CN101087122B - 用于发电机的冗余电制动器及保护系统 - Google Patents

用于发电机的冗余电制动器及保护系统 Download PDF

Info

Publication number
CN101087122B
CN101087122B CN200710108216XA CN200710108216A CN101087122B CN 101087122 B CN101087122 B CN 101087122B CN 200710108216X A CN200710108216X A CN 200710108216XA CN 200710108216 A CN200710108216 A CN 200710108216A CN 101087122 B CN101087122 B CN 101087122B
Authority
CN
China
Prior art keywords
transducer
generator
bus
dynamic brake
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200710108216XA
Other languages
English (en)
Other versions
CN101087122A (zh
Inventor
L·李
Z·卢
R·泰希曼
C·王
W·杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Renovables Espana SL
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101087122A publication Critical patent/CN101087122A/zh
Application granted granted Critical
Publication of CN101087122B publication Critical patent/CN101087122B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • F03D7/0248Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking by mechanical means acting on the power train
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • H02P1/52Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor by progressive increase of frequency of supply to motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/26Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by combined electrical and mechanical braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/907Specific control circuit element or device
    • Y10S388/917Thyristor or scr
    • Y10S388/92Chopper

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Stopping Of Electric Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供了一种用于发电机(101)的电控制动及系统保护的设备,其包括设计用于与功率转换器配合以在命令时消耗功率的动态制动器(210)以及急剧短路线路(220)。动态制动器(210)包括至少一个电阻器,而急剧短路线路(220)包括至少另一电阻器,用于消耗来自发电机(101)的功率。本发明还提供了一种使用电控制动及系统保护的方法,涉及将功率分流至动态制动器(210)、急剧短路线路(220)以及发电机(101)侧功率转换器其中至少一者。

