了本发明的用于分配基于位置选择的工程数据文件12的施工工程数据传送装置,其以附图标记10来表示。该装置10包括工程数据分配器14以及至少一个施工设备16。工程数据分配器14可以被认为是用于施工工程的专用服务器。对于装置10可以使用数十或数百个施工设备16。工程数据分配器14可以驻留在单个基站位置,或者可以具有在若干不同的地理位置的、彼此互相通信的组件。
无论将该数据分配器14置于单个位置处还是被分开成广泛分散的位置处的组件,其都有效地包括用于建筑工程的工程数据文件24的工程控制数据库22;用于寻找所选择的工程数据文件12的搜索程序26;用于接收来自施工设备16的信号32的分配接收机28;以及用于将具有所选择的数据工程文件12的发送信号36发送到施工设备16的分配发送机34。工程数据文件24被存储并被维护在数据库22中,该工程数据文件24与用于地理区域或建筑工程的工程现场位置38、用于工程现场位置38区域内更小的地理区域的位置页39、以及施工工程规划设备标识40相关联。
将术语“施工”限定为包括建筑和管道、监视、路基平整、填埋、采矿、道路建设、挖、挖掘等等的施工,其中不动产由机械设备来进行改造。施工设备16被限定为用于施工的设备。施工设备16的示例为平地机、推土机、测量器、开凿机、桩穴挖掘机、起重机、挖沟机、铆合机等等。在施工设备16用于工程现场的施工工程的情况下,它还能够是管理人的管理工具。例如,该工具能是诸如膝上型电脑、个人数字助手(PDA)、具有PDA功能的蜂窝电话等等的计算设备。
施工设备16包括定位装置44,其用于提供启动的远程设备位置45以及操作的精确位置46;自动-定位-启动装置48;标识50;收发器52;处理器54;显示器56,并且可以包括施工工具58。标识50以自启动装置48可读取的方式存储。自启动装置48和收发器52可被认为是自启动收发器60。在电源开启或从待机模式或利用键击返回时,自启动装置48执行自启动以指示定位装置44来计算位置45,并指示收发器52来以信号32发送位置45和标识50。搜索程序26使用位置45和标识50来搜索数据库22中的工程数据文件24,从而找到特定的所选工程数据文件12组,其中工程现场位置38包括远程设备位置45,并且工程规划设备标识40与远程设备标识50匹配。
分配发送机34以分配信号36向设备收发器52发送基于位置选择的工程数据文件12。自动定位启动装置48指示收发器52接收分配信号36中的所选工程数据文件12,并将该数据传递给处理器54。处理器54将所选工程数据文件12处理成这样的形式,即,施工工具58能够直接使用它来操作,或通过某种方式显示在显示器56上来使用它,使得工人能够操作施工设备16。
本发明不取决于信号32和36通信的方法。当信号32和36通过设备收发器52发送和接收时,优选为无线信号,如无线电、蜂窝电话、卫星、光等等。然而,信号32或36可以通过设备16使用陆线(landline)电话来发送和接收。信号32和36可以在使用全时线路或包的陆线和无线信号之间、在分配接收机28和发送机34以及收发器52之间进行任何次数的转换。
定位装置44可以使用两个不同的装置和/或使用两种不同方法来首先快速地确定自动工程数据传送的位置45,并且然后精确地确定根据工程数据操作设备16的位置或地点46。位置45被用于自动地选择存储在数据库22中的许多组工程数据文件24中的哪些组被选择并被传送到施工设备16。利用该位置45,施工设备16的操作员自动地并无缝地只接收其工作需要的信息,而不用从不需要的文件中挑选。
位置46与所选择的工程数据文件12一起用来指导或通知设备16的操作员来直接操作设备16。例如,所选的工程数据文件12可以指导操作员将工具58的铲片或铲的位置升高或降低到所选择的工程数据文件中的数字地形模型中所带有的设计表面。应注意,用于找到所选工程数据文件12的位置45的位置精确度可以是若干米或者甚至是数十米,而位置46可要求厘米精度来指导工具58。典型地,精确位置46利用基准位置信息的辅助来确定,该基准位置信息通过接收用于校准在设备16处测量的原始位置信息的无线电信号来获得。
GPS接收机可被用于定位装置44来提供位置45,以及实时动态(RTK)GPS接收机可被用于提供位置46。示例性RTK GPS系统在Nicholas C.Talbot等人的名称为“centimeter accurate global positioningsystem receiver for on-the-fly real-time-kinematic measurement andcontrol”的美国专利No.5,519,620中描述,通过引用结合于此。然而装置10不取决于确定用于位置45和46的信息的装置或方式。用户可输入不同于设备16的实际位置的位置,而所输入的位置可被用作位置45。
现在来参考用于确定位置的系统的若干示例。位置可以通过利用如GPS信号的全球导航卫星系统(GNSS)信号、全球轨道导航卫星系统(GLONASS)信号、伽利略信号等等来测距或定时而被确定。GNSS信号通常通过卫星来广播,然而也可以通过伪卫星来广播。位置优选为随同时间的诸如纬度、经度和高度的地理坐标形式。然而,位置还可以是伪距的形式,其在工程数据分配器14中被处理,从而为该位置提供地理坐标。
位置还能够利用陆地定位系统来确定。这种陆地定位系统的一个示例是由Kelley等人的名称为“navigation and positioning system and methodusing uncoordinated beacon signals”的美国专利5,173,710所建议的系统,其通过参考结合于此。另一示例是使用无线电和GPS伪距的混合无线定位系统,其由Loomis的美国专利6,430,416来描述,其通过引用结合于此。
另一示例是由2002年5月31日提交的、Matthew Rabinowitz和JamesSpilker的美国申请10/159478所描述的系统,该申请名称为“positionlocation using global positioning system signals augmented by broadcasttelevision signals”,其被转让给了Rosum Corporation of Redwood City,California,该申请通过引用结合于此。该申请示出了使用广播电视信号、结合GPS信号来确定用户位置的方法和装置。
又一示例是由2002年1月22日提交的、Matthew Rabinowitz和JamesSpilker的美国申请10/054302所描述的系统,该申请名称为“positionlocation using broadcast analog television signals”,其被转让给了RosumCorporation of Redwood City,California,该申请通过引用结合于此。该申请示出了在已知的参考点使用多个模拟电视发射机来确定用户位置的方法和装置。
又一示例是由2001年8月17日提交的Matthew Rabinowitz和JamesSpilker的美国申请09/932010所描述的系统,该申请名称为“positionlocation using terrestrial digital video broadcast television signals”,其被转让给了Rosum Corporation of Redwood City,California,该申请通过引用结合于此。又一示例是由2002年1月22日提交的Matthew Rabinowitz和James Spilker的美国申请10/054262所描述的系统,该申请名称为“time-gated delay lock loop tracking of digital television signals”,其被转让给了Rosum Corporation of Redwood City,California,该申请通过引用结合于此。这两个申请示出了在已知的参考点使用多个数字电视发射机来确定用户位置的方法和装置。
可用于确定位置的位置确定系统的其它示例为使用三角测量或定时的无线电导航系统(RNS)以及使用从本地参考点发送到扩增RNS的本地位置信号和/或GNSS信号的位置扩增业务(PAS)等。由Novariant,Inc.of Menlo Park,California作出的商业上公知为TerraliteTM XPS系统的一种这类系统使用自测量XPS站来扩增GPS系统。
