CN101118165A - Multiphase fluid photoelectric recognition device - Google Patents

Multiphase fluid photoelectric recognition device Download PDF

Info

Publication number
CN101118165A
CN101118165A CNA2007101458106A CN200710145810A CN101118165A CN 101118165 A CN101118165 A CN 101118165A CN A2007101458106 A CNA2007101458106 A CN A2007101458106A CN 200710145810 A CN200710145810 A CN 200710145810A CN 101118165 A CN101118165 A CN 101118165A
Authority
CN
China
Prior art keywords
flow
photoelectric
keyboard
photoelectric sensor
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101458106A
Other languages
Chinese (zh)
Other versions
CN100593691C (en
Inventor
袁景和
刘玉方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai University
Original Assignee
袁景和
刘玉方
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 袁景和, 刘玉方 filed Critical 袁景和
Priority to CN200710145810A priority Critical patent/CN100593691C/en
Publication of CN101118165A publication Critical patent/CN101118165A/en
Application granted granted Critical
Publication of CN100593691C publication Critical patent/CN100593691C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

A photoelectric identification device for multiphase flow is characterized in that the photoelectric identification device consists of a photoelectric sensor, an A/D converter, a microporocessor, a memorizer, a display and a keyboard, wherein the photoelectric sensor is connected with the input end of the microporocessor, and the memorizer, the display and the keyboard are connected with the corresponding end of the microporocessor. Compared with the prior art, the present invention uses a non-intrusive detecting method, the interference is little, the measurement is accurate; the statistical method is used, which is beneficial to classify and identify a variety of flow patterns of the flow; a neural network is used to identify the flow speed of each flow component and the flow rate, and the automaticity is high.

Description

The photoelectric recognition device of heterogeneous fluid
Technical field
The present invention relates to a kind of photoelectric recognition device of heterogeneous fluid, be mainly used in the energy industry field heterogeneous fluid parameter in the pipeline is surveyed.
Background technology
Heterogeneous flowing is a kind of flow phenomenon of complexity, extensively is present in the energy industry field.For many years, in the petroleum industry field, because the ratio of water is lower in the oil exploitation, polyphasic flow research not causing people's attention.Along with the oil-field development under the severe environmental conditions such as desert, ocean, polar region, and oil exploitation enters middle and advanced stage after the nineties, and most of oil fields take water filling to improve production efficiency, can sneak into water during oil exploitation, thereby form the oil gas water multiphase system.Needed pressure also is subjected to the very big influence of heterogeneous distributions such as oil gas water when using the oil pipeline transfer oil, understands the character that also accurately detects oil gas water multiphase and just seems of crucial importance.Commercial production improves constantly the requirement of aspects such as metering, energy-conservation and control, and the demand of the polyphasic flow parameter being carried out precision real time measuring is also more and more urgent.
Polyphasic flow detects main conductor probe, optical fiber probe or the pressure membrane technology used at present, and in measuring process, these probes will certainly be infected with by oil phase, reduce detection sensitivity; And the Detection Techniques of this insertion type also can cause interference to nowed forming, influence detection accuracy.
Summary of the invention
Purpose of the present invention just provides a kind of photoelectricity recognition methods of heterogeneous fluid, is infected with the reduction detection sensitivity by oil phase with pop one's head in measuring process of existing of the Detection Techniques that solve existing insertion type; And probe can cause interference to nowed forming, influences the problem of detection accuracy.
Technical scheme of the present invention is: comprise photoelectric sensor, A/D converter, microprocessor, storer, display and keyboard, photoelectric sensor is connected with the input end of microprocessor by A/D converter, and storer, display and keyboard are connected with the respective end of described microprocessor.
Described photoelectric sensor comprises a forward direction acquisition sensor and two side direction acquisition sensors, and three sensors are surveyed forward scattering and the lateral scattering of fluid to light respectively.
Compared with prior art, the present invention uses the non-intervention type detection method, disturb little, measure accurately; Use the method for statistics, the various nowed formings that help convection cell carry out Classification and Identification; Use neural network each fluid component flow velocity and flow to be discerned the automaticity height.
Description of drawings
Fig. 1 is the overall formation synoptic diagram of apparatus of the present invention.
Embodiment
Referring to Fig. 1, the present invention includes photoelectric sensor 3 (comprising light source 2), A/D converter 41, microprocessor 43, storer 45, display 42 and keyboard 44, photoelectric sensor 3 is connected with the input end of microprocessor 43 by A/D converter 41, and storer 45, display 42 and the respective end of keyboard 44 with described microprocessor 43 are connected.
Described photoelectric sensor 3 comprises a forward direction acquisition sensor and two side direction acquisition sensors, and three sensors are distinguished forward scattering and the lateral scattering of pipelines 1 inner fluid to light.
The present invention is when work, and the light that light source 2 sends passes transparent tube wall 1 and shines on the heterogeneous fluid, because different fluid is different with scattering to the absorption of light, and the relevant information that the photosignal that photoelectric sensor 3 obtains will carry polyphasic flow.The present invention uses forward direction to survey and the detection mode that combines is surveyed in direction finding, to obtain more comprehensively information.Photosignal is converted to digital signal by A/D converter 41 and gives microprocessor 43, and the software based on statistics that microprocessor 43 uses us to design is handled signal, obtains stream shape and flow information, gives storer 45 storages, display 42 demonstrations.Storer 45 except the processing of storage microprocessor after information, the also relevant prior imformation (parameter) of storage.Keyboard 44 is used for carrying out alternately correlation parameter being adjusted with microprocessor 43.Use rectifier power source that all devices is powered.Light source 2 of the present invention and photoelectric sensor 3 are encapsulated in the box of a shading, and can be connected on the pipeline 1, data processing section 4 (comprising A/D converter 41, microprocessor 43, storer 45, display 42 and keyboard 44) is encapsulated in the casing, and two parts are connected with power lead by data line.
Software of the present invention uses pivot analysis and the independent component analysis method based on statistics, nowed forming to polyphasic flow carries out modeling and identification, use neural network that various fluid component flow velocitys and flow are detected, have the advantage of real-time, accuracy, discrimination is higher than 90%.