Description

用于发电机的冗余电制动器及保护系统
技术领域
本发明一般涉及用于安全并可控地对发电机进行去激励的技术。在本发明中,对发电机去激励涉及平衡发电机轴上的动力,减小在发电机的转动质量中存储的转动能量,并减小在发电机中存储的电磁场能量。 
背景技术
在对动力的控制受限或不可行的实施例中,必需提供以可控方式对发电机去激励的方法。一个示例是由风轮机驱动的发电机。例如,在存在强风的情况下,要停止风轮机就需要在风轮机的部件上施加不合理或过大的力。 
为提供有效去激励的一些尝试已经采用了机械制动器。但是,机械制动器会较大、较昂贵,且如果需要经常制动则会被迅速磨损。这种系统需要周期性地维护及检测以确保可靠性,而这至少会对产能造成一定损失。通常情况下,机械制动器具有相对过长的响应时间(数十秒)。在一些极端情况下,过长的响应时间会导致发电机超速。故难以使用机械制动器来控制去激励过程。此外,这种系统必需具有失效保护,并需满足很高的可靠性标准。 
在对动力的控制有限或不存在的装置中,通常通过急剧短路线路与机械制动器或整流器直流链路(dc-link)中的动态制动器的组合来降低发电机的速度。 
需要的是一种用于发电机的冗余可控低成本制动系统。优选地,该制动系统以迅速、安全及可靠的方式对发电机进行去激励。 
发明内容
通过本发明可克服或消除上述及其他缺陷及不足。 
本发明揭示了一种电功率转换器,其包括:控制单元;发电机侧转换器;电网侧转换器;耦合所述发电机侧转换器以及所述电网侧转换器的共用直流总线;耦合至所述直流总线并设置用于从所述控制单 元接收制动信号的动态制动器;以及耦合至所述发电机侧转换器并设置用于从所述控制单元接收另一制动信号的急剧短路线路。 
本发明还揭示了一种用于将发电机去激励的方法,包括以下步骤:提供电功率转换器,所述电功率转换器包括控制单元;发电机侧转换器;电网侧转换器;耦合所述发电机侧转换器以及所述电网侧转换器的共用直流总线;耦合至所述直流总线并设置用于从所述控制单元接收制动信号的动态制动器;以及耦合至所述发电机侧转换器并设置用于从所述控制单元接收另一制动信号的急剧短路线路;从所述控制单元发出所述制动信号以及所述另一制动信号其中至少一者,以消耗来自所述发电机的功率;并且利用所述动态制动器以及所述急剧短路线路其中至少一者来消耗所述功率。 
本发明还揭示了一种存储在机器可读媒介上的计算机程序产品,该产品具有将发电机去激励的指令,该发电机包括电功率转换器,其包括:控制单元;发电机侧转换器;电网侧转换器;耦合所述发电机侧转换器以及所述电网侧转换器的共用直流总线;耦合至所述直流总线并设置用于从所述控制单元接收制动信号的动态制动器;以及耦合至所述发电机侧转换器并设置用于从所述控制单元接收另一制动信号的急剧短路线路,该指令包括用于从所述控制单元发出所述制动信号以及所述另一制动信号其中至少一者以消耗来自所述发电机的功率以及利用所述动态制动器以及所述急剧短路线路其中至少一者来消耗所述功率的指令。 
本领域技术人员通过以下详细描述及附图将懂得并理解本发明的特征及优点。 
附图说明
现在参考附图,其中在数个附图中以相同标号表示相同的元件,其中: 
图1示出了采用动态制动器及急剧短路线路作为冗余保护系统的发电机的各个方面;及 
图2是流程图,示出了用于使用冗余保护系统的示意性逻辑线路。 
具体实施方式
这里的教导提供了具有动态制动器及急剧短路线路用于对发电机有效去激励的冗余保护系统。 
在本说明书中,术语“干扰”、“电网干扰”、“故障”、“系统故障”、“瞬变”以及其他类似技术术语总体指引起(发电机电连接至其的)电网信号扰动的各种事件。会引起电网信号干扰(例如,电网故障)的上述事件的示例是公知的,将不在本说明书中讨论。不可避免地,因为各种发电设备对电网信号起作用并且会产生包括瞬变事件的各种现象,故电网信号分量会在某种程度上劣化或改变。当选择电制动器及保护系统的自动响应时,通常由系统管理员来选择对信号扰动的容许量。 
在本说明书中,发电机产生三相电信号。但是,应该理解的是,对三相信号的讨论仅是为便于说明,而并不构成对本发明的限制。例如,本发明可应用于单相、双相及其他多相或复相(poly-phase)信号。 
本领域技术人员将理解,对本发明而言,对风轮机的引用仅为说明而非限制。例如,用于发电机的其他动力可以包括水力涡轮机、燃气轮机以及其他类似设备。因此,应当理解的是,示例性实施例的某些方面与其他实施例具有相应部件,并享有类似(而非相同)的术语命名。 
现参考图1,示出了风轮机100的示例性方面。在图1的示例中,风轮机100包括与定子总线102耦合的发电机101。定子总线102耦合至提供到电网180的耦合的变频器103。耦合至电网180通常涉及利用电网耦合变压器181及主开关182。在本示例中,发电机101包括用于对发电机101进行制动的制动单元105。 
变频器103(也被称为“电力转换器”)包括用于产生与电网180同步的电信号的各种部件。与变频器103相关的非限制性部件包括与定子总线102及发电机侧转换器111相耦合的发电机接触器110。发电机侧转换器111从发电机101接收交流(AC)输入信号,并将此电气输入转换为直流(DC)信号。发电机侧转换器111通过DC总线130向电网侧转换器121提供DC信号。电网侧转换器121将该DC信号转换为适于向电网180供应的AC输出信号。通过线路接触器120向电网180进行供应。通过转换器控制单元140来控制变频器103中各种部件中至少一部分的工作。
