CN101096909A - 一种油层识别和产能评价的方法 - Google Patents

一种油层识别和产能评价的方法 Download PDF

Info

Publication number
CN101096909A
CN101096909A CNA2006100894921A CN200610089492A CN101096909A CN 101096909 A CN101096909 A CN 101096909A CN A2006100894921 A CNA2006100894921 A CN A2006100894921A CN 200610089492 A CN200610089492 A CN 200610089492A CN 101096909 A CN101096909 A CN 101096909A
Authority
CN
China
Prior art keywords
oil
production capacity
centerdot
pyrolysis
oil reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006100894921A
Other languages
English (en)
Inventor
赵文智
邹才能
李明
侯连华
刘晓
崔化娟
王波
刘志舟
赵一民
龙建东
张云绵
吴丰成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EXPLORATION AND DEVELOPMENT RESEARCH INST CHINA NATIONAL PETROLEM CORP
Original Assignee
EXPLORATION AND DEVELOPMENT RESEARCH INST CHINA NATIONAL PETROLEM CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EXPLORATION AND DEVELOPMENT RESEARCH INST CHINA NATIONAL PETROLEM CORP filed Critical EXPLORATION AND DEVELOPMENT RESEARCH INST CHINA NATIONAL PETROLEM CORP
Priority to CNA2006100894921A priority Critical patent/CN101096909A/zh
Publication of CN101096909A publication Critical patent/CN101096909A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及油田勘探开发中的油层识别和产能评价方法。该方法是在对地化热解数据进行重量校正,重质组分校正的基础上,采用原油密度叠代循环技术,对地化热解中轻、中组分进行校正,得到恢复原始地层条件的地化热解数据和残余烃组分含量,利用恢复的原始地层条件总烃含量求取含油饱和度,通过制定包括孔隙度、渗透率、含油饱和度在内的有效厚度标准,识别被评价区油层厚度。在识别的油层井段内通过流动单元划分及其约束的孔隙度、渗透率求取基础上,以流动单元为单位预测油层产能,并通过综合评价确定射孔井段的原油产能,实现油层识别和产能评价。本发明可提高油层,特别是疑难油层,的识别符合率和产能评价精度,现场实用性强。