Claims (2)

1. the photoelectric recognition device of a heterogeneous fluid, it is characterized in that: comprise photoelectric sensor, A/D converter, microprocessor, storer, display and keyboard, photoelectric sensor is connected with the input end of microprocessor by A/D converter, and storer, display and keyboard are connected with the respective end of described microprocessor.
2. the photoelectric recognition device of heterogeneous fluid according to claim 1, it is characterized in that: described photoelectric sensor comprises a forward direction acquisition sensor and two side direction acquisition sensors, and three sensors are surveyed forward scattering and the lateral scattering of fluid to light respectively.
CN200710145810A 2007-08-28 2007-08-28 Multiphase fluid photoelectric recognition device Expired - Fee Related CN100593691C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710145810A CN100593691C (en) 2007-08-28 2007-08-28 Multiphase fluid photoelectric recognition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710145810A CN100593691C (en) 2007-08-28 2007-08-28 Multiphase fluid photoelectric recognition device

Publications (2)

Publication Number Publication Date
CN101118165A true CN101118165A (en) 2008-02-06
CN100593691C CN100593691C (en) 2010-03-10

Family

ID=39054371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710145810A Expired - Fee Related CN100593691C (en) 2007-08-28 2007-08-28 Multiphase fluid photoelectric recognition device

Country Status (1)

Country Link
CN (1) CN100593691C (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD285533A7 (en) * 1988-07-19 1990-12-19 �����@������������������k�� MEASURING ARRANGEMENT AND METHOD FOR MEASURING THE SOLID SOLID STREAM OF STERLING GAS SOLID MIXTURES
CN2476015Y (en) * 2001-04-30 2002-02-06 西安交通大学 Oil-gas-water multiphase flowing type on-line identifier
CN2620272Y (en) * 2003-06-03 2004-06-09 浦利清 Intelligent infrared ray split-phase detector
CA2439242C (en) * 2003-09-03 2008-01-29 Photon Control Inc. Optical flow meter for measuring gases and liquids in pipelines
CN2697641Y (en) * 2003-11-20 2005-05-04 华中科技大学 Portable pesticide residue measurer

Also Published As

Publication number Publication date
CN100593691C (en) 2010-03-10

Similar Documents

Publication Publication Date Title
CN103994793A (en) Multi-phase flow measuring method and device based on double gas holdup meters
CN108758353A (en) Distribution type fiber-optic many reference amounts pipe leakage positioning alarm system and leakage locating method
CN106092236B (en) A kind of multiphase flow metering detection system
CN102116652A (en) Microwave flow meter
CN104457703A (en) Multiple-vision-based System and method for measuring parameters of gas-liquid two-phase flow in small channel based on
CN102590030A (en) Small-passage gas-liquid phase flow pattern identification device and method based on photovoltaic array sensor
CN104614029B (en) A kind of passage aisle biphase gas and liquid flow flow measurement device and method based on PVT methods
CN106869905A (en) A kind of microwave specific retention combination logging instrument for output section
CN111460625B (en) Method for constructing multi-phase flow online real-time measurement artificial intelligence model
CN102364046B (en) Multi-phase flow meter for underground pipeline
CN112926767A (en) Annular fog flow gas phase apparent flow velocity prediction method based on particle swarm BP neural network
CN110273681B (en) System and method for measuring oil-gas-water multiphase fluid split-phase content rate in petroleum production logging
Li et al. Design and optimization of the fiber-optic probe array for measuring gas holdup in oil-gas-water multiphase flow
CN105527226A (en) Photoelectric diode array sensor-based ductule gas-liquid two-phase parameter measurement device and method
CN100593691C (en) Multiphase fluid photoelectric recognition device
CN101603974B (en) Device and method for optical measurement for two-phase flow parameters of small-caliber pipeline
CN108398236A (en) Inclined tube-type settling pit information of flow and Sediment Transport characteristic measurement method and system
CN102866097B (en) Real-time pollution degree detection method of oil particle counter under variable flow condition
CN208381770U (en) Distribution type fiber-optic many reference amounts leakage alarm system for pipeline
CN103983323B (en) Hydropower station water level measuring method and hydropower station water level monitoring system
CN110220617A (en) A kind of experimental rig of temperature sensor
CN105737797B (en) Vertical deformation detection method and device
CN104502625A (en) Three-dimensional muddy water fluctuating velocity instrument
CN201653387U (en) Air photoelectric type digital measuring device for machining accuracy of inner hole
CN201096501Y (en) Insertion type rectifying type flow meter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20080215

Address after: School of Optics and electronics, Yantai University, Shandong, Yantai Province, China: 264005

Applicant after: Yantai University

Address before: Yantai University, Shandong Province, Yantai University

Applicant before: Yuan Jing he

Co-applicant before: Liu Yufang

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100310

Termination date: 20120828