工程数据分配器14还包括地理定页器(pager)62、高度选择器64、时间选择器66以及模型更新程序68。地理定页器62、高度选择器64以及时间选择器66与搜索程序64一起操作来进一步分别选择对于位置页39、高度和时间的由远程位置45指定的所选工程数据文件12。应理解,时间可以和位置45一起被包括。
在自启动之后,在设备16的操作员的控制下,施工设备16向工程数据分配器14利用信号32连续发送对于其远程位置45和标识50的新位置,或者当位置45变化时或由于其它一些自动基准,施工设备16向工程数据分配器14利用信号32自动地连续发送对于其远程位置45和标识50的新位置。当设备16移动跨过不可见的施工现场的边界时,地理定页器62与搜索程序26一起操作以遍搜所选工程数据文件12,从而选择与包含远程位置45的新位置的位置页39相关联的文件12。同样地,高度选择器64与搜索程序26一起操作以选择与高度范围相关联的基于位置选择的工程数据文件12,该高度范围包括远程位置45的新位置。时间选择器66与搜索程序26一起操作以选择与时间范围相关联的基于位置选择的工程数据文件12,所述时间范围包括远程位置45的时间。模型更新程序68使用远程位置45和标识50来针对施工现场处的诸如当前表面的当前信息而更新所选工程数据文件12。
图2示出了组织工程数据文件24的方式。该工程数据文件24与工程现场位置38相关联地被存储。第一工程现场位置38被显示为工程现场位置1。工程数据文件24可以进一步与具有工程现场位置38内的区域的位置页39相关联。工程现场位置1内的第一位置页39被示为页1。工程数据文件24还与工程规划设备标识40相关联。该工程规划设备标识40被示为A、B、C、D和E。搜索程序26根据远程位置45搜索工程数据文件24来找到工程现场位置38和页39,以及根据远程设备标识50来找到工程规划设备标识40,从而选择被发送到远程设备16的所选工程数据文件12。
如这里所描述的组织的数据库22中的工程数据文件24可以以搜索程序26可读出且模型更新程序68可写入的形式被包含有形介质80上。该介质可以是数字存储设备,如数字视频设备(DVD)、压缩盘(CD)、电子存储芯片、硬盘等等。搜索程序26和工程数据分配器14的其它元素由一个或多个数字处理器82(图1)控制。
图3示出了本发明的数据库22。数据库22包括用于如工程1、2至n所示出的各单个工程的数据。用于工程1、2至n的工程数据文件24具有相关联的工程现场位置38。工程现场位置38以分别对应于工程的标号1、2至n来图示。工程现场位置1、2至n中的数据限定了围绕现场区域的地理边界。工程现场位置1、2至n中的每个可以被细分成有可能重叠的、被图示为页1、2至n的页39,其中位置页39具有工程现场位置38的区域内的地理区域。
针对用于工程调度的施工设备16,工程现场位置1、2至n和位置页1、2至n具有一个或多个工程规划设备标识40,其被指定为A至Y。对于工程现场位置1的页1,工程规划设备标识40被指定为A(平地机)、B(推土机)、C(管理员的膝上型电脑)、D(测量器)至E(桩穴挖掘机)。标识A至Y表示针对工程现场位置1的页1至工程现场位置n的页n的示例性工程规划设备标识40。应理注意到,数据库22不被限于A至Y标识,如果需要,可以有更多的数量。
而且,对于若干不同的工程现场位置1、2至n,工程规划设备标识A至Y中的每个可以被重复并且在数据库22中可以与工程数据文件12相关联。例如,指定为A(平地机)的工程规划标识可以具有与工程现场位置1、2至n中的任何一个或全部相关联的工程数据文件12。对于该示例,当平地机A位于工程现场位置2、页1时,其将接收针对标识A(平地机)和位置2、页1的所选工程数据文件12。利用图上的术语,所选工程数据文件12将具有通信21A,任务21A,小程序21A,地理校准21,设计DTM 21,当前DTM21和背景文件21。
工程数据文件24包括相对于通信系统(comm系统)、工作单、应用程序(app程序)、地理校准以及设计控制的文件。设计控制文件包括设计表面数字地形模型(DTM)、当前表面数字地形模型(DTM),以及具有普通信息的背景文件。该设计和当前DTM具有精确的地理坐标。
设计DTM表示根据施工规划所需要的表面。当前DTM表示如目前存在的表面或已存在的、可从施工设备16更新到数据库22的表面。例如,平地机可能已经将工程现场的某个区域平整到最初的当前表面和所需要的设计表面之间中途的某个水平。当设备16到达现场时,其通常同时需要设计DTM以及当前DTM。
数字地形模型具有以三维限定表面的必要数据。有多种数字地形模型格式,如格模型、不规则的三角网络模型,以及基于元素的模型。格模型具有相同间距的显示高度的水平点。例如,该模型可以包含针对1米×1米的格的高度。不规则的三角网络具有水平点的稀疏的格,且高度和不规则的三角形用于限定点之间的表面。不规则的三角网络模型通常由测量器使用。基于元素的系统将水平直线部分和曲线元素与垂直元素以及垂直横截面连接在一起。基于元素的模型对于道路建设可能是最有效的。
将用于通信系统、工作单和应用程序的工程数据文件24表示为针对用于各自的工程现场位置1至n和各自的位置页1至n的相应的工程规划设备标识A至Y的单独的文件。将用于地理校准和设计控制的工程数据文件24表示为针对用于各自的位置1至n和各自的页1至n的工程规划设备标识A至Y的通用主文件。然而,任何文件可以被单独存储,或者作为主文件,其针对标识A至Y中的每个或针对标识A至Y或特定工程现场1至n内的位置页1至n的每种类型的设备(平地机、推土机、管理员的膝上型电脑、测量器等等)。
在自启动时,设备16需要能发送具有位置45和标识50的设备信号32,而工程数据分配器14需要能接收信号32以便搜索数据库22来选择工程数据文件12。这种或者与信号32和36的进一步通信以及设备16可以由所选文件12中的通信系统信息来指定。
所述通信系统为设备信号32和分配信号36指定装置、信道、编码、路由等等,以便在工程数据分配器14和单独的施工设备16之间进行通信。例如,当对应于A(平地机)的设备处于位置1、页1时,comm 11A指定对于工程规划设备标识A(平地机)的通信系统。当对应于F(平地机)的设备处于位置1、页2时,comm 12F指定对于工程规划设备标识F(平地机)的通信系统。当对应于K(平地机)的设备处于位置1、页n时,comm 1nK指定对于工程规划设备标识K(平地机)的通信系统。当对应于P(平地机)的设备处于位置2、页1时,comm 21P指定对于工程规划设备标识P(平地机)的通信系统。当对应于U(平地机)的设备处于位置n、页1时,comm n1U指定对于工程规划设备标识U(平地机)的通信系统。当对应的设备16处于其相应的位置1至n和位置页1至n时,通信系统针对工程规划设备标识A-Y而被类似地指定。
工作单指定将由单独的远程设备A至Y执行的任务。例如,当设备16处于位置1、页1时,任务11A指定将由对应于工程规划设备标识A(平地机)的设备16来执行的任务。当设备16处于位置1、页2时,任务12F指定将由对应于工程规划标识F(平地机)的设备16来执行的任务。当设备16处于位置1、页n时,任务1nK指定将由对应于工程规划标识K(平地机)的设备16来执行的任务。当设备16处于位置2、页1时,任务21P指定将由对应于工程规划标识P(平地机)的设备16来执行的任务。当设备16处于位置n、页1时,任务n1U指定将由对应于工程规划标识U(平地机)的设备16来执行的任务。当对应的设备16处于它们相应的位置1至n以及位置页1至n时,任务针对工程规划设备标识A-Y被类似地指定。
地理校准将由定位装置44确定的精确位置46的坐标校准到用于本工程的本地坐标系统。例如,定位装置44可包括精确定位的全球定位系统(GPS)接收机,从而根据关于RTK基准和WGS84数据模型的实时动态(RTK)坐标来确定位置46。用于本工程的本地位置坐标通常将参考一些其它的标记。地理校准将精确的位置46校准到本地坐标,以便使用数字地形模型来工作。地理校准11校准对于位置1的页1的、对应于工程规划设备标识A-E的设备16。地理校准12校准对于位置1的页2的、对应于工程规划设备标识F-J的设备16。地理校准1n校准对于位置1的页n、对应于工程规划设备标识K-O的设备16。地理校准21校准对于位置2的页1的、对应于工程规划设备标识P-T的设备16。地理校准n1校准对于位置n的页1的、对应于工程规划设备标识U-Y的设备16。