Description

一种油层识别和产能评价的方法
技术领域
本发明涉及油田勘探开发中的油层识别和产能评价方法技术,具体是一种油层识别和产能评价的方法。
背景技术
一直以来,取心、测井和试油是进行油层识别和产能评价的主要方法技术。测井是通过测量井筒周围的物理化学信息,通过解释模型识别和评价油层,通过储层参数计算和渗流力学基础的产能预测模型实现产能预测,但由于测井过程中受到的影响因素较多,不能够完全恢复地层原始信息,对于疑难油层,其识别率很低。取心方法是油层识别最直接可靠的手段,但由于取心费用高,取心井段有限,在没有取心井段无法应用此方法识别油层。试油是求知储层是否为油层及评价其产能的有效手段,但试油费用高、周期长,选择试油井段的前提是已经识别为油层的井段,因此,不可能对每个井段均进行试油。
地化热解是近几年才发展的油层识别技术,由于有效地将原油中的轻、中、重质组分分离开,提取了更多反应油层中流体性质的信息,使得利用地化热解资料提高油层识别率成为可能。但不同来源样品的地化热解数据(岩心、井壁取心、岩屑),受到的影响因素和程度不同,不同来源样品间的数据没有可比性,且没有对地化热解资料进行校正的方法,常规方法直接利用未经校正的地化热解资料进行油层识别,实际应用中符合率很低,误差很大,只能作为其他油层识别方法的一种定性识别的辅助手段。
常规油层识别和产能评价方法在实际应用过程中以下几个问题没有得到有效解决:
1)地化热解资料受到岩石样品来源(岩心、井壁取心、岩屑)、样品重量、原油性质、放置时间、储层温压条件、岩石孔隙度等多种因素的影响,存在较大误差,常规方法中直接利用实验数据对油层进行识别,没有形成获得原始地层信息的方法;
2)直接利用未经校正的地化热解实验数据计算含油饱和度,没有考虑残余烃、原油各组分的损失,含油饱和度计算误差大,油层识别结论只能是定性的,作为其他油层识别方法的一项辅助参考,不能形成油层定量识别结论,油层识别误差大,符合率低;
4)常规方法产能预测是以层为单位,没有考虑层内非均质和层内流体流动性能差异,对油层的产能预测不准;
5)缺少一种油层识别率高、产能评价精度高,费用低、实用性强的油层识别和产能评价方法。
发明内容
本发明目的是提出了一种恢复原始地层地化热解信息进行油层识别和产能评价的方法,提供了一种准确、可靠、费用低,可在油田勘探开发中实际应用的油层识别和产能评价方法。
本发明采用如下技术步骤实现:
1)求取地化热解样品实际重量与100mg标准重量的校正系数;
2)利用孔隙及体积系数与地化热解重质组分关系,求取重质组分校正系数;
3)采用原油密度叠代循环技术,确定地化热解中轻、中组分校正系数;
4)在步骤1)、2)、3)的基础上,得到恢复原始地层条件的地化热解数据;
5)利用求取的残余烃组分和恢复的原始地层条件轻、中、重质组分求取样品的总烃含量,总烃含量中包括残余烃含量,然后,求取含油饱和度,其公式为:So=(10ρr·ST)/(ρo·φe)。
6)根据取心井岩心分析、试油、试采等资料制定被评价区域、层位油层有效厚度识别标准,有效厚度标准中要包括孔隙度、渗透率、含油饱和度,利用求取的含油饱和度与有效厚度标准对比,确定被识别层的流体性质,判断是否为油层;
7)在识别为油层的井段,根据流动指数FZI划分流动单元,以流动单元为单位建立孔隙度、渗透率评价模型,并求取孔隙度、渗透率;
8)确定产能预测模型中的相关参数,以流动单元为单位求取原油产能,其公式为: Q oi = H · k · k o · Ps · b · ( P e - P w ) ln ( r e / r w ) , 通过射孔层段不同流动单元产能的综合评价,确定射孔层段的最终产能,其公式为: Q o = Σ j = 1 m Σ i = 1 n Q oij .
本发明与原来的方法相比具有如下优点:
1)本发明是建立在恢复原始地层信息基础上,通过创新油层评价模型,进行油层识别和产能评价,提高了油层识别率和产能评价精度,实用性和可操作性强;
2)本发明不但能够有效识别油层,而且能够准确评价油层是否能够达到工业油流标准及射孔井段的原油产能;
3)本发明可用于勘探、开发中的油层识别和产能评价,提高了资料的利用价值,具有很好的应用推广前景。
图面说明
图1是本发明的流程图
图2是本发明的含油饱和度计算结果与校正后岩心分析结果、常规方法计算结果对比实例
