CN101122633B - Mri脉冲序列的相位校正方法及装置 - Google Patents

Mri脉冲序列的相位校正方法及装置 Download PDF

Info

Publication number
CN101122633B
CN101122633B CN200610089180A CN200610089180A CN101122633B CN 101122633 B CN101122633 B CN 101122633B CN 200610089180 A CN200610089180 A CN 200610089180A CN 200610089180 A CN200610089180 A CN 200610089180A CN 101122633 B CN101122633 B CN 101122633B
Authority
CN
China
Prior art keywords
mrow
phase
scanning
echo
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200610089180A
Other languages
English (en)
Other versions
CN101122633A (zh
Inventor
贺强
彼得·荷伊博斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Ltd China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ltd China filed Critical Siemens Ltd China
Priority to CN200610089180A priority Critical patent/CN101122633B/zh
Priority to US11/834,106 priority patent/US7492155B2/en
Publication of CN101122633A publication Critical patent/CN101122633A/zh
Application granted granted Critical
Publication of CN101122633B publication Critical patent/CN101122633B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • G01R33/5616Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using gradient refocusing, e.g. EPI
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • G01R33/5617Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using RF refocusing, e.g. RARE
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56518Correction of image distortions, e.g. due to magnetic field inhomogeneities due to eddy currents, e.g. caused by switching of the gradient magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/5659Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the RF magnetic field, e.g. spatial inhomogeneities of the RF magnetic field

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明提出一种MRI脉冲序列的相位校正方法,用来计算线性相位和常数相位以对扫描数据进行相位校正,在扫描开始之前进行相应的无相位编码梯度的预扫描,在该预扫描得到的回波中选取一个作为参考回波,并根据该参考回波计算用于在该扫描中进行相位校正的该常数相位。本发明还提出一种相应的MRI脉冲序列的相位校正装置。使用本发明方法以及装置对扫描数据进行相位校正之后得到了正确的、不受相位跳跃影响的常数相位,进一步对经过相位校正后的数据进行图像重建便可以得到清晰的、无伪影的图像。