设计控制文件被分类为设计数字地形模型(DTM)、当前数字地形模型(DTM)以及背景文件。设计控制文件与工程现场位置1至n的页1至n相关联地被存储。例如,设计DTM 11、当前DTM 11以及背景文件11表示与位置1、页1处的工程规划设备标识A-E相关联的设计控制文件11。设计DTM 12、当前DTM 12以及背景文件12表示与位置1、页2处的工程规划设备标识F-J相关联的设计控制文件12。设计DTM 1n、当前DTM 1n以及背景文件1n表示与位置1、页n处的工程规划设备标识K-O相关联的设计控制文件1n。设计DTM 21、当前DTM 21以及背景文件21表示与位置2、页1处的工程规划设备标识P-T相关联的设计控制文件21。设计DTM n1、当前DTM n1以及背景文件n1表示与位置n、页1处的工程规划设备标识U-Y相关联的设计控制文件n1。
背景文件可包括基准线工作(reference line work)、图片、进度线或回避区(avoidance zone)。基准线工作可以是财产边界(properboundary)或交叉的现有路面。图片可以是工程现场的航空摄影。进度线可以是限定先前工作水平的线。回避区可以是生态敏感的或危险的地区。
应用程序提供小程序A至Y给单独的施工设备16来使用工程数据文件12。小程序可以被用来解释、运行或显示用于通信系统、工作单、地理校准和/或工程控制文件的信息。例如,小程序11A是使能对应于工程规划设备标识A(平地机)的设备16使用任务11A、comm 11A、校准11和/或设计控制文件11的小程序。小程序12F是使能对应于工程规划设备标识F(平地机)的设备16使用任务12F、comm 12F、校准12和/或设计控制文件12的小程序。小程序1nK是使能对应于工程规划设备标识K(平地机)的设备16使用任务1nK、comm 1nK、校准1n和/或设计控制文件1n的小程序。小程序21P是使能对应于工程规划设备标识P(平地机)的设备16使用任务21P、comm 21P、校准21和/或设计控制文件21的小程序。小程序n1U是使能对应于工程规划设备标识U(平地机)的设备16使用任务n1U、comm n1U、校准n1和/或设计控制文件n1的小程序。当它们处于其相应的位置1至n以及位置页1至n时,小程序针对对应于工程规划设备标识A-Y的设备16而被类似地指定。
图4图解说明了数据库22的优选实施例,其中工程数据文件24被表示为与高度相关联地存储。例如,任务11B-e1、设计DTM 11B-e1、当前DTM 11B-e1以及背景文件11-e1与位置1、页1、工程规划设备标识B(推土机)以及高度1相关联地被存储。任务11B-e2、设计DTM 11B-e2、当前DTM 11B-e2以及背景文件11-e2与位置1、页1、工程规划设备标识B(推土机)以及高度2相关联地被存储。任务11B-e3、设计DTM 11B-e3、当前DTM 11B-e3以及背景文件11-e3与位置1、页1、工程规划设备标识B(推土机)以及高度3相关联地被存储。任务11B-e4、设计DTM11B-e4、当前DTM 11B-e4以及背景文件11-e4与位置1、页1、工程规划设备标识B(推土机)以及高度4相关联地被存储。可以有更多数量的高度。可以针对其它位置1至n、页1至n、工程规划设备标识A至Y进行相似的关联。
图5图解说明了数据库22的优选实施例,其中工程数据文件24被表示为与时间相关联地被存储。例如,任务11B-t1、设计DTM 11B-t1、当前DTM 11B-t1以及背景文件11-t1与位置1、页1、工程规划设备标识B(推土机)以及时间1相关联地被存储。任务11B-t2、设计DTM 11B-t2、当前DTM 11B-t2以及背景文件11-t2与位置1、页1、工程规划设备标识B(推土机)以及时间2相关联地被存储。任务11B-t3、设计DTM 11B-t3、当前DTM 11B-t3以及背景文件11-t3与位置1、页1、工程规划设备标识B(推土机)以及时间3相关联地被存储。任务11B-t4、设计DTM 11B-t4、当前DTM 11B-t4以及背景文件11-t4与位置1、页1、工程规划设备标识B(推土机)以及时间4相关联地被存储。可以有更多数量的时间。可以针对其它位置1至n、页1至n、工程规划设备标识A至Y进行相似的关联。
图6是本发明的用于分配所选工程数据文件12的方法流程图。在步骤100中,针对工程现场位置以及工程规划设备标识来组织工程数据文件24,所述工程现场位置可选地包括页、高度和时间。在步骤120中,工程数据分配器接收来自施工设备的设备信号。在步骤140中,工程数据分配器使用该设备信号中的信息来针对设备的位置和/或标识选择工程数据文件12。然后,在步骤160中,工程数据分配器向设备发送数据分配信号。随后,在步骤180中,工程数据分配器可以接收具有用来更新所选工程数据文件12的信息的另一设备信号。
图7A是用于组织工程数据文件的步骤100的流程图。在步骤102中,针对工程现场位置来组织文件。在步骤104中,针对位置页来组织文件。在步骤106中,针对工程规划设备标识来组织文件。在步骤108中,针对高度来组织文件。在步骤110中,针对时间来组织文件。应注意,不是所有的步骤102-110都需要被执行,并且被执行的步骤可以以任何次序一次执行一个,或者一次执行所有的步骤。如上所述组织的数据库22中的工程数据文件24可以以处理器可读的形式被包含在有形介质80上。
图7B是用于接收设备信号的步骤120的流程图。在步骤122中,针对施工设备的位置接收设备信号信息。在步骤124中,针对施工设备的标识接收设备信号信息。在步骤126中,针对施工设备的高度接收设备信号信息。在步骤128中,针对施工设备的时间接收设备信号信息。应注意,不是所有的步骤122-128都需要被执行,而执行的步骤可以以任何次序一次执行一个,或者一次执行所有的步骤。
图7C是用于选择工程数据文件的步骤140的流程图。在步骤142中,针对工程现场位置来选择文件。在步骤144中,文件被分页到位置页。在步骤146中,针对工程规划设备标识来选择文件。在步骤148中,针对高度来选择文件。在步骤150中,针对时间来选择文件。应注意,不是所有的步骤142-150都需要被执行,以及被执行的步骤可以以任何次序一次执行一个,或者一次执行所有的步骤。
图8是本发明的用于接收所选工程数据文件12的方法的流程图。本发明可以被体现在有形介质200上,该有形介质200包含使得处理器控制设备以执行本方法的步骤的一组指令组。该介质可以是数字存储设备,如数字视频设备(DVD)、压缩盘(CD)电子存储芯片、硬盘等等。在步骤202中,施工设备确定其位置45。在步骤204中,该设备发送具有位置45的设备信号。在步骤206中,该设备发送其标识。在步骤208中,该设备发送其高度。在步骤212中,该设备发送其时间。所述设备信号可包括高度和/或时间。应注意,不是所有的步骤204-212都需要被执行,以及被执行的步骤可以以任何次序一次执行一个,或者一次执行所有的步骤。
在步骤214中,施工设备接收响应于设备信号的分配信号,该分配信号具有针对匹配的工程现场位置和工程规划设备标识而选择的工程数据文件12。在步骤216中,该设备确定其精确位置或地点46。该设备可以在接收到分配信号之前或之后的任何时间确定其精确位置46。然后,在步骤218中,该设备或设备的操作员使用精确的位置46和所选的工程数据文件12来操作。
当操作开始后,在另一步骤222中,设备16针对新的本地位置45发送设备信号。在步骤224中,设备16接收具有针对新的位置页所选的工程数据文件12的分配信号。在步骤226中,设备16发送针对当前表面的设备信号,以便更新工程数据分配器14处的当前数字地形模型。在步骤228中,设备16接收具有新选择的工程数据文件12等的分配信号,用于施工工程中的设备16的操作。
作为广泛的总结,本文公开了用于自动接收基于设备的地理位置和标识所选则的工程数据文件的施工设备。该设备包括用于发送设备的本地位置和标识以及接收来自工程数据分配器的工程数据文件的自启动收发器,所述工程数据文件针对本地位置和标识来选择以用于设备的操作。
尽管本发明按照目前的优选实施例进行了描述,但是应理解,此公开不应被理解为限制。对于本领域的普通技术人员来说,在阅读完本公开后,各种改变和修改将毫无疑问地变得明显。因此,所附权利要求应被理解为覆盖落在本发明的真实精神和范围内的所有的改变和修改。