风轮机100还包括动态制动器210及急剧短路线路220。剩余负载(dump load)电阻器221通过急剧短路线路220及剩余负载接触器222中至少一者被使用。动态制动器210与急剧短路线路220两者均耦合至转换器控制单元140用于控制其工作。在本示例中,至少一个剩余负载电阻器221与发电机接触器110并联耦合到定子总线102。急剧短路线路220及剩余负载接触器222到定子总线102的耦合也为并联,并串联在剩余负载电阻器221之后。 
在本示例中,通过风轮机控制单元190来对风轮机100的工作进行控制。在本示例中,风轮机控制单元190耦合至制动单元105、剩余负载接触器222及转换器控制单元140。通常,风轮机控制单元190向转换器控制单元140、剩余负载接触器222及机械制动器105发出至少一个制动信号。转换器控制单元140向动态制动器210及急剧短路线路220发出制动能分配信号。 
风轮机100的各种接触器以公知的方式实现开闭功能。 
在本说明书中,动态制动器210与急剧短路线路220的组合与机械制动器105及剩余负载接触器222同工作提供了用于风轮机100的冗余保护系统。 
作为设计冗余保护系统的第一种方案,使用动态制动器210来防止DC总线130过压,由此保护发电机侧转换器111及电网侧转换器121。通过以此方式使用动态制动器210,仅需要偶尔激活急剧短路线路220。因此,改进了在电网干扰期间发电机侧转换器111的可控性。 
作为设计冗余保护系统的第二种方案,动态制动器210具有足够大的功率额定值,由此可以消除或修改急剧短路线路220。但是,该第二方案通常需要昂贵且笨重的动态制动器210设计。 
本领域的技术人员将理解,至少通过平衡本发明的各个方面来解决冗余保护系统的设计问题。因此,可以调整用于风轮机100的冗余保护系统设计,以降低动态制动器210的容量并限制对急剧短路线路220的激励。也可以考虑其他方面。例如,动态制动器210可具有当与急剧短路线路220的设计特征一同使用时获得最快速去激励的设计特征。因此,可认为讲冗余保护系统通常包括“平衡设计”。 
对于动态制动器210,其通常包括例如具有与发电机101的额定性 能等同的额定性能的动态制动器电阻器211以及制动斩波器(brakechopper)212。通常将制动斩波器212设置在发电机侧转换器111与电网侧转换器121之间,并通常与至少一个DC电容器131并联。在本示例中,动态制动器210以及至少一个DC电容器131与DC总线130耦合。 
对于急剧短路线路220,剩余负载接触器222从转换器控制单元140接收命令。可通过对急剧短路线路220的激励以及对剩余负载接触器222的激励其中至少一者来使用剩余负载电阻器221。通常,对剩余负载电阻器221的额定值与发电机101的额定值类似,但是,这仅是示例而非限制。在一些实施例中,剩余负载电阻器221包括多个电阻器组。在这些实施例中,对剩余负载电阻器221的使用可能需要在涉及对急剧短路线路220及剩余负载接触器222进行顺序激励的逐步处理中使用保护特性。 
在常规操作中,冗余保护系统通过使用发电机侧转换器111可提供与剩余负载电阻器221及动态制动器210之和相等的总制动功率。当风轮机100并未电耦合至电网180时,通过发电机侧转换器111传输的过剩功率可在动态制动器电阻器211中消耗。如果制动功率小于动态制动器210的额定功率,则仅使发电机侧转换器111工作并将功率传递至动态制动器210。如果功率超过动态制动器210的额定功率,则至少一个剩余负载电阻器221工作。在示例性实施例中,在动态制动器210的0.8至1每单位额定功率之间使得至少一个剩余负载电阻器221工作。 
在另一实施例中,在发电机侧转换器111的AC端子处设置急剧短路线路220以及在发电机侧转换器111的DC侧端子处设置动态制动器210可对功率消耗提供很高水平的控制。对急剧短路线路220及动态制动器210两者的控制可提供停止发电机101的性能同时遵循希望的转矩-速度曲线。 
本发明还提供了其他优点。例如,冗余确保了保护系统可使用(例如,如果发电机侧转换器111与电网侧转换器121其中一者失效,则剩余负载电阻器221可对任何涡轮机超速进行有效制动及减振)。因为可以有效地控制制动所需的转矩,故可以减轻风轮机100内的机械应力。应用冗余保护系统可缩短制动时间,相较于其他制动技术该制动时间更短。 
虽然一些现有技术需要设计转换器具有适于制动的额定功率,但在本发明中则不需要。即,通过冗余保护系统,各个转换器的额定功率独立于制动转矩需求。因此,每个转换器均不需要增加的功率余量,由此各个转换器不会过大。即使发电机侧转换器111及急剧短路线路220失效,发电机接触器110也可工作以在剩余负载电阻器221中消耗功率。在此情况下,转换器控制单元140也可与制动单元105协调以使发电机101停机。这些示例性优点以及其他优点有助于成本降低及安装灵活性。 