图3是本发明的产能预测结果、常规方法产能预测结果与试油结果对比实例
本发明的实施方式
本发明将结合实施例作进一步详述:
一种油层识别和产能评价的方法包括下述步骤:
1)地化热解样品重量校正
地化热解仪器样品重量的标准重量应为100mg,实际称量过程中,样品重量往往不能恰好为100mg,而是或多或少地与100mg有点误差,为了达到统一刻度目的,消除样品重量对地化热解数据各组分的影响,对样品重量进行校正,校正模型为:
KYZ=100/Yz
上式中
Yz-样品实际重量,mg。
2)通过孔隙及体积系数求取重质组分校正系数
地化热解资料重质组份受影响程度最小,但岩石样品与同层原油的分析值之间存在差别,这种差别主要体现在孔隙和体积系数上,不同来源样品重质组份孔隙及体积的校正系数见表1。
表1  重质组分的孔隙及体积校正系数
Figure A20061008949200071
注:表中φ、B0-分别为有效孔隙度(小数)、体积系数。
3)确定地化热解中轻、中组分校正系数
地化热解资料中重质组分受影响最小,而轻、中质组分受影响较大,特别是井壁取心、岩屑受影响更大。当获得原始地层真实的地化热解重质组分和轻、中组分与重质组分的比例后,可由重质组分计算得到轻、中质组分。
由于重力分异作用,使得同一油藏不同高度位置的原油组分中轻、中、重质组分的比例不同。但轻、中质组分与重质组分的比例与原油密度存在非常好的相关关系,利用原油密度循环叠代收敛技术,通过考虑溶解气含量的原油地化热解数据确定轻、中、重烃组分的比例,地化热解仪器包括三峰和五峰两种,即:
①三峰地化热解轻、中质组分校正系数
K 3 S 0 = 0.0008 ρ o - 20.89
K 3 S 1 = - 915.219 ρ o 3 + 2669 ρ o 2 - 2595.9 ρ o + 842.6
上式中
ρo-原油密度,g/cm3
K3S0、K3S1——分别为三峰地化热解轻、中质组分校正系数;其理论比值为:
K3S0=S0/S2
K3S1=S1/S2
②五峰地化热解轻、中质组分校正系数
K 5 S 0 = 0.0009 ρ o - 14.219
K 5 S 1 = 0.0229 ρ o - 16.595
K 5 S 21 = - 1356.6 ρ o 4 + 4017.8 ρ o 3 - 3964.8 ρ o 2 + 1304.19 ρ o
上式中
K5S0、K5S1、K5S21-分别为五峰地化热解轻、中质1、中质21组分校正系数;
其理论比值为:
K5S0=S0/(S2-2+S2-3)
K5S1=S1/(S2-2+S2-3)
K5S21=S2-1/(S2-2+S2-3)
4)原始地层的地化热解数据恢复
通过对以上1)、2)、3)中各校正系数的求取,并对岩心、井壁取心、岩屑不同样品的地化热解轻、中、重组份的校正,得到原始地层的地化热解数据。
①原始地层的三峰地化热解数据求取
S0=(KYz·K3S0·S2·K3S2)·S0
S1=(KYz·K3S1·S2·K3S2)·S1
S2=(KYz·K3S2)·S2
②原始地层的五峰地化热解数据求取
S0=[KYz·K5S0·(S2-2·K5S22+S2-3·K5S23)]·S0
S1=[KYz·K5S1·(S2-2·K5S22+S2-3·K5S23)]·S1
S2-1=[KYz·K5S21·(S2-2·K5S22+S2-3·K5S23)]·S2-1
S2-2=(KYz·K5S22)·S2-2
S2-3=(KYz·K5S23)·S2-3
上式中
S0′、S1′、S2′、S0、S1、S2-分别为校正前、后三峰地化热解值,mg/g;
S0′、S1′、S2-1′、S2-2′、S2-3′、S0、S1、S2-1、S2-2、S2-3分别为校正前、后五峰地化热解值,mg/g。
5)含油饱和度求取
①地化热解总烃含量求取
地化热解总烃含量ST是单位质量储层岩样含油气量,求取模型如下:
三峰地化热解总烃含量:
ST=S0+S1+S2+10RC/0.9
五峰地化热解总烃含量:
ST=S0+S1+S2-1+S2-2+S2-3+10RC/0.9
其中:RC=0.0604S2 0.9696
上式中
ST-单位重量岩样油气总烃含量,mg/g;
RC-残余烃含量,%。
②含油饱和度计算
储层含油饱和度是指储集岩有效孔隙中原油体积与有效孔隙度体积之比。其公式为:
So=(Vo/Vp)×100%