权利要求书(按照条约第19条修改)
1.一种施工设备,包括:
定位装置,用于确定地理本地位置;以及
自启动收发器,用于发送具有所述本地位置的设备信号,并接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件。
2.一种施工设备,包括:
定位装置,用于确定本地位置;以及
自启动收发器,用于发送具有所述本地位置的设备信号,以及接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的并随着所述本地位置变化而更新的工程数据文件。
3.一种施工设备,包括:
定位装置,用于确定本地位置;以及
自启动收发器,用于发送具有所述本地位置的设备信号,以及接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件,其中所述被选的工程数据文件包括用于对应于所述位置的表面的数字地形模型。
4.一种施工设备,包括:
定位装置,用于确定本地位置;以及
自启动收发器,用于发送具有所述本地位置的设备信号,以及接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件,其中,所述被选工程数据文件包括地理校准,其用于在由所述远程设备确定的本地位置坐标和本地坐标系统中的所述设备的位置之间进行转换。
5.一种施工设备,包括:
定位装置,用于确定地理本地位置;以及
自启动收发器,用于发送具有所述本地位置的设备信号,以及接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件,其中,所述设备信号包括用于所述本地位置处的当前表面的信息,并且其中,所述当前表面用于更新所述被选的工程数据文件。
6.一种施工设备,包括:
定位装置,用于确定本地位置;以及
自启动收发器,用于发送具有所述本地位置的设备信号,以及接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件,其中,所述本地位置包括高度,并且所述被选的工程数据文件还根据所述高度来选择。
7.如权利要求1-6中的任何一个所述的设备,其中,
所述设备信号在所述设备加电时被自动发送。
8.如权利要求1-6中的任何一个所述的设备,其中,
所述设备信号还包括用于所述设备的标识的信息;以及
所述工程数据文件还根据所述标识来选择。
9.如权利要求1或2所述的设备,其中,
所述被选的工程数据文件包括用于对应于所述位置的表面的数字地形模型。
10.如权利要求1或2所述的设备,其中,
所述被选工程数据文件包括地理校准,其用于在由所述远程设备确定的本地位置坐标和本地坐标系统中的所述设备的位置之间进行转换。
11.如权利要求1-6中的任何一个所述的设备,其中,
所述被选的工程数据文件包括工作单,其用于描述将由所述设备完成的任务。
12.如权利要求1-6中的任何一个所述的设备,其中,
所述被选的工程数据文件包括小程序,其具有使用所述设备中的所述被选的工程数据文件中的至少一个的编程。
13.如权利要求1-6中的任何一个所述的设备,其中,
所述被选的工程数据文件包括背景文件,该背景文件具有回避区、财产边界、交叉的现有路面以及航空摄影中的至少一个。
14.如权利要求1-6中的任何一个所述的设备,其中,
所述设备信号包括所述本地位置处的当前表面的信息;以及,
其中所述当前表面被用于更新所述被选的工程数据文件。
15.如权利要求1-6中的任何一个所述的设备,其中,所述分配信号包括:当所述设备移动跨过施工现场的不可见的位置页边界时根据新的本地位置而新选择的工程数据文件。
16.如权利要求1-6中的任何一个所述的设备,其中,
所述本地位置由用户输入到所述定位装置。
17.如权利要求1-6中的任何一个所述的设备,其中,
所述本地位置包括高度,并且所述被选的工程数据文件还根据所述高度来选择。
18.如权利要求1-6中的任何一个所述的设备,其中,
所述本地位置包括时间,并且所述被选的工程数据文件还根据所述时间来选择。
19.一种施工设备,包括:
标识;以及
自启动收发器,用于发送具有所述标识的设备信号,并接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述标识而选择的工程数据文件。
20.一种用于施工设备的方法,包括:
确定地理本地位置;
发送具有所述本地位置的设备信号;以及
接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件。
21.一种用于施工设备的方法,包括:
确定本地位置;
发送具有所述本地位置的设备信号;以及
接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的并随所述本地位置变化而更新的工程数据文件。
22.一种用于施工设备的方法,包括:
确定本地位置;
发送具有所述本地位置的设备信号;以及
接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件,其中,
所述被选的工程数据文件包括对应于所述位置的数字地形模型。
23.一种用于施工设备的方法,包括:
确定本地位置;
发送具有所述本地位置的设备信号;以及
接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件,其中,
所述被选的工程数据文件包括地理校准,其用于在由所述远程设备确定的本地位置坐标和本地坐标系统中的所述设备的位置之间进行转换。
24.一种用于施工设备的方法,包括:
确定本地位置;
发送具有所述本地位置的设备信号;以及
接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件,其中,
所述设备信号包括用于所述本地位置的当前表面的信息,并且其中,所述当前表面被用于更新所述被选的工程数据文件。
25.一种用于施工设备的方法,包括:
确定本地位置;
发送具有所述本地位置的设备信号;以及
接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件,其中,
所述本地位置包括高度,并且所述被选的工程数据文件还根据所述高度来选择。
26.如权利要求20-25中的任何一个所述的方法,其中,
发送所述设备信号包括在所述设备加电时自动地发送所述设备信号。
27.如权利要求20-25中的任何一个所述的方法,其中,
所述设备信号还包括用于所述设备的标识的信息;以及
选择所述工程数据文件还包括根据所述标识选择所述工程数据文件。
28.如权利要求20或21所述的方法,其中,
所述被选的工程数据文件包括对应于所述位置的数字地形模型。
29.如权利要求20或21所述的方法,其中,
所述被选工程数据文件包括地理校准,其用于在由所述远程设备确定的本地位置坐标和本地坐标系统中的所述设备的位置之间进行转换。
30.如权利要求20-25中的任何一个所述的方法,其中,
所述被选的工程数据文件包括工作单,其用于描述将由所述设备完成的任务。
31.如权利要求20-25中的任何一个所述的方法,其中,
所述被选的工程数据文件包括小程序,其具有使用所述设备中的所述被选的工程数据文件中的至少一个的编程。
32.如权利要求20-25中的任何一个所述的方法,其中,
所述被选的工程数据文件包括背景文件,其具有回避区、财产边界、交叉的现有路面以及航空摄影中的至少一个。
33.如权利要求20或21所述的方法,其中,
所述设备信号包括用于所述本地位置的当前表面的信息,并且其中,所述当前表面被用于更新所述被选的工程数据文件。
34.如权利要求20-25中的任何一个所述的方法,其中,所述分配信号包括:当所述设备移动跨过建筑现场的不可见的位置页边界时根据新的本地位置而新选择的工程数据文件。
35.如权利要求20-25中的任何一个所述的方法,其中,
确定所述本地位置包括由用户输入所述本地位置。
36.如权利要求20-25中的任何一个所述的方法,其中,
所述本地位置包括高度,并且所述被选的工程数据文件还根据所述高度来选择。
37.如权利要求20-25中的任何一个所述的方法,其中,
所述本地位置包括时间,并且所述被选的工程数据文件还根据所述时间来选择。
38.一种用于施工设备的方法,包括:
提供标识;以及
发送具有所述标识的设备信号,并接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述标识而选择的工程数据文件。