Description

MRI脉冲序列的相位校正方法及装置
技术领域
本发明涉及一种磁共振成像(Magnetic Resonance Imaging;MRI)脉冲序列,特别是涉及一种MRI脉冲序列的校正方法及装置。
背景技术
MRI的成像序列,特别是一些快速序列,有时候会因为系统的不完善的性能(如涡电流(eddy current)、射频功率不足等),以及系统的物理特性(如高场MRI系统的射频穿透(RFpenetration)等)而造成一定的影响。在高场MRI系统中,射频穿透会引起相位跳跃(phasejumping),从而导致相位校正(Calibration)错误,继而导致图像模糊和产生伪影。
参阅图1,现有方法中对扫描数据进行相位校正的步骤包括:
步骤10:得到扫描数据;
步骤20:对得到的扫描数据进行读出(Readout)傅立叶变换;
步骤30:对变换得到的数据进行相位校正;其中,该相位校正包括对常数相位(Constantphase)和对线性相位(Linear phase)的校正;
步骤40:进行相位编码(Phase encoding)傅立叶变换;以及
步骤50:经过重建得到相位校正后的图像数据。
在实际的现有系统中,一般做法是只对线性相位进行校正,而常常跳过对常数相位的校正。但是由于射频穿透引起的相位跳跃主要是导致常数相位的错误,所以有必要对常数相位进行校正。
发明内容
本发明的目的在于提出一种MRI脉冲序列的相位校正方法及装置,使用正确的常数相位对扫描数据进行相位校正。
为实现上述的目的,本发明提出一种MRI脉冲序列的相位校正方法,用来计算线性相位和常数相位以对扫描数据进行相位校正,其特征在于:在扫描开始之前进行相应的无相位编码梯度的预扫描,在该预扫描得到的回波中选取一个作为参考回波,并根据该参考回波计算用于在该扫描中进行相位校正的该常数相位。
其中,在该预扫描中获得的数据的行数和在该扫描中获得的数据的行数相等。对该预扫描数据进行线性傅立叶变换得到相应的K空间。从该K空间中减去该线性相位后再根据该参考回波计算该常数相位。优选地选择该预扫描中获得的第一个回波作为该参考回波。通过计算要在该扫描中进行相位校正的回波在该预扫描中对应的回波与该参考回波之间的相关性得到该常数相位。
相应地本发明提出一种MRI脉冲序列的相位校正装置,计算线性相位和常数相位用于对扫描数据进行相位校正,包括用来获得扫描数据的扫描模块,该扫描模块具有用来根据线性相位和常数相位校正回波的相位的相位校正模块,其特征在于还包括:预扫描模块,用来在扫描开始之前进行相应的无相位编码梯度的预扫描,在该预扫描得到的回波中选取一个作为参考回波,通过计算要在该相位校正模块中进行相位校正的回波在该预扫描中对应的回波与该参考回波之间的相关性得到该常数相位,并将该常数相位用于该相位校正模块以对相应的回波进行相位校正。
使用本发明方法以及装置对扫描数据进行相位校正之后得到了正确的、不受相位跳跃影响的常数相位,进一步对经过相位校正后的数据进行图像重建便可以得到清晰的、无伪影的图像。
本发明方法可以广泛应用于各种磁共振脉冲序列中,特别是TSE(快速自旋回波)序列,EPI(回波平面成像)序列,或者Trui-IR(翻转恢复)序列中。
附图说明
图1是现有的相位校正方法以及本发明MRI脉冲序列的相位校正方法的流程示意图。
具体实施方式
参阅图1,本发明MRI脉冲序列的相位校正方法包括以下步骤:
步骤20:在扫描开始之前进行相应的无相位编码梯度的预扫描,以获取预扫描数据,在该预扫描中获得的数据的行数和在该扫描中获得的行数相等。也就是说,该预扫描和所述的扫描(正式扫描)的区别仅在于有无相位编码梯度,而二者获得的扫描数据的数量是一样的,在该扫描中有几个回波,在该预扫描中就有几个相应的回波。
步骤21:对该预扫描数据进行线性傅立叶变换得到相应的K空间,所述的线性傅立叶变换优选地为线性快速傅立叶变换。
步骤22:根据下列公式计算该线性相位:
[ Re + iIm ] k = Σ n = 1 N - 1 [ Re ( n + 1 ) + iIm ( n + 1 ) ] k · [ Re ( n ) - iIm ( n ) ] k ; 其中,
k是预扫描中的第k个回波,Re、Im分别为实部和虚部,N是该K空间每行数据的采样点数目,n是该K空间中每行第n个采样点;
从而求得该线性相位为:
Figure G2006100891800D00032
步骤23:从该预扫描数据的K空间中减去该线性相位后再根据该参考回波计算该常数相位。
步骤24:选定该参考回波,在实际的系统中,常选择该预扫描中获得的第一个回波作为该参考回波。
步骤25:计算要在该扫描中进行相位校正的回波在该预扫描中对应的回波与该参考回波之间的相关性:
[ Re + iIm ] k , l = Σ n = 1 N [ Re ( n ) + iIm ( n ) ] k · [ Re ( n ) - iIm ( n ) ] l ; 其中,
k是预扫描中的第k个回波,l是该参考回波,Re、Im分别为实部和虚部,N是该K空间每行数据的采样点数目,n是该K空间中每行第n个采样点;
从而求得该常数相位为:
Figure G2006100891800D00034
至此,已经从该预扫描数据中计算得到了该线性相位以及正确的、不受到相位跳跃影响的常数相位,因此可以将它们应用于对应的扫描中进行相位校正。
按照下面的公式对在扫描中得到的相应的回波进行相位校正:
Figure G2006100891800D00035
其中,
A是幅度,
Figure G2006100891800D00036
是相位校正后的数据,
Figure G2006100891800D00037
是相位校正前的数据,
Figure G2006100891800D00039
分别是在该预扫描中求得的该线性相位和该常数相位。
对经过上述相位校正后的数据进行图像重建便可以得到清晰的、无伪影的图像。
本发明方法可以广泛应用于各种磁共振脉冲序列中,特别是TSE(快速自旋回波)序列,EPI(回波平面成像)序列,或者Trui-IR(翻转恢复)序列中。
相应地,本发明还提出了一种MRI脉冲序列的相位校正装置,计算线性相位和常数相位用于对扫描数据进行相位校正,包括用来获得扫描数据的扫描模块,该扫描模块具有用来根据线性相位和常数相位校正回波的相位的相位校正模块,其特征在于还包括:预扫描模块,用来在扫描开始之前进行相应的无相位编码梯度的预扫描,在该预扫描得到的回波中选取一个作为参考回波,通过计算要在该相位校正模块中进行相位校正的回波在该预扫描中对应的回波与该参考回波之间的相关性得到该常数相位,并将该常数相位用于该相位校正模块以对相应的回波进行相位校正。

