CN101111122A - 用于电子回旋共振等离子体源的分布式永磁磁场装置 - Google Patents

用于电子回旋共振等离子体源的分布式永磁磁场装置 Download PDF

Info

Publication number
CN101111122A
CN101111122A CNA2007100185173A CN200710018517A CN101111122A CN 101111122 A CN101111122 A CN 101111122A CN A2007100185173 A CNA2007100185173 A CN A2007100185173A CN 200710018517 A CN200710018517 A CN 200710018517A CN 101111122 A CN101111122 A CN 101111122A
Authority
CN
China
Prior art keywords
magnetic field
magnet
fixing hole
permanent magnetic
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007100185173A
Other languages
English (en)
Inventor
杨银堂
俞书乐
汪家友
付俊兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CNA2007100185173A priority Critical patent/CN101111122A/zh
Publication of CN101111122A publication Critical patent/CN101111122A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

本发明公开了一种用于电子回旋共振等离子体源的分布式永磁磁场装置,主要解决现有技术能耗高、体积大、均匀性差的问题。整个装置包括磁铁200,屏蔽板301、无磁模板302,该无磁模板上设有数个梯形固定孔201和一个圆形固定孔202,梯形固定孔由圆心向外在半径R1、R2、R3处分别以角度θ1、θ2、θ3等间隔分布,且θ1>θ2>θ3,每个磁铁嵌入无磁模板的固定孔中,与固定孔紧配合,磁铁底面与模板底面处于同一平面,通过环形相间排列形成大面积高强度永磁磁场,模板下方设有屏蔽板,该屏蔽板通过磁铁的吸力与模板固定为一体,形成磁铁、无磁模板、屏蔽板的组合整体。具有均匀性好、能耗低、体积小、正面磁场强度高,安装组合简单的优点,用于电子回旋共振等离子体源设备。