39.一种有形介质,其包含使得设备执行下列步骤的一组指令:
确定地理本地位置;
发送具有所述本地位置的设备信号;以及
接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件。
40.一种有形介质,其包含使得设备执行下列步骤的一组指令:
确定本地位置;
发送具有所述本地位置的设备信号;以及
接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的并随所述本地位置变化而更新的工程数据文件。
41.如权利要求35所述的有形介质,其中,发送所述设备信号包括在所述设备加电时自动地发送所述设备信号。
42.如权利要求35所述的有形介质,其中,所述设备信号还包括用于所述设备的标识的信息;以及
选择所述工程数据文件还包括根据所述标识选择所述工程数据文件。

Claims (31)

1.一种施工设备,包括:
定位装置,用于确定本地位置;以及
自启动收发器,用于发送具有所述本地位置的设备信号,并接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件。
2.如权利要求1所述的设备,其中,所述设备信号在所述设备加电时被自动地发送。
3.如权利要求1所述的设备,其中,
所述设备信号还包括用于所述设备的标识的信息;以及
所述工程数据文件还根据所述标识来选择。
4.如权利要求1所述的设备,其中,所述被选的工程数据文件包括对应于所述位置的表面的数字地形模型。
5.如权利要求1所述的设备,其中,所述被选的工程数据文件包括地理校准,用于在由所述远程设备确定的本地位置的坐标和本地坐标系统中的所述设备的位置之间进行转换。
6.如权利要求1所述的设备,其中,所述被选的工程数据文件包括工作单,用于描述将由所述设备完成的任务。
7.如权利要求1所述的设备,其中,所述被选的工程数据文件包括小程序,其具有使用所述设备中的所述被选的工程数据文件中的至少一个的编程。
8.如权利要求1所述的设备,其中,
所述被选的工程数据文件包括背景文件,该背景文件具有回避区、财产边界、交叉的现有路面以及航空摄影中的至少一个。
9.如权利要求1所述的设备,其中,
所述设备信号包括所述本地位置处的当前表面的信息;以及,
其中所述当前表面被用于更新所述被选的工程数据文件。
10.如权利要求1所述的设备,其中,所述分配信号包括:当所述设备移动跨过施工现场的不可见的位置页边界时根据新的本地位置而新选择的工程数据文件。
11.如权利要求1所述的设备,其中,所述本地位置由用户输入到所述定位装置中。
12.如权利要求1所述的设备,其中,
所述本地位置包括高度;以及
所述被选的工程数据文件还根据所述高度来选择。
13.如权利要求1所述的设备,其中,
所述本地位置包括时间;以及
所述被选的工程数据文件还根据所述时间来选择。
14.一种施工设备,包括:
标识;以及
自启动收发器,用于发送具有所述标识的设备信号,以及接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述标识选择的工程数据文件。
15.一种用于施工设备的方法,包括:
确定本地位置;
发送具有所述本地位置的设备信号;以及
接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件。
16.如权利要求15所述的方法,其中,发送所述设备信号包括在所述设备加电时自动地发送所述设备信号。
17.如权利要求15所述的方法,其中,
所述设备信号还包括用于所述设备的标识的信息;以及
选择所述工程数据文件还包括根据所述标识选择所述工程数据文件。
18.如权利要求15所述的方法,其中,所述被选的工程数据文件包括对应于所述位置的数字地形模型。
19.如权利要求15所述的方法,其中,所述被选的工程数据文件包括地理校准,其用于在由所述远程设备确定的本地位置的坐标和本地坐标系统中所述设备的位置之间进行转换。
20.如权利要求15所述的方法,其中,所述被选的工程数据文件包括工作单,其用于描述将由所述设备完成的任务。
21.如权利要求15所述的方法,其中:
所述被选的工程数据文件包括小程序,其具有使用所述设备中的所述被选的工程数据文件中的至少一个的编程。
22.如权利要求15所述的方法,其中,所述被选的工程数据文件包括背景文件,该背景文件具有回避区、财产边界、交叉的现有路面以及航空摄影中的至少一个。
23.如权利要求15所述的方法,其中,
所述设备信号包括用于所述本地位置处的当前表面的信息;以及
其中,所述当前表面被用于更新所述被选的工程数据文件。
24.如权利要求15所述的方法,其中,所述分配信号包括:当所述设备移动跨过建筑现场的不可见的位置页边界时根据新的本地位置而新选择的工程数据文件。
25.如权利要求15所述的方法,其中,
确定所述本地位置包括由用户输入所述本地位置。
26.如权利要求15所述的方法,其中:
所述本地位置包括高度;以及
所述被选的工程数据文件还根据所述高度来选择。
27.如权利要求15所述的方法,其中,
所述本地位置包括时间;以及
所述被选的工程数据文件还根据所述时间来选择。
28.一种用于施工设备的方法,包括:
提供标识;以及
发送具有所述标识的设备信号并接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述标识而选择的工程数据文件。
29.一种有形介质,其包含使得设备执行下列步骤的一组指令:
确定本地位置;
发送具有所述本地位置的设备信号;以及
接收来自工程数据分配器的分配信号,该分配信号具有用于所述设备的操作的、根据所述本地位置而选择的工程数据文件。
30.如权利要求25所述的有形介质,其中,发送所述设备信号包括在所述设备加电时自动地发送所述设备信号。
31.如权利要求25所述的有形介质,其中,
所述设备信号还包括用于所述设备的标识的信息;以及
选择所述工程数据文件还包括根据所述标识来选择所述工程数据文件。
CN200580047306A 2005-01-31 2005-12-29 具有基于定位而自启动的施工设备和用于施工设备的方法 Active CN100582981C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/047,108 US7245999B2 (en) 2005-01-31 2005-01-31 Construction machine having location based auto-start
US11/047,108 2005-01-31

Publications (2)

Publication Number Publication Date
CN101124524A true CN101124524A (zh) 2008-02-13
CN100582981C CN100582981C (zh) 2010-01-20

Family

ID=36190581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580047306A Active CN100582981C (zh) 2005-01-31 2005-12-29 具有基于定位而自启动的施工设备和用于施工设备的方法

Country Status (4)

Country Link
US (2) US7245999B2 (zh)
CN (1) CN100582981C (zh)
DE (1) DE112005003432T5 (zh)
WO (1) WO2006083460A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117896A (zh) * 2013-01-25 2013-05-22 上海大唐移动通信设备有限公司 前端测试设备自动定位方法及自动定点拨测装置
CN104615501A (zh) * 2015-03-05 2015-05-13 徐州徐工施维英机械有限公司 用于故障修复的方法、控制器、管理平台和系统
CN105122294A (zh) * 2013-04-19 2015-12-02 天宝导航有限公司 施工项目管理的方法和系统