简而言之,上述冗余保护系统包括其中结合了两个功率消耗路径的系统。一条路径包括发电机侧转换器111,另一条路径包括剩余负载电阻器221。还可以设计发电机侧转换器111以适应发电机101的定额输出额定功率,同时剩余负载电阻器221被设计大小以提供额外所需的制动功率(例如,如果所需最大制动功率两倍于电网侧转换器121的额定值,则相应地设计剩余负载电阻器221的大小以补偿发电机侧转换器111的额定值与所需制动功率之间的差值)。 
现参考图2,提供了用于对发电机101进行制动的示例性逻辑。涡轮机制动300通过发出制动指令301开始工作。风轮机控制单元190进行发电机侧转换器111是否可使用的判定。如果发电机侧转换器111不能使用,则风轮机控制单元190使制动单元工作302。如果发电机侧转换器111可使用,则转换器控制单元140进行所需制动功率大小的判定。如果所需制动功率小于发电机101的额定输出功率,则转换器控制单元140工作以在发电机侧转换器中消耗功率303。如果电网180可使用,则电网侧转换器121正常工作,然后将制动功率输送至电网304(同时禁用动态制动器210)。如果电网180不可用,或者电网侧转换器121并未正常工作,则使动态制动器可工作305。 
在所需制动功率超过输出功率的情况下,使剩余负载电阻工作306。当剩余负载电阻工作306时,发电机侧转换器111通常将剩余制动功率消耗。如果剩余负载电阻工作306,则还进行电网180可用性的判定。如果电网180可工作,并且电网侧转换器121正常工作则将制动功率输送至电网304(同时禁用动态制动器210)。如果电网180不可用,或者电网侧转换器121并未正常工作,则使动态制动器可工 作305。 
在剩余负载电阻工作306时除了进行电网180是否可用的判定,还进行急剧短路线路220是否可用的判定。如果急剧短路线路220可用,则急剧短路线路工作307。如果急剧短路线路220不可用,则剩余负载接触器工作308。 
通常,发出制动指令301涉及要求对发电机101进行制动及保护的操作员及风轮机控制单元190其中一者。在一个示例中,人工发出指令以断开发电机101以进行维护。但是,在其他实施例中,可以响应系统故障来通过诸如风轮机控制单元190或转换器控制单元140的系统监控设备自动发出指令。 
当然,上述逻辑仅是示例性的,因此不是对在冗余保护系统工作期间可能会发生的顺序和事件的穷尽性描述。尽管这里描述的示例性风轮机100包括具有在约100kW与5MW之间的额定输出的发电机101,但这仅是示例性而非限制性。即,可以实现本发明而不被发电机101的额定功率所限。 
对于冗余保护系统工作的各个方面,当所需制动功率处于发电机侧转换器111的额定功率内时,通常禁用剩余负载电阻器221,并使用发电机侧转换器111以适于所需制动功率。当发电机侧转换器111可在发出制动指令时调节所需制动功率时,通常遵循上述该方法。当所需制动功率超过发电机侧转换器111的额定功率时,使用剩余负载电阻器221及发电机侧转换器111两者。通常,转换器控制单元140工作以调节制动功率。 
当电网180可用且电网侧转换器121也可用时,发电机侧转换器111通常将向电网180供应高达100kW制动功率直至发电机侧转换器111的额定功率。或者,当电网180不可用或者电网侧转换器121处于故障状态时,将激励动态制动器210并在动态制动器电阻器211中消耗制动功率。快速响应时间(通常为数微秒)使得急剧短路线路220具有较高的工作优先级。通常通过使用诸如IGBT或半导体闸流管等的半导体来实现上述快速响应时间。如果急剧短路线路220处于故障状态,则剩余负载接触器222闭合。 
在另一实施例中,如果发电机侧转换器111不可用(例如,如果发电机侧转换器111处于故障模式或发电机侧转换器111与涡轮机控 制单元190之间的通信处于故障模式),则通过对剩余负载接触器222致动而使剩余负载电阻器221工作,且制动单元105也被激励。在此情况下,相较于机械制动单元105,剩余负载电阻器221将有助于防止因快速响应时间而导致的超速。此外,剩余负载电阻器221减小制动单元105的负载,由此延长制动单元105的寿命。 
通常情况下,冗余保护系统提供比在正常工作状态下发电机101的额定输出功率大很多的最大制动功率。例如,冗余保护系统提供两倍或甚至更多倍于发电机101的额定输出的最大制动功率。 
尽管已参考风轮机100描述了本发明,但本领域的技术人员将理解本发明还可应用于其他部件。例如,可有利地使用动态制动器210及急剧短路线路220以保护各种功率产生装置及功率消耗装置。可应用本发明的设备的非限制性示例包括:其他类型的发电机转换器;变速泵;燃料电池转换器;变速风扇;以及变速处理控制设备。 
虽然已经参考了示例性实施例描述了本发明,但本领域人员将理解的是可以进行各种改变且可利用等同物替换上述元件而不脱离本发明的范围。此外,可以根据本发明的教导进行很多改进以适应具体情况或材料而不脱离其实质范围。因此,本发明并不意在限于作为实施本发明的最佳示例所揭示的具体实施例,而可包括落入所附权利要求范围内的全部实施例。 

Claims (16)

1.一种电功率转换器,包括:
转换器控制单元;
经发电机接触器耦合到定子总线的发电机侧转换器;
电网侧转换器;
耦合所述发电机侧转换器以及所述电网侧转换器的共用直流总线;
耦合至所述直流总线的动态制动器,所述动态制动器包括连接跨越所述直流总线的斩波器和连接在所述斩波器和直流总线之间的动态制动器电阻器,所述动态制动器构造成响应于接收到来自所述转换器控制单元的制动功率分配信号而在动态制动器电阻器中消耗过剩的功率;以及
经定子总线耦合至所述发电机接触器的急剧短路线路,所述急剧短路线路构造成响应于接收到来自所述转换器控制单元的制动功率分配信号而使用耦合到所述定子总线的剩余负载电阻器,所述剩余负载电阻器的额定值定为发电机的额定值。
2.如权利要求1所述的电功率转换器,其中直流电容器与所述动态制动器并联地耦合至所述直流总线。
3.如权利要求1所述的电功率转换器,其中,所述斩波器介于发电机侧转换器与电网侧转换器之间,并与耦合至直流总线的直流电容器并联。
4.如权利要求1所述的电功率转换器,其中,所述剩余负载电阻器用于消耗来自所述发电机侧转换器的电功率。
5.如权利要求1所述的电功率转换器,所述急剧短路线路包括耦合到定子总线的剩余负载接触器用于引导制动功率。
6.如权利要求1所述的电功率转换器,还包括机械制动器单元,所述机械制动器单元构造成用于接收来自风轮机控制单元的制动信号并且施加制动力到发电机。
7.如权利要求1所述的电功率转换器,其中,所述动态制动器电阻器的额定值定为发电机的额定值。
8.如权利要求1所述的电功率转换器,其中,所述动态制动器和急剧短路线路形成用于对发电机有效去激励的冗余保护系统。
9.如权利要求1所述的电功率转换器,其中,到发电机侧转换器的输入信号包括单相、双相、三相、多相或复相信号。
10.如权利要求1所述的电功率转换器,其中,来自电网侧转换器的输出信号包括单相、双相、三相、多相或复相信号。
11.一种用于将发电机去激励的方法,包括以下步骤:
提供电功率转换器,所述电功率转换器包括:转换器控制单元;经发电机接触器耦合到定子总线的发电机侧转换器;电网侧转换器;耦合所述发电机侧转换器与所述电网侧转换器的共用直流总线;耦合至所述直流总线的动态制动器,所述动态制动器包括连接跨越所述直流总线的斩波器和将所述斩波器连接到所述直流总线的动态制动器电阻器,并且构造成用于接收来自所述控制单元的制动信号;以及经定子总线耦合至所述发电机接触器的急剧短路线路,所述急剧短路线路构造成响应于接收到所述制动信号而使用耦合到所述定子总线的剩余负载电阻器;
发出所述制动信号;并且
利用所述动态制动器以及所述剩余负载电阻器中的至少一个来消耗来自发电机的能量,剩余负载电阻器和动态制动器电阻器中的至少一个的额定值定为发电机的额定值。
12.如权利要求11所述的用于将发电机去激励的方法,其中进行所述消耗的步骤包括在所要求的制动功率在发电机侧转换器的额定功率内时禁止所述剩余负载电阻器。
13.如权利要求11所述的用于将发电机去激励的方法,其中所述发出包括手动发出及自动发出中的一个。
14.如权利要求11所述的用于将发电机去激励的方法,其中,消耗所述能量的步骤包括将过剩功率传输至所述动态制动器以及所述剩余负载电阻器中的至少一个。
15.如权利要求14所述的用于将发电机去激励的方法,其中,将过剩功率传输至所述急剧短路线路包括逐步使用所述急剧短路线路以及剩余负载接触器。
16.如权利要求11所述的用于将发电机去激励的方法,其中,进行所述提供的步骤包括使动态制动器和急剧短路线路形成用于对发电机有效去激励的冗余保护系统。
CN200710108216XA 2006-06-02 2007-06-04 用于发电机的冗余电制动器及保护系统 Active CN101087122B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/421912 2006-06-02
US11/421,912 US7586216B2 (en) 2006-06-02 2006-06-02 Redundant electrical brake and protection system for electric generators

Publications (2)

Publication Number Publication Date
CN101087122A CN101087122A (zh) 2007-12-12
CN101087122B true CN101087122B (zh) 2011-11-16

Family

ID=38514238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710108216XA Active CN101087122B (zh) 2006-06-02 2007-06-04 用于发电机的冗余电制动器及保护系统

Country Status (4)

Country Link
US (1) US7586216B2 (zh)
EP (1) EP1863162B1 (zh)
CN (1) CN101087122B (zh)
DK (1) DK1863162T3 (zh)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014880A1 (en) * 2007-07-09 2009-01-14 Universiteit Gent An improved combined heat power system
JP5360050B2 (ja) * 2008-03-21 2013-12-04 シンフォニアテクノロジー株式会社 風車の回転検知管理装置及び風力発電システム
DE112009000663B4 (de) * 2008-03-25 2022-11-03 General Electric Technology Gmbh Verfahren zum betrieb einer kraftwerksanlage
ES2358711B1 (es) * 2008-09-18 2012-03-23 Gamesa Innovation & Technology, S.L. Mã‰todo para parar un aerogenerador en dos etapas.
US7786608B2 (en) * 2008-11-17 2010-08-31 General Electric Company Protection system for wind turbine
DE602008002602D1 (de) * 2008-12-19 2010-10-28 Openhydro Ip Ltd Verfahren zum Installieren eines hydroelektrischen Turbinengenerators
EP2411665A1 (de) * 2009-03-26 2012-02-01 Powerwind GmbH Verfahren und schaltungsanordnung zum betreiben einer windenergieanlage an einem elektrischen versorgungsnetz
DE102009017824B4 (de) 2009-04-20 2011-03-17 Suzlon Energy Gmbh Übertragungsvorrichtung für eine Windturbine
EP2270331B1 (en) 2009-06-30 2020-03-04 Vestas Wind Systems A/S Wind turbine with control means to manage power during grid faults
DE102009027981B4 (de) * 2009-07-23 2011-04-28 Suzlon Energy Gmbh Verfahren zum Betreiben einer an einem Stromnetz angeschlossenen Windturbine sowie zur Durchführung des Verfahrens geeignete Windturbine
US8154833B2 (en) * 2009-08-31 2012-04-10 General Electric Company Line side crowbar for energy converter
US8080891B2 (en) * 2009-09-25 2011-12-20 General Electric Company Hybrid braking system and method
EP2302755B1 (en) 2009-09-29 2012-11-28 OpenHydro IP Limited An electrical power conversion system and method
US7978445B2 (en) * 2009-12-31 2011-07-12 General Electric Company Systems and apparatus relating to wind turbine electrical control and operation
CN101741100A (zh) * 2010-01-11 2010-06-16 华锐风电科技(集团)股份有限公司 低电压穿越控制方案
US20110243750A1 (en) 2010-01-14 2011-10-06 Neptco, Inc. Wind Turbine Rotor Blade Components and Methods of Making Same
US10137542B2 (en) 2010-01-14 2018-11-27 Senvion Gmbh Wind turbine rotor blade components and machine for making same
US9217420B2 (en) 2010-02-02 2015-12-22 Vestas Wind Systems A/S Test system for wind turbine dump load
EP2362527A1 (en) * 2010-02-25 2011-08-31 Goliath Wind Ltd. Wind turbine electrical brake
DE202010003347U1 (de) * 2010-03-09 2010-06-24 Ritz-Atro Gmbh Wasserkraftanlage
WO2011133024A2 (en) * 2010-04-19 2011-10-27 Synervisie B.V. Highly integrated energy conversion system for wind, tidal or hydro turbines
ES2691413T3 (es) * 2010-05-27 2018-11-27 Vestas Wind Systems A/S Convertidor de potencia de alta tensión
US20130147194A1 (en) * 2010-06-14 2013-06-13 Ingeteam Power Technology, S.A. Electricity generation system that withstands voltage dips
ES2384928B1 (es) 2010-06-25 2013-05-20 Telefónica, S.A. Método y sistema para la identificación rápida y robusta de productos específicos en imágenes.
US20110141641A1 (en) * 2010-06-30 2011-06-16 General Electric Company Circuit breaker with overvoltage protection
EP2589129B1 (en) 2010-06-30 2019-09-18 Vestas Wind Systems A/S Wind turbine
US8018083B2 (en) * 2010-08-05 2011-09-13 General Electric Company HVDC connection of wind turbine
CN101917156B (zh) * 2010-08-30 2012-11-14 南车株洲电力机车研究所有限公司 应对电网电压短时间跌落的风力发电机组防护方法及装置
CN101944747A (zh) * 2010-09-15 2011-01-12 邵诗逸 无刷级联双馈风力发电机组的低电压故障穿越方法
EP2621071A4 (en) * 2010-09-22 2017-05-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
US8093741B2 (en) * 2010-10-29 2012-01-10 General Electric Company Method and system for providing increased turbine output for doubly fed induction generator
DK2453133T3 (da) 2010-11-11 2017-11-20 Ingeteam Power Tech Sa Strømomformerstyringsfremgangsmåde
WO2012076015A2 (en) * 2010-12-10 2012-06-14 Vestas Wind Systems A/S A method of operating a wind turbine as well as a system suitable therefore
US9353732B2 (en) 2010-12-23 2016-05-31 Vestas Wind Systems A/S Method of operating a wind turbine as well as a system suitable therefor
EP2469072B1 (en) * 2010-12-27 2015-04-15 Openhydro IP Limited A hydroelectric turbine and method of braking the hydroelectric turbine
US8631275B2 (en) * 2010-12-28 2014-01-14 Vestas Wind Systems A/S Controller arrangement of an electrical power transfer system of a wind turbine
EP2476900A1 (en) * 2011-01-18 2012-07-18 Siemens Aktiengesellschaft Wind turbine
DE102011000459B4 (de) * 2011-02-02 2017-11-02 Universität Kassel Verfahren zur Lieferung von Blindstrom mit einem Umrichter sowie Umrichteranordnung und Energieversorgungsanlage
EP2492502B1 (en) * 2011-02-25 2018-09-05 Siemens Aktiengesellschaft A wind turbine with a generator
WO2012130247A1 (en) * 2011-03-30 2012-10-04 Vestas Wind Systems A/S Redundant power supply architecture
WO2012146250A2 (en) * 2011-04-28 2012-11-01 Vestas Wind Systems A/S A variable wind turbine having a power dissipating unit; a method of operating a power dissipating unit in a wind turbine
DE102011105854B4 (de) 2011-06-03 2013-04-11 Nordex Energy Gmbh Verfahren zum Betreiben einer Windenergieanlage bei Auftreten eines Netzfehlers sowie eine solche Windenergieanlage
CN103797703A (zh) 2011-07-27 2014-05-14 维斯塔斯风力系统集团公司 风力涡轮机中的功率耗散装置
CN102957163A (zh) * 2011-08-23 2013-03-06 台达电子企业管理(上海)有限公司 一种双馈型风力发电系统的直流斩波装置及其方法
CN102983587B (zh) * 2011-09-07 2015-01-07 台达电子企业管理(上海)有限公司 具有超速保护的风力发电系统及其操作方法
CN103018615B (zh) * 2011-09-23 2015-04-15 台达电子企业管理(上海)有限公司 一种在风电机组中用于检测撬棍电路的装置及其方法
US8897040B2 (en) 2011-10-24 2014-11-25 General Electric Company Power converter systems and methods of operating a power converter system
DK177555B1 (en) 2011-11-04 2013-10-07 Envision Energy Denmark Aps Wind Turbine with Additional Rotor Moment of Inertia
EP2788619B1 (en) * 2011-12-08 2020-04-15 Vestas Wind Systems A/S Method and system for controlled shutdown of wind turbines
EP2798201B1 (en) 2011-12-29 2020-03-18 Vestas Wind Systems A/S A wind turbine and a method of operating thereof
CN102570503A (zh) * 2011-12-30 2012-07-11 东方电气集团东方汽轮机有限公司 一种双馈风力发电系统
US8907510B2 (en) 2012-03-09 2014-12-09 General Electric Company Method and systems for operating a wind turbine
JP5369225B1 (ja) * 2012-06-22 2013-12-18 ファナック株式会社 アンプ保護機能を備えた同期電動機の制御装置及び制御方法
US9369076B2 (en) 2012-07-12 2016-06-14 General Electric Company Dynamic braking system for an electric power system and method of operating the same
US8664788B1 (en) 2012-09-07 2014-03-04 General Electric Company Method and systems for operating a wind turbine using dynamic braking in response to a grid event
DK177684B1 (en) * 2012-12-21 2014-03-03 Envision Energy Denmark Aps Wind turbine having a HTS generator with a plurality of phases
CN103078565B (zh) * 2012-12-25 2016-02-03 北京金风科创风电设备有限公司 发电机制动设备
US9941687B2 (en) * 2013-06-04 2018-04-10 General Electric Company Methods for operating wind turbine system having dynamic brake
CN104348342B (zh) * 2013-08-02 2019-05-31 通用电气公司 电能变换系统和方法
DK3063851T3 (da) 2013-10-31 2022-02-28 Gen Electric System og fremgangsmåde til styring af vindkraftgenereringssystemer
CN104753402B (zh) * 2013-12-25 2017-08-25 台达电子工业股份有限公司 发电机制动系统及其控制方法
CN104767441B (zh) * 2014-01-06 2018-02-09 台达电子工业股份有限公司 电源控制系统及方法
EP2990628A1 (de) * 2014-08-28 2016-03-02 Siemens Aktiengesellschaft Bremseinrichtung für eine Gasturbine bei Lastabwurf
CN104348144B (zh) * 2014-10-31 2017-11-03 国网宁夏电力公司电力科学研究院 一种风电场送出线路的故障检测方法
US10050433B2 (en) * 2014-12-11 2018-08-14 General Electric Company Power generation system and method with resistive braking capability
US9945359B2 (en) 2015-08-13 2018-04-17 Abb Schweiz Ag DC output wind turbine with power dissipation
US10243352B2 (en) * 2016-07-29 2019-03-26 General Electric Company Battery-supported braking system for a wind turbine
US10458206B2 (en) * 2016-10-06 2019-10-29 Saudi Arabian Oil Company Choke system for wellhead assembly having a turbine generator
US10103663B1 (en) * 2017-04-18 2018-10-16 General Electric Company Control method for protecting switching devices in power converters in doubly fed induction generator power systems
US10662923B2 (en) * 2017-09-29 2020-05-26 General Electric Company Contingency autonomous yaw control for a wind turbine
US10615727B2 (en) * 2018-08-27 2020-04-07 General Electric Company Dynamic brake circuit assembly for a wind turbine
CN109361329B (zh) * 2018-11-29 2020-10-13 华自科技股份有限公司 中大型机组制动系统及方法
CN111610437B (zh) * 2020-04-07 2022-03-25 武汉迈信电气技术有限公司 动态制动电路、基于该电路的状态检测和故障处理方法
US11480153B2 (en) * 2020-05-21 2022-10-25 General Electric Company System and method for controlling a wind turbine to protect the wind turbine from anomalous operations
CN111648911B (zh) * 2020-06-30 2021-07-16 国家电网有限公司 一种防止水电站机组机械制动高转速加闸的控制方法
US20240072607A1 (en) * 2022-08-31 2024-02-29 Sapphire Technologies, Inc. Brake resistor design for controlling rotor speed during generator shutdown sequence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225712A (en) * 1991-02-01 1993-07-06 U.S. Windpower, Inc. Variable speed wind turbine with reduced power fluctuation and a static VAR mode of operation
US5465202A (en) * 1990-11-30 1995-11-07 Hitachi, Ltd. Inverter apparatus provided with electric discharge control circuit of dc smoothing capacitor and method of controlling the same
US6812586B2 (en) * 2001-01-30 2004-11-02 Capstone Turbine Corporation Distributed power system
CN1625831A (zh) * 2002-01-29 2005-06-08 威斯塔斯风力系统公开有限公司 风力装置中仅用于信息功能的电路结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127085A (en) * 1991-04-01 1992-06-30 General Motors Corporation Ride-through protection circuit for a voltage source inverter traction motor drive
DE19735742B4 (de) * 1997-08-18 2007-11-08 Siemens Ag Über- und untersynchrone Stromrichterkaskade
BRPI0418588B1 (pt) * 2004-03-12 2021-10-13 General Electric Company Método para operar um conversor de frequência de um gerador e uma turbina de energia eólica apresentando um gerador operado de acordo com o método
US7378808B2 (en) * 2004-05-25 2008-05-27 Caterpillar Inc. Electric drive system having DC bus voltage control
US7239036B2 (en) * 2005-07-29 2007-07-03 General Electric Company System and method for power control in wind turbines
US7423412B2 (en) * 2006-01-31 2008-09-09 General Electric Company Method, apparatus and computer program product for injecting current
US7394166B2 (en) * 2006-10-04 2008-07-01 General Electric Company Method, apparatus and computer program product for wind turbine start-up and operation without grid power

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465202A (en) * 1990-11-30 1995-11-07 Hitachi, Ltd. Inverter apparatus provided with electric discharge control circuit of dc smoothing capacitor and method of controlling the same
US5225712A (en) * 1991-02-01 1993-07-06 U.S. Windpower, Inc. Variable speed wind turbine with reduced power fluctuation and a static VAR mode of operation
US6812586B2 (en) * 2001-01-30 2004-11-02 Capstone Turbine Corporation Distributed power system
CN1625831A (zh) * 2002-01-29 2005-06-08 威斯塔斯风力系统公开有限公司 风力装置中仅用于信息功能的电路结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2005-335695A 2005.12.08

Also Published As

Publication number Publication date
EP1863162A3 (en) 2014-03-19
EP1863162B1 (en) 2016-05-18
DK1863162T3 (en) 2016-07-18
EP1863162A2 (en) 2007-12-05
US7586216B2 (en) 2009-09-08
CN101087122A (zh) 2007-12-12
US20070279815A1 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
CN101087122B (zh) 用于发电机的冗余电制动器及保护系统
CN102118037B (zh) 与风力涡轮机电气控制和操作相关的系统和设备
US9366233B2 (en) Method and arrangement for controlling an operation of an electric energy production facility during a disconnection to a utility grid
KR100997559B1 (ko) 임계 부하에 확실한 전력을 공급하기 위한 시스템
CN101005204B (zh) 操作双馈感应发电机的系统和方法
CN102066748B (zh) 风力涡轮机运行方法及系统
CN101682286B (zh) 用于在暂态电网电压变化下运行双馈异步电机的方法和设备
EP3032684B1 (en) Power generation system and method with resistive braking capability
JP4546486B2 (ja) 電力ネットワーク
US20090021963A1 (en) Uninterruptible power supply, connected to a grid
CN102396128A (zh) 用于将光伏器件连接到交流电网的方法和设备
US9257929B2 (en) Excitation control circuit, control method and electrically excited wind power system having the same
US10581247B1 (en) System and method for reactive power control of wind turbines in a wind farm supported with auxiliary reactive power compensation
WO2013159306A1 (en) Power converter system, damping system, and method of operating power converter system
CN102223126A (zh) 用于风力发电低电压穿越的变电阻Crowbar结构及其实现方法
US20140103886A1 (en) Method for producing reactive current with a converter and converter arrangement and energy supply plant
US9300131B2 (en) Internal electrification scheme for power generation plants
WO2011059425A2 (en) Improved internal electrification scheme for power generation plants
Wang et al. A redundant electrical braking system for wind turbine generators
Popat et al. Fault ride-through of PMSG-based offshore wind farm connected through cascaded current source converter-based HVDC
Krneta et al. Low-Voltage Ride-Through Method of the HVDC Transmission System for Feeding Islanded Offshore AC Loads
Siemaszko et al. MVDC Distribution Concept for Green Data Centers: Achieving the Sustainability Roadmap with Highest Efficiency
CN112751363A (zh) 一种风光集成式电压变送方法以及主控器
Teixeira Fault ride-through capabilities: the problem, solutions and costs

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240109

Address after: Barcelona, Spain

Patentee after: Ge renewable energy Spain Ltd.

Address before: New York, United States

Patentee before: General Electric Co.

TR01 Transfer of patent right