Description

用于电子回旋共振等离子体源的分布式永磁磁场装置
技术领域
本发明涉及一种永磁磁场,特别涉及一种采用环形相间排列的三组梯形Nd-Fe-B磁铁和处于圆心位置的圆形磁铁所形成的平面分布式永磁磁场。
背景技术
电子回旋共振ECR等离子体具有工作气压低、密度高、离化率高、大面积均匀、工艺设备简单、可稳定运行和参数易于控制等优点,可以实现低温高效无污染的表面处理,在IC制造工艺中有着巨大的应用潜力。ECR是指当输入的微波频率ω等于电子回旋频率ωce时发生共振,微波能量耦合给电子,获得能量的电子电离中性气体分子产生放电的过程。通过调节磁场,使得在放电室的某一区域达到共振条件,这个区域称为ECR区。ECR磁场是实现高质量ECR等离子体源的关键因素之一。在2.45GHZ微波功率源的系统中,电子回旋共振需要的磁场是0.0875T。
现有ECR磁场有两种基本类型:一是采用电流线圈磁场,二是采用永磁磁场。常见的采用电流线圈磁场的ECR等离子体设备的结构如图1所示。微波101通过波导102馈入反应室,电流线圈103和104产生所需磁场,等离子体在ECR区产生并被输运到衬底105上,残余气体被真空泵106抽走。电流线圈磁场需要多路大功率直流电源,输出电流约30~100A,因此使得电流线圈ECR等离子体设备体积庞大,功耗增加,工艺控制复杂,且成本上升。常见的采用永磁磁场的ECR等离子体设备的结构如图2所示。微波1001通过波导1002馈入反应室,永磁磁铁1003和辅助电流线圈1004提供所需磁场,等离子体在ECR区产生并被输运到衬底1005上,残余气体被真空泵1006抽走。永磁磁场ECR等离子体源具有面积大、结构紧凑、体积小、成本低和易于扩展等优点,但是由于现有计数中大多永磁磁场排列设计计数仅依赖经验,缺乏理论计算基础,导致磁场分布的均匀性较差,并且永磁磁场的强度也偏小,通常需要辅助电流线圈1004提供辅助磁场来增强磁场强度并提高磁场均匀性。这些因素都限制了其在大面积平面加工工艺中的应用。
发明的内容
本发明的目的在于避免上述已有技术的不足,提供一种用于电子回旋共振等离子体源的分布式永磁磁场装置,以降低能耗、减小体积、获得较为均匀的平面分布式永磁磁场,满足等离子体平面加工工艺的要求。
实现本发明目的的技术方案是:利用新型高磁能积块状永磁磁铁通过环形相间排列而形成大面积高强度永磁磁场,利用屏蔽板提供磁铁组合固定的基础,并增强正面磁场强度,屏蔽磁场对外界影响,利用无磁模板对各磁铁单元起固定和限位作用,保证磁场组合的安装固定,在距磁铁表面5cm~7cm处形成平面型ECR区。
整个装置的结构包括磁铁,屏蔽板、无磁模板,磁铁固定在无磁模板上,通过环形相间排列形成大面积高强度永磁磁场,模板下方设有屏蔽板,该屏蔽板通过磁铁的吸力与模板固定为一体。
所述的无磁模板为圆盘形状,圆心处设有圆形固定孔,圆周等间隔分布三圈或者四圈梯形固定孔,每个固定孔与磁铁紧配合。
所述的三圈梯形固定孔在圆盘上由圆心向外分别以角度θ1、θ2、θ3等间隔分布,其中,θ1>θ2>θ3
所述的三圈梯形固定孔在圆盘上由圆心向外分别以半径R1、R2、R3排列,其中R1<R2<R3
所述的四圈梯形固定孔在圆盘上由圆心向外分别以角度θ1、θ2、θ3、θ4等间隔分布,其中,θ1>θ2>θ3>θ4
所述的四圈梯形固定孔在圆盘上由圆心向外分别以半径R1、R2、R3、R4排列,其中R1<R2<R3<R4
所述的磁铁包括多个梯形磁铁和单个圆形磁铁,分别嵌入在梯形固定孔和圆形固定孔中,磁铁底面与模板底面处于同一平面。
所述的磁铁采用Nd-Fe-B材料,无磁模板采用无磁不锈钢材料,屏蔽板采用铁材料。
本发明具有如下优点:
(1)环形相间排列的磁铁和处于圆心位置的磁铁产生的平面分布式永磁磁场强度均匀性得到了大幅提高;
(2)屏蔽板不仅提供了磁铁组合固定的基础,而且增强了正面磁场强度,同时屏蔽磁场对外界的影响;
(3)无磁模板和屏蔽板组合使用,在模板上按磁铁的形状和分布方式切割出相同形状、大小和分布的固定孔,减小了由于高磁场强度磁铁单元之间较强的相互作用力对磁铁的固定和安装造成的困难,简化了其安装组合过程;
(4)由于避免了电流线圈磁场,因此采用本发明提供的永磁磁场装置的等离子体设备的能耗和体积都显著减小。
下面结合附图和实施方式对本发明作进一步详细说明。
附图说明
图1是现有技术采用电流线圈磁场的ECR等离子体设备的结构示意图;
图2是现有技术采用永磁磁场的ECR等离子体设备的结构示意图;
图3是本发明的永磁磁场装置的磁铁组合安装方式示意图;
图4是本发明采用的磁铁形状示意图,其中,图4(a)为梯形磁铁俯视图,图4(b)为梯形磁铁剖面图,图4(c)为圆形磁铁俯视图,图4(d)为圆形磁铁剖面图;
图5是本发明无磁模板结构示意图;
图6磁块优化排列方式计算流程示意图;
图7是本发明安装在ECR等离子体源上的结构示意图;
图8是本发明磁场分布测试结果图;
图9是采用本发明的ECR等离子体源的等离子体特性曲线图。
具体实施方式
参照图3,本发明装置包括:磁铁200、无磁模板302、屏蔽板301,磁铁200固定在无磁模板302上,通过环形相间排列形成大面积高强度永磁磁场,无磁模板下方设有屏蔽板,该屏蔽板通过磁铁的吸力与无磁模板固定为一体。
所述磁铁的形状包括梯形磁铁和圆形磁铁,如图4所示。图4a和图4b所示的梯形磁铁的几何尺寸包括:上边长2001,下边长2002,高2003,厚2004;图4c和图4d所示的圆形磁铁的几何尺寸包括:直径2005,高2006。