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7681192B2 (en) * 2005-01-31 2010-03-16 Caterpillar Trimble Control Technologies Llc Location-centric project data delivery system for construction
US7600199B2 (en) * 2005-04-20 2009-10-06 Microsoft Corporation Task-based interface with underlying extensible framework
WO2006130497A2 (en) * 2005-05-27 2006-12-07 The Charles Machine Works, Inc. Determination of remote control operator position
US20070027732A1 (en) * 2005-07-28 2007-02-01 Accu-Spatial, Llc Context-sensitive, location-dependent information delivery at a construction site
JP4920229B2 (ja) * 2005-09-30 2012-04-18 株式会社トプコン レーザレベル検出システム
US7949449B2 (en) * 2007-12-19 2011-05-24 Caterpillar Inc. Constant work tool angle control
US20090199192A1 (en) * 2008-02-05 2009-08-06 Robert Laithwaite Resource scheduling apparatus and method
US20100129152A1 (en) * 2008-11-25 2010-05-27 Trimble Navigation Limited Method of covering an area with a layer of compressible material
US20100287025A1 (en) * 2009-05-06 2010-11-11 Brian Fletcher Mobile resource task scheduling
US9324049B2 (en) 2010-12-30 2016-04-26 Schlumberger Technology Corporation System and method for tracking wellsite equipment maintenance data
US8463460B2 (en) 2011-02-18 2013-06-11 Caterpillar Inc. Worksite management system implementing anticipatory machine control
US8655505B2 (en) 2011-02-18 2014-02-18 Caterpillar Inc. Worksite management system implementing remote machine reconfiguration
US8794867B2 (en) 2011-05-26 2014-08-05 Trimble Navigation Limited Asphalt milling machine control and method
US10460267B2 (en) 2011-11-29 2019-10-29 Trimble Inc. Integration of as built data of a project
US9031585B2 (en) 2011-11-29 2015-05-12 Trimble Navigation Limited Integrating position information into a handheld tool
US9666090B2 (en) 2011-11-29 2017-05-30 Trimble Inc. Reference based positioning of handheld tools
US10192178B2 (en) * 2011-11-29 2019-01-29 Trimble Inc. Application information for power tools
US9898705B2 (en) 2011-11-29 2018-02-20 Trimble Inc. Automated handtool task verification
US9817839B2 (en) 2011-11-29 2017-11-14 Trimble Inc. Managing information at a construction site
WO2013082197A2 (en) * 2011-11-29 2013-06-06 Kent Kahle Managing information at a construction site
DE102013206471A1 (de) * 2013-03-22 2014-09-25 Mts Maschinentechnik Schrode Ag Mobiles Baustellenvermessungsgerät, sowie Gerät zur Bereitstellung von Informationen, insbesondere zur Erzeugung von Handlungsanweisungen, für einen Baumaschinenführer
US10180328B2 (en) * 2013-07-10 2019-01-15 Agco Coporation Automating distribution of work in a field
WO2015006609A1 (en) * 2013-07-10 2015-01-15 Agco Coporation Automation of networking a group of machines
DE102013221301A1 (de) * 2013-10-21 2015-04-23 Mts Maschinentechnik Schrode Ag Verfahren zum Kalibrieren der Position einer Baumaschine in einem Baustellenplan
US20150154247A1 (en) * 2013-12-03 2015-06-04 Caterpillar Inc. System and method for surface data management at worksite
US10344450B2 (en) 2015-12-01 2019-07-09 The Charles Machine Works, Inc. Object detection system and method
WO2017165951A1 (en) * 2016-04-01 2017-10-05 Wamoozle Inc. Method for assigning features to a space in a project management system
JP7122802B2 (ja) * 2016-08-05 2022-08-22 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
JP6871695B2 (ja) * 2016-08-05 2021-05-12 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
US10432888B2 (en) 2017-10-10 2019-10-01 Trimble Inc. Augmented reality device for leveraging high-accuracy GNSS data
DE102019135225B4 (de) 2019-12-19 2023-07-20 Wirtgen Gmbh Verfahren zum Abfräsen von Verkehrsflächen mit einer Fräswalze, sowie Fräsmaschine zur Durchführung des Verfahrens zum Abfräsen von Verkehrsflächen