由此可得到:
ST/103=Wo/Wr=(Voρo)/(Vrρr)
上式中分子、分母同乘以有效孔隙体积,可变换为:
ST/103=(VoρoVφ)/(VrρrVφ)=(Soφeρo)/(ρr104)
经数学变换可得如下求取储层含油饱和度的计算公式为:
So=(10ρr·ST)/(ρo·φe)
上式中
So-含油饱和度,%;
Vo-有效孔隙中原油体积,cm3
Vp-有效孔隙体积,cm3
φe-有效孔隙度,%;
ρr-储层岩石密度,g/cm3
ρo-储层所含原油密度,g/cm3
Vφ-岩样孔隙体积,cm3
Wr-岩样重量,g;
Wo-岩样孔隙中所含油气总重量,g。
6)有效厚度标准
根据取心井岩心分析、试油、试采等资料制定被评价区域、层位的油层试别标准。
利用恢复原始地层信息的地化热解数据,通过求取含油饱和度,并于有效厚度标准对比,确定被识别层的流体性质。
7)流动单元划分及物性求取
①流动单元划分方法
同一流动单元内流体具有相似的流动特征,根据流动指数FZI划分不同的流动单元,确定不同流动单元之间的FZI划分界限。
②储层物性求取
流动指数和储层孔隙度、渗透率之间关系如下:
( ΔFZI FZI ) = ± 0.5 [ ( Δφ φ ) 2 + ( Δφ 1 - φ ) 2 + ( Δk k ) 2 ]
在流动单元内部,采用储层质量指数建立有效孔隙度,利用有效孔隙度建立渗透率求取模型:
φ e = 1 a RQ I 1 / b
k = c φ e d
上式中
φe-有效孔隙度,%;
b、c、d-经验常数。
8)油层产能预测
储层原油产能的大小除与储层物性,还与原油性质及含油饱和度密切相关。同样物性条件下,油质越轻含油丰度值越高,产能越大;原油产能与原始地层压力、有效厚度有着密切的关系,原始地层压力越高,有效厚度越大,相同物性、原油性质、含油丰度的储层其原油产能越大。根据地化热解分析的基本原理,原油轻重比与原油粘度存在一定相关关系,而总烃含量则定量反应储层含油丰度。以此为基础,求取储层原油产能。
①流动单元的原油产能预测模型
Q oi = H · k · k o · Ps · b · ( P e - P w ) ln ( r e / r w )
上式中
Qoi-被预测流动单元的原油产能,m3/d;
H-被预测流动单元的有效厚度,m;
k-空气渗透率,10-3μm2
ko-原油渗透率,10-3μm2
Ps-原油热解轻重比;
Pe-地层静压力,Mpa;
Pw-井底流压,Mpa;
re-到Pe等压线的半径,ft;
rw-井眼半径,ft。
②相关参数的确定
实验得到的储层原油渗透率与含油饱和度关系为:
k o = 10 S o / a
上式中
So-含油饱和度,%;
a-渗透率校正系数。
渗透率校正系数与含油饱和度存在如下关系:
a = 0.0002 S o 3 - 0 . 037 S o 2 + 1.4383 S o + 34.26
原油热解轻重比参数由如下公式确定:
三峰地化热解:
Ps=S1/S2
五峰地化热解:
Ps=(S1-1+S2-1)/(S2-2+S2-3)
上式中
b-原油粘度校正系数。
根据原油粘度与地化热解资料中原油轻重比参数Ps之间的关系,求取原油粘度校正系数b值:
b=0.4416ln(Ps)+1.1779
③流动单元约束的产能预测
以流动单元为单位进行产能总体评价,在射孔井段内,将所有有效厚度井段内的每个流动单元的产能累加,得到射孔井段内总的原油产能。
Q o = Σ j = 1 m Σ i = 1 n Q oij
上式中
Qo——射孔井段的原油产能;
Qoij——第j层的第i个流动单元的原油产能。
产能预测结果与实际试油结果对比发现,本发明方法的产能预测精度明显高于常规方法的产能预测精度。
利用本发明的含油饱和度计算结果与常规方法计算结果对比见附图2,从附图2中可看出本发明方法计算的含油饱和度与校正后的岩心分析结果一致,误差较小,而常规方法计算结果与校正后的岩心分析结果相差较大,证明本发明方法中恢复的原始地层油气信息与地层条件基本一致;从附图3、附图4中可以看出常规方法的产能预测误差较大,且与试油情况相差较大,本发明方法预测的产能与试油结果基本一致,误差较小。本发明大大提高了油层识别率和产能预测精度,实现了费用低、实用性强、应用广泛、油层识别率高、产能评价精度高的油层识别和产能评价。

Claims (6)

1.一种油层识别和产能评价的方法,其特征在于采用下述步骤:1)求取地化热解样品实际重量与100mg标准重量的校正系数;2)利用孔隙及体积系数与地化热解重质组分关系,求取重质组分校正系数;3)采用原油密度叠代循环技术,确定地化热解中轻、中组分校正系数;4)在步骤1)、2)、3)的基础上,得到恢复原始地层条件的地化热解数据;5)利用求取的残余烃组分和恢复的原始地层条件轻、中、重质组分求取样品的总烃含量,总烃含量中包括残余烃含量,然后,求取含油饱和度,其公式为:So=(10ρr·ST)/(ρo·φe);6)根据取心井岩心分析、试油、试采等资料制定被评价区域、层位的油层有效厚度识别标准,有效厚度标准中要包括孔隙度、渗透率、含油饱和度,在储层物性约束下,将含油饱和度与有效厚度标准对比,确定被识别层的流体性质,判断是否为油层;7)在识别为油层的井段,根据流动指数FZI划分流动单元,以流动单元为单位建立孔隙度、渗透率评价模型,并求取孔隙度、渗透率;确定产能预测模型中的相关参数,以流动单元为单位求取原油产能,其公式为: Q oi = H · k · k o · Ps · b · ( P e - P w ) ln ( r e / r w ) , 通过射孔层段不同流动单元产能的综合评价,确定
射孔层段的最终产能,其公式为: Q o = Σ j = 1 m Σ i = 1 n Q oij .
2.根据权利要求1所述的一种油层识别和产能评价的方法,其特征在于:利用的地化热解样品包括岩心、井壁取心、岩屑三种来源,地化热解资料的分析仪器类型包括三峰和五峰两种,地化热解资料包括轻、中、重三种组分含量。
3.根据权利要求1所述的一种油层识别和产能评价的方法,其特征在于:经过校正后得到的是原始地层的地化热解数据,包括残余烃含量。
4.根据权利要求1所述的一种油层识别和产能评价的方法,其特征在于:制定油层有效厚度标准时,采用的参数包括孔隙度、渗透率、含油饱和度。
5.根据权利要求1所述的一种油层识别和产能评价的方法,其特征在于:由计算公式可导出含油饱和度的求取模型为:So=(10ρr·ST)/(ρo·φe)。
6.根据权利要求1所述的一种油层识别和产能评价的方法,其特征在于:产能评价采用的以流动单元为单位的渗透率数据,由理论推导和实验标定的产能评价模型为: Q oi = H · k · k o · Ps · b · ( P e - P w ) ln ( r e / r w ) .
CNA2006100894921A 2006-06-30 2006-06-30 一种油层识别和产能评价的方法 Pending CN101096909A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2006100894921A CN101096909A (zh) 2006-06-30 2006-06-30 一种油层识别和产能评价的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2006100894921A CN101096909A (zh) 2006-06-30 2006-06-30 一种油层识别和产能评价的方法

Publications (1)

Publication Number Publication Date
CN101096909A true CN101096909A (zh) 2008-01-02

Family

ID=39010964

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006100894921A Pending CN101096909A (zh) 2006-06-30 2006-06-30 一种油层识别和产能评价的方法

Country Status (1)

Country Link
CN (1) CN101096909A (zh)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892837A (zh) * 2010-04-29 2010-11-24 中国石油天然气股份有限公司 地层因数确定方法及含油饱和度确定方法
CN101915088A (zh) * 2010-06-25 2010-12-15 中国石油天然气股份有限公司 一种油气运移路径生成方法与装置
CN102373923A (zh) * 2010-08-20 2012-03-14 中国石油天然气股份有限公司 一种储层识别方法
CN101782520B (zh) * 2010-01-28 2012-03-21 中国科学院地质与地球物理研究所 应用石油包裹体和油质沥青对古今油层进行二维判识的方法
CN102454398A (zh) * 2010-10-28 2012-05-16 中国石油化工股份有限公司 一种适用于低孔低渗储层的气、水层识别方法
CN102508317A (zh) * 2011-11-09 2012-06-20 中国石油天然气股份有限公司 一种识别缝洞型碳酸盐岩储层流体性质的方法
CN102536200A (zh) * 2012-02-17 2012-07-04 中国石油化工股份有限公司 致密碳酸盐岩气层初始产能预测方法
CN103180548A (zh) * 2010-09-13 2013-06-26 雪佛龙美国公司 描绘地下储层中烃类产气带的特征的系统和方法
CN103267718A (zh) * 2013-02-27 2013-08-28 中国石油大学(华东) 一种双下限低渗—致密砂岩储层分类方法
CN103266881A (zh) * 2013-05-22 2013-08-28 中国石化集团华北石油局 一种致密低渗气田多级压裂水平井产量预测方法
CN104101673A (zh) * 2014-07-22 2014-10-15 中国石油大学(华东) 一种合采原油产能贡献率的测定方法
CN104265259A (zh) * 2014-08-07 2015-01-07 员增荣 产能跟踪与评价方法
CN104695950A (zh) * 2014-10-31 2015-06-10 中国石油集团西部钻探工程有限公司 火山岩油藏产能预测方法
CN104899411A (zh) * 2015-03-27 2015-09-09 中国石油化工股份有限公司 一种储层产能预测模型建立方法和系统
CN105069303A (zh) * 2015-08-17 2015-11-18 中国海洋石油总公司 一种低渗透储层产能定量评价方法
CN105317407A (zh) * 2015-10-15 2016-02-10 中国石油天然气股份有限公司 一种特高含水期表外储层的开发方法
CN105631754A (zh) * 2015-12-29 2016-06-01 中国石油天然气股份有限公司 一种确定海外油田的产量剖面数据的方法和装置
CN105717541A (zh) * 2016-03-17 2016-06-29 成都创源油气技术开发有限公司 储层流动单元划分方法
CN107102377A (zh) * 2017-06-27 2017-08-29 中国石油大学(华东) 定量预测致密砂岩油气有利勘探区的方法
CN107152277A (zh) * 2017-06-07 2017-09-12 长江大学 一种碳氧比测井计算剩余油饱和度的方法及系统
WO2018018865A1 (zh) * 2016-07-26 2018-02-01 中国石油天然气股份有限公司 油藏中贼层的识别方法及装置
CN107762496A (zh) * 2017-09-11 2018-03-06 中国石油天然气股份有限公司 解释层段的确定方法和装置
CN107965314A (zh) * 2016-10-18 2018-04-27 中国石油化工股份有限公司 砂砾岩构造油藏含油高度的计算方法
CN109142682A (zh) * 2018-09-06 2019-01-04 中国石油集团渤海钻探工程有限公司 一种单位体积岩石含气率与试油效果评价方法
CN109214016A (zh) * 2017-06-30 2019-01-15 中国石油化工股份有限公司 一种特稠油油藏化学冷采优化方法
CN111122381A (zh) * 2019-12-31 2020-05-08 中法渤海地质服务有限公司 一种基于回归分析的地化录井原油密度预测方法
CN111665223A (zh) * 2019-03-05 2020-09-15 中石化石油工程技术服务有限公司 一种原油性质判别方法
CN111855521A (zh) * 2019-04-26 2020-10-30 中国石油化工股份有限公司 页岩有效孔隙度的快速评估方法
CN112392477A (zh) * 2020-12-04 2021-02-23 中国石油天然气股份有限公司 一种单井潜力快速预测方法
CN112765765A (zh) * 2020-12-16 2021-05-07 成都理工大学 一种井场油基钻井液岩屑热解结果的校正方法
CN113496301A (zh) * 2020-04-01 2021-10-12 中国石油天然气股份有限公司 油气田资产评价方法及装置

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782520B (zh) * 2010-01-28 2012-03-21 中国科学院地质与地球物理研究所 应用石油包裹体和油质沥青对古今油层进行二维判识的方法
CN101892837B (zh) * 2010-04-29 2013-03-20 中国石油天然气股份有限公司 地层因数确定方法及含油饱和度确定方法
CN101892837A (zh) * 2010-04-29 2010-11-24 中国石油天然气股份有限公司 地层因数确定方法及含油饱和度确定方法
CN101915088A (zh) * 2010-06-25 2010-12-15 中国石油天然气股份有限公司 一种油气运移路径生成方法与装置
CN101915088B (zh) * 2010-06-25 2012-10-03 中国石油天然气股份有限公司 一种油气运移路径生成方法与装置
CN102373923A (zh) * 2010-08-20 2012-03-14 中国石油天然气股份有限公司 一种储层识别方法
CN102373923B (zh) * 2010-08-20 2013-03-13 中国石油天然气股份有限公司 一种储层识别方法
CN103180548A (zh) * 2010-09-13 2013-06-26 雪佛龙美国公司 描绘地下储层中烃类产气带的特征的系统和方法
CN102454398A (zh) * 2010-10-28 2012-05-16 中国石油化工股份有限公司 一种适用于低孔低渗储层的气、水层识别方法
CN102454398B (zh) * 2010-10-28 2015-06-17 中国石油化工股份有限公司 一种适用于低孔低渗储层的气、水层识别方法
CN102508317A (zh) * 2011-11-09 2012-06-20 中国石油天然气股份有限公司 一种识别缝洞型碳酸盐岩储层流体性质的方法
CN102508317B (zh) * 2011-11-09 2013-07-10 中国石油天然气股份有限公司 一种识别缝洞型碳酸盐岩储层流体性质的方法
CN102536200A (zh) * 2012-02-17 2012-07-04 中国石油化工股份有限公司 致密碳酸盐岩气层初始产能预测方法
CN103267718A (zh) * 2013-02-27 2013-08-28 中国石油大学(华东) 一种双下限低渗—致密砂岩储层分类方法
CN103267718B (zh) * 2013-02-27 2015-04-22 中国石油大学(华东) 一种双下限低渗—致密砂岩储层分类方法
CN103266881B (zh) * 2013-05-22 2015-05-20 中国石化集团华北石油局 一种致密低渗气田多级压裂水平井产量预测方法
CN103266881A (zh) * 2013-05-22 2013-08-28 中国石化集团华北石油局 一种致密低渗气田多级压裂水平井产量预测方法
CN104101673A (zh) * 2014-07-22 2014-10-15 中国石油大学(华东) 一种合采原油产能贡献率的测定方法
CN104101673B (zh) * 2014-07-22 2015-10-07 中国石油大学(华东) 一种合采原油产能贡献率的测定方法
CN104265259A (zh) * 2014-08-07 2015-01-07 员增荣 产能跟踪与评价方法
CN104695950A (zh) * 2014-10-31 2015-06-10 中国石油集团西部钻探工程有限公司 火山岩油藏产能预测方法
CN104899411A (zh) * 2015-03-27 2015-09-09 中国石油化工股份有限公司 一种储层产能预测模型建立方法和系统
CN104899411B (zh) * 2015-03-27 2018-06-26 中国石油化工股份有限公司 一种储层产能预测模型建立方法和系统
CN105069303A (zh) * 2015-08-17 2015-11-18 中国海洋石油总公司 一种低渗透储层产能定量评价方法
CN105317407A (zh) * 2015-10-15 2016-02-10 中国石油天然气股份有限公司 一种特高含水期表外储层的开发方法
CN105317407B (zh) * 2015-10-15 2018-06-01 中国石油天然气股份有限公司 一种特高含水期表外储层的开发方法
CN105631754A (zh) * 2015-12-29 2016-06-01 中国石油天然气股份有限公司 一种确定海外油田的产量剖面数据的方法和装置
CN105717541A (zh) * 2016-03-17 2016-06-29 成都创源油气技术开发有限公司 储层流动单元划分方法
WO2018018865A1 (zh) * 2016-07-26 2018-02-01 中国石油天然气股份有限公司 油藏中贼层的识别方法及装置
CN107965314A (zh) * 2016-10-18 2018-04-27 中国石油化工股份有限公司 砂砾岩构造油藏含油高度的计算方法
CN107152277A (zh) * 2017-06-07 2017-09-12 长江大学 一种碳氧比测井计算剩余油饱和度的方法及系统
CN107152277B (zh) * 2017-06-07 2020-11-10 长江大学 一种碳氧比测井计算剩余油饱和度的方法及系统
CN107102377A (zh) * 2017-06-27 2017-08-29 中国石油大学(华东) 定量预测致密砂岩油气有利勘探区的方法
CN107102377B (zh) * 2017-06-27 2018-09-14 中国石油大学(华东) 定量预测致密砂岩油气有利勘探区的方法
CN109214016A (zh) * 2017-06-30 2019-01-15 中国石油化工股份有限公司 一种特稠油油藏化学冷采优化方法
CN107762496A (zh) * 2017-09-11 2018-03-06 中国石油天然气股份有限公司 解释层段的确定方法和装置
CN109142682A (zh) * 2018-09-06 2019-01-04 中国石油集团渤海钻探工程有限公司 一种单位体积岩石含气率与试油效果评价方法
CN111665223A (zh) * 2019-03-05 2020-09-15 中石化石油工程技术服务有限公司 一种原油性质判别方法
CN111665223B (zh) * 2019-03-05 2023-11-21 中石化石油工程技术服务有限公司 一种原油性质判别方法
CN111855521A (zh) * 2019-04-26 2020-10-30 中国石油化工股份有限公司 页岩有效孔隙度的快速评估方法
CN111855521B (zh) * 2019-04-26 2023-02-10 中国石油化工股份有限公司 页岩有效孔隙度的快速评估方法
CN111122381A (zh) * 2019-12-31 2020-05-08 中法渤海地质服务有限公司 一种基于回归分析的地化录井原油密度预测方法
CN111122381B (zh) * 2019-12-31 2022-07-15 中法渤海地质服务有限公司 一种基于回归分析的地化录井原油密度预测方法
CN113496301A (zh) * 2020-04-01 2021-10-12 中国石油天然气股份有限公司 油气田资产评价方法及装置
CN113496301B (zh) * 2020-04-01 2024-03-29 中国石油天然气股份有限公司 油气田资产评价方法及装置
CN112392477A (zh) * 2020-12-04 2021-02-23 中国石油天然气股份有限公司 一种单井潜力快速预测方法
CN112392477B (zh) * 2020-12-04 2023-08-22 中国石油天然气股份有限公司 一种单井潜力快速预测方法
CN112765765A (zh) * 2020-12-16 2021-05-07 成都理工大学 一种井场油基钻井液岩屑热解结果的校正方法
CN112765765B (zh) * 2020-12-16 2022-03-01 成都理工大学 一种井场油基钻井液岩屑热解结果的校正方法

Similar Documents

Publication Publication Date Title
CN101096909A (zh) 一种油层识别和产能评价的方法
CN104298883B (zh) 一种油气资源评价中的烃源岩产烃率图版的建立方法
Chen et al. Hydrocarbon evaporative loss evaluation of lacustrine shale oil based on mass balance method: Permian Lucaogou Formation in Jimusaer Depression, Junggar Basin
US7249009B2 (en) Method and apparatus for simulating PVT parameters
US20150285944A1 (en) Hydrocarbon Saturation From Total Organic Carbon Logs Derived From Inelastic And Capture Nuclear Spectroscopy
Li et al. Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod
CN101689102A (zh) 测定储集岩中有机物质体积的方法
US9791431B2 (en) Cuttings-based well logging
CA2781465A1 (en) Methods for optimizing petroleum reservoir analysis
CN104272140A (zh) 用于校准在储藏层建模中使用的渗透性的系统和方法
Yan et al. Investigating NMR-based absolute and relative permeability models of sandstone using digital rock techniques
CN107780923A (zh) 一种基于泥质校正的含水饱和度模型的建立、仿真方法
CN105715253A (zh) 一种气井井底流压的预测方法
Chen et al. Capillary pressure curve determination based on a 2‐D cross‐section analysis via fractal geometry: a bridge between 2‐D and 3‐D pore structure of porous media
CN104849365B (zh) 一种地下生物降解稠油物性的预测方法
Venieri et al. The interplay between cm-and m-scale geological and geomechanical heterogeneity in organic-rich mudstones: implications for reservoir characterization of unconventional shale plays
Yang et al. Predict Reservoir Fluid Properties from Advanced Mud Gas Data
Burnham et al. Modeling the Maturation and Migration of Petroleum: Chapter 5: PETROLEUM GENERATION AND MIGRATION
Perry et al. Investigating Delaware Basin Bone Spring and Wolfcamp Observations Through Core-Based Quantification: Case Study in the Integrated Workflow, Including Closed Retort Comparisons
CN115097107A (zh) 一种基于电阻率新参数的海相页岩低电阻成因类型与页岩气勘探潜力判识方法
Wood Total organic carbon predictions from lower Barnett shale well-log data applying an optimized data matching algorithm at various sampling densities
CN106383215B (zh) 一种高热演化盆地混源天然气的混合比的确定方法
CN112505154B (zh) 泥页岩储层矿物成分含量解析与岩相识别表征方法
Kralik et al. Methods and tools for the development of consistent reservoir rock type based relative permeability and capillary pressure models for reservoir simulation
Wei et al. Analysis of a middle-rank coal reservoir on a triple porosity/dual permeability model

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080102