所述无磁模板302为圆盘形状,圆心处设有圆形固定孔202,圆周等间隔分布三圈或者四圈梯形固定孔201。图5是分布有三圈梯形固定孔的无磁模板结构示意图。该梯形固定孔的边长与所述梯形磁铁的边长相同,该圆形固定孔的边长与所述圆形磁铁的边长相同。该三圈固定孔在圆盘上由圆心向外分别以角度θ1、θ2、θ3等间隔分布,其中,θ1>θ2>θ3;三圈固定孔在圆盘上由圆心向外分别以半径R1、R2、R3排列,其中R1<R2<R3。四圈梯形固定孔在无磁模板上的分布与三圈情况类似。该四圈固定孔在圆盘上由圆心向外分别以角度θ1、θ2、θ3、θ4等间隔分布,其中,θ1>θ2>θ3>θ4;四圈固定孔在圆盘上由圆心向外分别以半径R1、R2、R3、R4排列,其中R1<R2<R3<R4
无磁模板302上的梯形固定孔201的分布通过优化计算得到,优化过程如图6所示。以三圈梯形固定孔的优化计算过程为例,首先假定某一孔分布,即{R1,R2,R3,θ1,θ2,θ3};计算各磁块产生的磁场强度并求解ECR区位置,即叠加磁场强度为875高斯的位置,其中单个磁块产生的磁场由[电子器件,27(1):44-48,2004]中提供的磁场计算方法得到;计算ECR区平面上采用上述孔分布后各磁块产生叠加磁场强度的均方差;求解使得各点磁场强度的均方差取得最小值时的{R1,R2,R3,θ1,θ2,θ3}值,从而获得优化磁铁排列方式。
所述屏蔽板301为圆形板。所用材料为纯铁或软铁。该纯铁或软铁材料制作的屏蔽板不仅可以作为磁铁组合固定的基础,而且能增强正面磁场强度,同时可有效地屏蔽磁场对外界的作用。
安装时,将屏蔽板301置于操作台上,将无磁模板302置于屏蔽板301上并用楔子固定对齐。将磁铁200逐个嵌入无磁模板302的固定孔中。磁铁200嵌入无磁模板302的具体顺序为:从圆心向外沿顺时针或逆时针方向逐一嵌入,每个固定孔与磁铁紧配合。磁铁底面与无磁模板底面处于同一平面,该屏蔽板通过磁铁的吸力与下方的无磁模板固定为一体,形成磁铁200、屏蔽板301、无磁模板302的组合整体。
实施例1
磁铁200采用Nd-Fe-B永磁材料。其中,梯形磁铁的几何尺寸为:上边长2001为19毫米,下边长2002为26毫米,高度2003为22毫米,厚度2004为19毫米;圆形磁铁的几何尺寸为:直径2005为10毫米,高2006为19毫米。磁铁表面磁场强度为5特斯拉。
磁铁的具体排列方式为:在270mm直径的屏蔽板301和无磁模板302上,在半径为34毫米,70毫米和110毫米圆环位置处,分别以60度,30度和15度均匀等间隔排列梯形磁铁,在圆心位置处放置圆形磁铁。
屏蔽板301是一个直径为270mm,厚度约为7mm的圆板,所用材料为纯铁。无磁模板302的材料为无磁不锈钢。无磁模板是一个直径为270毫米,厚度为10毫米的圆板,且在其上按照上述磁铁的安装组合方法进行安装组合后,倒扣在ECR等离子体源的陶瓷窗顶部,在ECR工艺室内部陶瓷窗距离磁铁表面5cm处形成符合ECR放电要求的永磁磁场。
将该永磁磁场装置倒扣在ECR等离子体源的陶瓷窗上方,可组成永磁ECR等离子体源700,如图7所示。其中,701为永磁磁场,702为陶瓷窗,703为微波谐振腔,704为工艺室,705为真空系统,706为进气系统,707为衬底。
实施例2
磁铁200采用Nd-Fe-B永磁材料。其中,梯形磁铁的几何尺寸为:上边长2001为19毫米,下边长2002为26毫米,高度2003为22毫米,厚度2004为22毫米;圆形磁铁的几何尺寸为:直径2005为10毫米,高2006为22毫米。磁铁表面磁场强度为6特斯拉。
本发明采用的永磁磁铁的具体排列方式为:在270mm直径的屏蔽板302和无磁模板302上,在半径为36毫米,72毫米和108毫米圆环位置处,分别以60度,30度和15度均匀等间隔排列梯形磁铁,在圆心位置处放置圆形磁铁。
按照上述技术方案中磁铁的安装组合方法进行安装组合后,倒扣在ECR等离子体源的陶瓷窗顶部,在ECR工艺室内部陶瓷窗距离磁铁表面7cm处形成符合ECR放电要求的永磁磁场。
实施例3
磁铁200采用Nd-Fe-B永磁材料。其中,梯形磁铁的几何尺寸为:上边长2001为19毫米,下边长2002为26毫米,高度2003为22毫米,厚度2004为20毫米;圆形磁铁的几何尺寸为:直径2005为10毫米,高2006为20毫米。磁铁表面磁场强度为5.2特斯拉。
永磁磁铁的具体排列方式为:在370mm直径的的软铁屏蔽板和无磁模板302上,在半径为36毫米,72毫米,110毫米和145毫米圆环位置处,分别以120度,60度,30度和15度均匀等间隔排列梯形磁铁,在圆心位置处放置圆形磁铁。
按照上述技术方案中磁铁的安装组合方法进行安装组合后,倒扣在ECR等离子体源的陶瓷窗顶部,在ECR工艺室内部陶瓷窗距离磁铁表面5.6cm处形成符合ECR放电要求的永磁磁场。
本发明的性能可通过以下测试详细说明。
测试1
图8给出了直径200mm的梯形磁铁永磁磁场分布在介质窗正下方7cm处的x-y平面上测量结果。图8中高亮度区域对应磁感应强度较大的区域。结果表明,该平面上磁场强度均值为875GS,磁场均匀性优于83%,可以满足大面积均匀性加工的要求。
测试2
图9为采用本发明永磁磁场的ECR等离子体源700在气压为1Pa时的Ar等离子体放电的Langmuir探针测量结果。经计算得到,该分布式永磁磁场ECR等离子体源的等离子体密度约为2.6×1010cm-3,等离子体电势约为15V,电子温度约为2.3eV。在介质窗正下方7cm处的x-y平面上不同位置处的Langmuir探针测量结果表明,等离子体密度在200mm直径范围内均匀性优于95%。

Claims (10)

1.一种用于电子回旋共振等离子体源的分布式永磁磁场装置,包括磁铁,其特征在于磁铁(200)固定在无磁模板(302)上,通过环形相间排列形成大面积高强度永磁磁场,无磁模板下方设有屏蔽板(301),该屏蔽板通过磁铁的吸力与无磁模板固定为一体。
2.根据权利要求1所述的分布式永磁磁场装置,其特征在于无磁模板(302)为圆盘形状,圆心处设有圆形固定孔,圆周等间隔分布三圈或者四圈梯形固定孔,每个固定孔与磁铁紧配合。
3.根据权利要求2所述的分布式永磁磁场装置,其特征在于三圈梯形固定孔在圆盘上由圆心向外分别以角度θ1、θ2、θ3等间隔分布,其中,θ1>θ2>θ3
4.根据权利要求2所述的分布式永磁磁场装置,其特征在于三圈梯形固定孔在圆盘上由圆心向外分别以半径R1、R2、R3排列,其中R1<R2<R3
5.根据权利要求2所述的分布式永磁磁场装置,其特征在于四圈梯形固定孔在圆盘上由圆心向外分别以角度θ1、θ2、θ3、θ4等间隔分布,其中,θ1>θ2>θ3>θ4
6.根据权利要求2所述的分布式永磁磁场装置,其特征在于四圈梯形固定孔在圆盘上由圆心向外分别以半径R1、R2、R3、R4排列,其中R1<R2<R3<R4
7.根据权利要求1或2所述的分布式永磁磁场装置,其特征在于磁铁(200)包括多个梯形磁铁和单个圆形磁铁,分别嵌入在梯形固定孔和圆形固定孔中,磁铁底面与无磁模板(302)底面处于同一平面。
8.根据权利要求1所述的分布式永磁磁场装置,其特征在于磁铁采用Nd-Fe-B材料,无磁模板采用无磁不锈钢材料,屏蔽板采用铁材料。
9.根据权利要求3或4所述的分布式永磁磁场装置,其特征在于梯形固定孔的间隔角度分别为θ1=60°、θ2=30°、θ3=15°;梯形固定孔的分布半径分别为R1=34mm、R2=70mm、R3=110mm。
10.根据权利要求5或6所述的分布式永磁磁场装置,其特征在于梯形固定孔的间隔角度分别为θ1=120°、θ2=60°、θ3=30°、θ4=15°;梯形固定孔的分布半径分别为R1=36mm、R1=72mm、R2=110mm、R3=145mm。
CNA2007100185173A 2007-08-21 2007-08-21 用于电子回旋共振等离子体源的分布式永磁磁场装置 Pending CN101111122A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007100185173A CN101111122A (zh) 2007-08-21 2007-08-21 用于电子回旋共振等离子体源的分布式永磁磁场装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007100185173A CN101111122A (zh) 2007-08-21 2007-08-21 用于电子回旋共振等离子体源的分布式永磁磁场装置

Publications (1)

Publication Number Publication Date
CN101111122A true CN101111122A (zh) 2008-01-23

Family

ID=39042967

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100185173A Pending CN101111122A (zh) 2007-08-21 2007-08-21 用于电子回旋共振等离子体源的分布式永磁磁场装置

Country Status (1)

Country Link
CN (1) CN101111122A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340921A (zh) * 2010-07-16 2012-02-01 财团法人工业技术研究院 电子回旋共振磁性模块与电子回旋共振装置
CN102497717A (zh) * 2011-11-25 2012-06-13 北京大学 一种用于等离子体装置的磁铁及等离子体装置
CN108566717A (zh) * 2018-06-29 2018-09-21 合肥中科离子医学技术装备有限公司 采用微波垂直注入激励等离子体发生装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340921A (zh) * 2010-07-16 2012-02-01 财团法人工业技术研究院 电子回旋共振磁性模块与电子回旋共振装置
CN105101604A (zh) * 2010-07-16 2015-11-25 财团法人工业技术研究院 电子回旋共振磁性模块与电子回旋共振装置
CN102497717A (zh) * 2011-11-25 2012-06-13 北京大学 一种用于等离子体装置的磁铁及等离子体装置
CN108566717A (zh) * 2018-06-29 2018-09-21 合肥中科离子医学技术装备有限公司 采用微波垂直注入激励等离子体发生装置

Similar Documents

Publication Publication Date Title
KR100321536B1 (ko) 자전관스퍼터링또는자전관에칭용쌍극자고리자석
CN1255851C (zh) 用于等离子体形成内磁桶以控制等离子体体积的设备
KR100678696B1 (ko) 환형 플라즈마를 형성하기 위한 페라이트 코어 조립체를구비한 자기 강화된 플라즈마 소오스
KR102355510B1 (ko) 기판 상의 스퍼터 증착을 위해 구성된 장치, 기판 상의 스퍼터 증착을 위해 구성된 시스템, 및 기판 상의 스퍼터 증착을 위한 방법
CN1257527C (zh) 改变磁场以控制等离子体体积的设备
CN104217914B (zh) 等离子体处理装置
EP2411999B1 (en) Inductive plasma applicator
KR20020060969A (ko) 플라즈마 처리 시스템 및 그 방법
KR20130099151A (ko) 플라스마 장치
CN101250687A (zh) 一种矩形平面磁控溅射阴极
CN209836293U (zh) 一种高效率磁控溅射平面阴极
CN103374705A (zh) 一种磁控溅射装置
CN101111122A (zh) 用于电子回旋共振等离子体源的分布式永磁磁场装置
CN106715751B (zh) 基板处理装置以及基板处理方法
CN201072680Y (zh) 一种磁铁磁场装置
KR20100051867A (ko) 자석 유닛, 및 마그네트론 스퍼터링 장치
CN115011941A (zh) 一种基于变磁场磁控溅射镀膜装置的永磁体选区镀膜方法
US20150214010A1 (en) Plasma enhanced chemical vapor deposition device
CN101126152A (zh) 柱状磁控溅射器
CN211112196U (zh) 一种磁控溅射阴极的磁源结构
TW201204183A (en) Magnetic modue of electron cyclotron resonance and electron cyclotron resonance apparatus using the same
US20130160950A1 (en) Plasma processing apparatus
CN204162777U (zh) 一种靶材组件
CN116169002A (zh) 一种磁场增强耦合等离子体加工装置及方法
CN103811262A (zh) 电感耦合等离子体处理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080123