US11250624B2 (en) 2020-04-24 2022-02-15 Trimble Inc. Methods of displaying an augmented reality model on an augmented reality device

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173710A (en) * 1991-08-15 1992-12-22 Terrapin Corporation Navigation and positioning system and method using uncoordinated beacon signals
US5501801A (en) * 1993-11-30 1996-03-26 Board Of Control Of Michigan Technology University Method and apparatus for destroying organic compounds in fluid
US5519620A (en) * 1994-02-18 1996-05-21 Trimble Navigation Limited Centimeter accurate global positioning system receiver for on-the-fly real-time kinematic measurement and control
US5510801A (en) 1994-03-01 1996-04-23 Stanford Telecommunications, Inc. Location determination system and method using television broadcast signals
US5404661A (en) * 1994-05-10 1995-04-11 Caterpillar Inc. Method and apparatus for determining the location of a work implement
US5438771A (en) * 1994-05-10 1995-08-08 Caterpillar Inc. Method and apparatus for determining the location and orientation of a work machine
US5757662A (en) * 1994-11-29 1998-05-26 Balance Dynamics, Inc. Eletromagnetically actuated rotating machine unbalance compensator
US6732077B1 (en) * 1995-05-12 2004-05-04 Trimble Navigation Limited Speech recognizing GIS/GPS/AVL system
US5614913A (en) 1995-06-07 1997-03-25 Trimble Navigation Optimization of survey coordinate transformations
US5699255A (en) * 1995-10-18 1997-12-16 Trimble Navigation Limited Map transmission for in-vehicle navigation system with dynamic scale/detail adjustment
JP3743582B2 (ja) * 1996-02-21 2006-02-08 株式会社小松製作所 無人車両と有人車両混走時のフリート制御装置及び制御方法
US6405111B2 (en) 1997-05-16 2002-06-11 Snap-On Technologies, Inc. System and method for distributed computer automotive service equipment
US6114985A (en) 1997-11-21 2000-09-05 Raytheon Company Automotive forward looking sensor test station
EP0989525A3 (en) 1998-08-31 2001-09-19 Kabushiki Kaisha Kobe Seiko Sho Management system for construction machines
US6191732B1 (en) * 1999-05-25 2001-02-20 Carlson Software Real-time surveying/earth moving system
US6236924B1 (en) 1999-06-21 2001-05-22 Caterpillar Inc. System and method for planning the operations of an agricultural machine in a field
US6717509B1 (en) * 1999-11-01 2004-04-06 Trimble Navigation Limited Method for sending message that indicates position and message transmission device and message transmission server
US6430416B1 (en) * 1999-11-15 2002-08-06 Trimble Navigation Limited Hybrid radio location system using a combination of satellite pseudoranges and radio pseudoranges
US6442456B2 (en) 2000-03-07 2002-08-27 Modular Mining Systems, Inc. Anti-rut system for autonomous-vehicle guidance
US7010403B2 (en) 2000-03-31 2006-03-07 Hitachi Construction Machinery Co., Ltd. Construction machine management system, and construction machine
EP1191157A4 (en) 2000-03-31 2009-07-29 Hitachi Construction Machinery METHOD OF MANAGING THE WORK SUITABLE FOR A CONSTRUCTION SITE, ADMINISTRATIVE SYSTEM AND ADMINISTRATIVE APPARATUS
US6529828B1 (en) * 2000-07-12 2003-03-04 Trimble Navigation Limited Integrated position and direction system with map display oriented according to heading or direction
US6587788B1 (en) * 2000-07-12 2003-07-01 Trimble Navigation Limited Integrated position and direction system with radio communication for updating data
US6941200B2 (en) 2000-10-16 2005-09-06 Matsushita Electric Industrial Co., Ltd. Automated guided vehicle, operation control system and method for the same, and automotive vehicle