Claims (10)

1.一种MRI脉冲序列的相位校正方法,用来计算线性相位和常数相位以对扫描数据进行相位校正,其特征在于:在扫描开始之前进行相应的无相位编码梯度的预扫描,在该预扫描得到的回波中选取一个作为参考回波,并根据该参考回波计算用于在该扫描中进行相位校正的该常数相位;
其中,在该预扫描中获得的数据的行数和在该扫描中获得的数据的行数相等。
2.根据权利要求1的方法,其特征在于:对该预扫描数据进行线性傅立叶变换得到相应的K空间。
3.根据权利要求2的方法,其特征在于:所述的线性傅立叶变换是线性快速傅立叶变换。
4.根据权利要求2的方法,其特征在于:该线性相位根据下列公式计算:
[ Re + iIm ] k = Σ n = 1 N - 1 [ Re ( n + 1 ) + iIm ( n + 1 ) ] k · [ Re ( n ) - iIm ( n ) ] k ; 其中,
k是预扫描中的第k个回波,Re、Im分别为实部和虚部,N是该K空间每行数据的采样点数目,n是该K空间中每行第n个采样点;
从而求得该线性相位为:
Figure F2006100891800C00012
5.根据权利要求4的方法,其特征在于:从该K空间中减去该线性相位后再根据该参考回波计算该常数相位。
6.根据权利要求4的方法,其特征在于:选择该预扫描中获得的第一个回波作为该参考回波。
7.根据权利要求5或6的方法,其特征在于:计算要在该扫描中进行相位校正的回波在该预扫描中对应的回波与该参考回波之间的相关性:
[ Re + iIm ] k , l = Σ n = 1 N [ Re ( n ) + iIm ( n ) ] k · [ Re ( n ) - iIm ( n ) ] l ; 其中,
k是预扫描中的第k个回波,l是该参考回波,Re、Im分别为实部和虚部,N是该K空间每行数据的采样点数目,n是该K空间中每行第n个采样点;
从而求得该常数相位为:
8.根据权利要求7的方法,其特征在于:在该扫描中对回波进行相位校正:
Figure F2006100891800C00022
其中,
A是幅度,
Figure F2006100891800C00023
是相位校正后的数据,
Figure F2006100891800C00024
是相位校正前的数据,
Figure F2006100891800C00025
Figure F2006100891800C00026
分别是在该预扫描中求得的该线性相位和该常数相位。
9.根据权利要求1的方法,其特征在于:所述的脉冲序列是TSE序列,EPI序列,或者Trui-IR序列。
10.一种MRI脉冲序列的相位校正装置,计算线性相位和常数相位用于对扫描数据进行相位校正,包括用来获得扫描数据的扫描模块,该扫描模块具有用来根据线性相位和常数相位校正回波的相位的相位校正模块,其特征在于还包括:
预扫描模块,用来在扫描开始之前进行相应的无相位编码梯度的预扫描,在该预扫描得到的回波中选取一个作为参考回波,通过计算要在该相位校正模块中进行相位校正的回波在该预扫描中对应的回波与该参考回波之间的相关性得到该常数相位,并将该常数相位用于该相位校正模块以对相应的回波进行相位校正;其中,在该预扫描中获得的数据的行数和在该扫描中获得的数据的行数相等。
CN200610089180A 2006-08-08 2006-08-08 Mri脉冲序列的相位校正方法及装置 Expired - Fee Related CN101122633B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200610089180A CN101122633B (zh) 2006-08-08 2006-08-08 Mri脉冲序列的相位校正方法及装置
US11/834,106 US7492155B2 (en) 2006-08-08 2007-08-06 Method and apparatus for phase calibration of an MRI pulse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200610089180A CN101122633B (zh) 2006-08-08 2006-08-08 Mri脉冲序列的相位校正方法及装置

Publications (2)

Publication Number Publication Date
CN101122633A CN101122633A (zh) 2008-02-13
CN101122633B true CN101122633B (zh) 2010-05-26

Family

ID=39050106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610089180A Expired - Fee Related CN101122633B (zh) 2006-08-08 2006-08-08 Mri脉冲序列的相位校正方法及装置

Country Status (2)

Country Link
US (1) US7492155B2 (zh)
CN (1) CN101122633B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010012948B4 (de) 2010-03-26 2012-04-26 Siemens Aktiengesellschaft Verfahren zum Ermitteln von Phasenkorrekturparametern und Magnetresonanzvorrichtung
JP5925529B2 (ja) * 2011-03-31 2016-05-25 株式会社東芝 磁気共鳴イメージング装置
CN104035059B (zh) * 2013-03-06 2015-05-13 上海联影医疗科技有限公司 平面回波成像序列图像的重建方法
CN105247382B (zh) * 2013-03-29 2018-07-24 皇家飞利浦有限公司 具有重影伪影降低的磁共振成像系统和其操作的方法
DE102014211586B3 (de) * 2014-06-17 2015-10-22 Siemens Aktiengesellschaft Verwendung von Abhängigkeitsdatensätzen bei der Bereitstellung und/oder Überprüfung von MR-Messsequenzen
CN105738846B (zh) * 2014-12-12 2019-01-25 西门子(深圳)磁共振有限公司 K空间数据采集方法及其磁共振成像方法
CN107290700B (zh) * 2017-08-08 2020-12-04 上海联影医疗科技股份有限公司 一种相位校正方法、装置及磁共振系统
CN112014781B (zh) * 2020-09-02 2021-04-20 无锡鸣石峻致医疗科技有限公司 一种磁共振回波信号的相位矫正方法、装置、计算机设备及计算机可读存储介质
CN115639510A (zh) * 2022-10-09 2023-01-24 深圳市联影高端医疗装备创新研究院 磁共振成像方法、波谱成像方法、装置、设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537039A (en) * 1995-10-10 1996-07-16 General Electric Company Virtual frequency encoding of acquired NMR image data
US6289232B1 (en) * 1998-03-30 2001-09-11 Beth Israel Deaconess Medical Center, Inc. Coil array autocalibration MR imaging
US6469505B1 (en) * 2000-03-31 2002-10-22 Ge Medical Systems Global Technology Co., Llc Method and apparatus to reduce perturbation field effects in MR images by restricting the region of interest
US6528998B1 (en) * 2000-03-31 2003-03-04 Ge Medical Systems Global Technology Co., Llc Method and apparatus to reduce the effects of maxwell terms and other perturbation magnetic fields in MR images
CN1530072A (zh) * 2003-03-12 2004-09-22 GEҽҩϵͳ����Ƽ���˾ 核磁共振成像设备和核磁共振成像方法
CN1732847A (zh) * 2004-03-24 2006-02-15 株式会社东芝 磁共振成像装置和磁共振成像数据处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537039A (en) * 1995-10-10 1996-07-16 General Electric Company Virtual frequency encoding of acquired NMR image data
US6289232B1 (en) * 1998-03-30 2001-09-11 Beth Israel Deaconess Medical Center, Inc. Coil array autocalibration MR imaging
US6469505B1 (en) * 2000-03-31 2002-10-22 Ge Medical Systems Global Technology Co., Llc Method and apparatus to reduce perturbation field effects in MR images by restricting the region of interest
US6528998B1 (en) * 2000-03-31 2003-03-04 Ge Medical Systems Global Technology Co., Llc Method and apparatus to reduce the effects of maxwell terms and other perturbation magnetic fields in MR images
CN1530072A (zh) * 2003-03-12 2004-09-22 GEҽҩϵͳ����Ƽ���˾ 核磁共振成像设备和核磁共振成像方法
CN1732847A (zh) * 2004-03-24 2006-02-15 株式会社东芝 磁共振成像装置和磁共振成像数据处理方法

Also Published As

Publication number Publication date
US20080036460A1 (en) 2008-02-14
CN101122633A (zh) 2008-02-13
US7492155B2 (en) 2009-02-17

Similar Documents

Publication Publication Date Title
CN101122633B (zh) Mri脉冲序列的相位校正方法及装置
US5825185A (en) Method for magnetic resonance spin echo scan calibration and reconstruction
US5742163A (en) Magnetic resonance scan calibration and reconstruction technique for multi-shot, multi-echo imaging
KR101663853B1 (ko) 3d 모자이크 세그먼트화 및 3d 내비게이터 위상 정정을 이용한 확산 강조 자기 공명 이미징
US8023705B2 (en) Method for reconstructing image from echo planar imaging sequence
JP5661473B2 (ja) 磁気共鳴イメージング装置及び読み出し傾斜磁場誤差補正方法
US5581184A (en) Method for phase correction of nuclear magnetic resonance signals
US7057388B2 (en) Magnetic resonance method and device
US7015696B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US9046590B2 (en) Magnetic resonance imaging apparatus phase correction using one or more prescans with identical readout and slice gradients
CN108720834B (zh) 一种梯度回波多回波水脂分离方法及应用该方法的磁共振成像系统
US6043651A (en) Method for the phase correction of nuclear magnetic resonance signals
JP2014184146A (ja) 複数の磁気共鳴画像の決定方法および磁気共鳴装置
US7154269B1 (en) Iterative method for correction of geometric distortion resulting from phase evolution during segmented echo planar nuclear magnetic resonance imaging and apparatus therefor
CN104569882A (zh) 磁共振成像系统快速自旋回波的相位校正方法及其应用
US6836113B2 (en) Measurement and correction of gradient-induced cross-term magnetic fields in an EPI sequence
JP5272184B2 (ja) 磁気共鳴イメージング装置
US5539311A (en) Method for reducing artifacts in magnetic resonance imaging
US6239598B1 (en) Process for rapid sample trajectory calibration for magnetic resonance imaging
JP4390328B2 (ja) 磁気共鳴イメージング装置
JP2002085376A (ja) 核磁気共鳴イメージング装置および方法
CN111164444B (zh) 具有经改进的脂肪位移校正的Dixon型水/脂肪分离MR成像
US5777472A (en) Reconstruction of images from MR signals obtained in the presence of non-uniform fields
JP5523696B2 (ja) 磁気共鳴イメージング装置
US20050116710A1 (en) Magnetic resonance imaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: FORMER OWNER: SIEMENS (CHINA) CO., LTD.

Effective date: 20110212

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 100102 NO.7, MIDDLE RING SOUTH ROAD, WANGJING, CHAOYANG DISTRICT, BEIJING TO: MUNICH, GERMANY

TR01 Transfer of patent right

Effective date of registration: 20110212

Address after: Munich, Germany

Patentee after: Siemens AG

Address before: 100102 Beijing, Wangjing, Central South Road, No. 7, No.

Patentee before: Simens Co., Ltd. (China)

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100526

Termination date: 20200808