US7126536B2 (en) * 2001-02-02 2006-10-24 Rosum Corporation Position location using terrestrial digital video broadcast television signals
US20020135518A1 (en) * 2001-02-02 2002-09-26 Matthew Rabinowitz Time-gated delay lock loop tracking of digital television signals
US6559800B2 (en) * 2001-02-02 2003-05-06 Rosum Corporation Position location using broadcast analog television signals
US7463195B2 (en) * 2001-06-21 2008-12-09 Rosum Corporation Position location using global positioning signals augmented by broadcast television signals
JP4901027B2 (ja) * 2001-07-12 2012-03-21 日立建機株式会社 建設機械の位置確認方法および位置表示システム並びに建設機械
US6928353B2 (en) 2002-08-01 2005-08-09 Caterpillar Inc. System and method for providing data to a machine control system
US7330117B2 (en) * 2004-08-25 2008-02-12 Caterpillar Inc. Systems and methods for radio frequency trigger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117896A (zh) * 2013-01-25 2013-05-22 上海大唐移动通信设备有限公司 前端测试设备自动定位方法及自动定点拨测装置
CN105122294A (zh) * 2013-04-19 2015-12-02 天宝导航有限公司 施工项目管理的方法和系统
US10204388B2 (en) 2013-04-19 2019-02-12 Trimble Inc. Method, system, and medium of construction project management
CN105122294B (zh) * 2013-04-19 2020-01-03 天宝公司 施工项目管理的方法和系统
CN104615501A (zh) * 2015-03-05 2015-05-13 徐州徐工施维英机械有限公司 用于故障修复的方法、控制器、管理平台和系统
CN104615501B (zh) * 2015-03-05 2017-12-12 徐州徐工施维英机械有限公司 用于故障修复的方法、控制器、管理平台和系统

Also Published As

Publication number Publication date
US7245999B2 (en) 2007-07-17
DE112005003432T5 (de) 2007-12-13
WO2006083460A1 (en) 2006-08-10
US7295911B1 (en) 2007-11-13
CN100582981C (zh) 2010-01-20
US20060173600A1 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
CN100582981C (zh) 具有基于定位而自启动的施工设备和用于施工设备的方法
US7681192B2 (en) Location-centric project data delivery system for construction
US7664530B2 (en) Method and system for automated planning using geographical data
US10132951B2 (en) Detection of buried assets using drone apparatus
Navon et al. Monitoring labor inputs: automated-data-collection model and enabling technologies
US20060142943A1 (en) Navigation service method and terminal of enabling the method
US8571800B2 (en) User interactive actual time networked survey system
US20110161855A1 (en) Method and apparatus for visually indicating location probability
CN101449305A (zh) 地理标示装置
CN101149267A (zh) 一种用于农机维护服务的目标导航方法
CN101603835A (zh) 基于无线通信技术的层次导航系统及其导航方法
CN115604814A (zh) 室外设备定位方法、装置、终端设备与介质
US8878648B2 (en) Generation of buffer zones for buried assets
Beliveau et al. Real-time position measurement integrated with CAD: Technologies and their protocols
EP3255465B1 (en) Buried asset locate device motion sensing for quality control
US20150070138A1 (en) Detection of buried assets using current location and known buffer zones
Hasan et al. Road structure analysis using GPS information
US20140203911A1 (en) Detection of buried assets using current location and known buffer zones
US9753173B1 (en) Generation of buffer zones for buried assets using line forming processes
US8823492B2 (en) Detection of incursion of proposed excavation zones into buried assets
AU2014246606B2 (en) Improved detection of buried assets using current location and known buffer zones
CN113167589A (zh) 带地图的固定式电子信标
Zito 21st Austia! as;, IranspOlt Research Forum Adelaide, September 1997
Maunder An investigation into the establishment of a continuously operating GPS reference station at Dubbo City Council, Central West NSW
BLICK et al. Future Development of the New Zealand GNSS Continuously Operating Reference System-Positionz

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant