CN101060229A - Low noise all solid-state blue laser resonant cavity - Google Patents

Low noise all solid-state blue laser resonant cavity Download PDF

Info

Publication number
CN101060229A
CN101060229A CN 200710040846 CN200710040846A CN101060229A CN 101060229 A CN101060229 A CN 101060229A CN 200710040846 CN200710040846 CN 200710040846 CN 200710040846 A CN200710040846 A CN 200710040846A CN 101060229 A CN101060229 A CN 101060229A
Authority
CN
China
Prior art keywords
laser
crystal
etalon
frequency
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200710040846
Other languages
Chinese (zh)
Inventor
郭震
朱健强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Shanghai Micro Electronics Equipment Co Ltd
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN 200710040846 priority Critical patent/CN101060229A/en
Publication of CN101060229A publication Critical patent/CN101060229A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

The disclosed low-noise full-solid blue laser resonant cavity for I-type phase matching multiple frequency crystal comprises: a semi-conductor laser; on the pumping light direction, a coupling lens, a laser crystal with a standard tool and quartz crystal full-wave sheet between the crystal and an I-type phase matching multiple frequency crystal, and an output lens. This invention improves output stability and reduces laser noise efficiently.

Description

Low noise all solid-state blue laser resonant cavity
Technical field
The present invention relates to all solid laser, particularly a kind of low noise all solid-state blue laser resonant cavity.
Background technology
The small-sized blue laser of semiconductor laser pumping intracavity frequency doubling is a kind of technology that fine prospect is arranged, and its scheme is to utilize diode-end-pumped Nd:YAG, suppresses 1064nm and 1319nm starting of oscillation by the plated film means, thereby obtains Nd 3+The 946nm transition ( 4F 3/2- 4I 9/2) laser line, carry out intracavity frequency doubling with frequency-doubling crystal again, thereby obtain the blue laser output that wavelength is 473nm.A subject matter that influences this laser application is that the momentary fluctuation of output is big, and promptly noise is big.Studies show that, this noise mainly because of the many longitudinal modes of fundamental frequency light in frequency-doubling crystal with frequency effect, and the intercoupling of two polarized components of non-polarized Raman laser.Based on this theory, a direct method of elimination or minimizing laser noise forces the laser single-frequency operation exactly.The frequency-selecting method of having reported at present comprises:
Short cavity menu longitudinal mode method is made up of semiconductor laser 1, coupling mirror 2, laser crystal 3, the frequency-doubling crystal output cavity mirror 6 of holding concurrently as Fig. 1;
F-P etalon menu longitudinal mode method is made up of semiconductor laser 1, coupling mirror 2, laser crystal 3, etalon 15, frequency-doubling crystal 6, etalon 16, output cavity mirror 7 as Fig. 2;
Orthogonal polarization modes menu longitudinal mode method is made up of semiconductor laser 1, coupling mirror 2, laser crystal 3, frequency-doubling crystal 6, quarter wave plate 17, output cavity mirror 7 as Fig. 3;
Birefringence filter plate menu longitudinal mode method is made up of semiconductor laser 1, coupling mirror 2, laser crystal 3, polarizer 18, quartz crystal full-wave plate 5, frequency-doubling crystal 6, output cavity mirror 7 as Fig. 4;
Travelling-wave cavity menu longitudinal mode method is made up of semiconductor laser 1, coupling mirror 2, input cavity mirror 19, laser crystal 3,1/2 wave plate 20, TGG Faraday rotator 21, speculum 22, speculum 23, frequency-doubling crystal 6, output cavity mirror 7 as Fig. 5.
Short cavity method menu longitudinal mode method needs restricted room long, and this has just limited endovenous laser crystal, frequency-doubling crystal and other various size of component, thereby makes power output very little and operational mode is single, only is fit to be applied in the microchip laser; F-P etalon menu longitudinal mode method generally need be inserted two etalons simultaneously just can reach desirable frequency-selecting effect, and this just makes that loss is excessive, thereby has limited the laser transformation efficiency; The ability of orthogonal polarization modes menu longitudinal mode method elimination Mode Coupling is not good enough, and long-term working stability is not enough; Birefringence filter plate method suppresses the limited in one's ability of many longitudinal modes running, single-frequency operation stable not good enough; Travelling-wave cavity method structure is too complicated, adjusts the difficulty height, is not suitable for producing in batches.
Summary of the invention
The object of the present invention is to provide a kind of low noise all solid-state blue laser resonant cavity that is applicable to the semiconductor laser pumping intracavity frequency doubling, so that better solve its noise problem.
Technical solution of the present invention is as follows:
A kind of low noise all solid-state blue laser resonant cavity, the pump direction that comprises semiconductor laser and send along this semiconductor laser with optical axis the coupling mirror that sets gradually, laser crystal, I class phase matched frequency-doubling crystal, the output cavity mirror, it is characterized in that between described laser crystal and I class phase matched frequency-doubling crystal, being placed with etalon and quartz crystal full-wave plate, described laser crystal left side is coated with to the antireflective film of pump light with to the multilayer dielectric film of the high reflectance of fundamental frequency light, the right side is coated with the anti-reflection deielectric-coating to fundamental frequency light, described output cavity mirror left side is coated with the deielectric-coating to the high reflectance of fundamental frequency light, the right side is coated with the antireflective film to frequency doubled light, has constituted laserresonator between the left side of described laser crystal and the output cavity mirror; Described quartz crystal full-wave plate and I class phase matched frequency-doubling crystal constitute the birefringence filter plate, and described quartz crystal full-wave plate, I class phase matched frequency-doubling crystal and etalon all are coated with the antireflective film to fundamental frequency light.
The thickness d of described etalon, surface reflectivity R and laser incident angle α satisfy following two relational expressions:
1. the transmissivity of F-P etalon T ( λ ) = 1 1 + 4 R ( 1 - R ) 2 sin 2 ( δ 2 ) ,
2. incident laser gain live width Δv m = c 2 nd cos ( α n ) ,
In the formula: δ = 2 π λ * 2 nd cos θ Be phase difference by adjacent two light beams of F-P etalon surface reflection;
λ is the wavelength in the incident laser vacuum;
N is a F-P etalon d refractive index;
θ is ray refraction angle in the F-P etalon;
C is the light velocity in the vacuum.
Principle of the present invention is as follows:
Use the frequency-selecting of F-P etalon, the transmissivity of F-P etalon changes with wavelength, and the transmissivity of F-P etalon is:
T ( λ ) = 1 1 + 4 R ( 1 - R ) 2 sin 2 ( δ 2 ) ,
In the formula: R is the surface reflectivity of F-P etalon;
δ = 2 π λ * 2 nd cos θ Be phase difference by adjacent two light beams of F-P etalon surface reflection;
λ is the wavelength in the incident laser vacuum;
D is a F-P etalon thickness;
N is a F-P etalon d refractive index;
θ is ray refraction angle in the F-P etalon.
F-P etalon free spectral range scope is:
Δv m = c 2 nd cos ( α n ) ,
Wherein: α is the etalon angle of inclination.
By selecting suitable R, d and α make free spectral range and incident laser gain live width basically identical, and make in the gain live width and only contain two transmitance maximums, and then this etalon has played the effect of restriction incident laser bandwidth.Simultaneously, I class phase matched frequency-doubling crystal has had effect partially to incident laser, can regard an optical polarizer as, and it and quartz crystal full-wave plate have constituted birefringent filter.Incident laser becomes linearly polarized light through behind this frequency-doubling crystal, and this linearly polarized light is broken down into o light and e light through behind the quartz crystal, and the phase difference of this o light and e light round trip in quartz crystal is: δ=4 π l (n o-n e)/λ,
In the formula: l is a quartz crystal thickness, n oAnd n eBe o light under the different longitudinal mode correspondences and the refractive index of e light in quartz crystal, λ is the wavelength in the incident laser vacuum.Have only the longitudinal mode that satisfies δ=m π (m is a positive integer), turn back to the polarisation of light direction longitudinal mode identical with former polarization direction of polarizer, this polarizer just is zero to its loss.Polarizer has also just suppressed these longitudinal modes to other longitudinal modes existence losses in various degree, has reached the frequency-selecting effect.
The course of work of resonant cavity of the present invention is as follows:
Send pump light by coupling mirror incident laser crystal by semiconductor laser, the fluorescence that is ejected vibration in the resonant cavity of laser crystal left side and output cavity mirror composition produces many longitudinal modes fundamental frequency light; I class phase matched frequency-doubling crystal and the quartz crystal full-wave plate optically active to fundamental frequency light have constituted the birefringence filter plate, I class phase matched frequency-doubling crystal, quartz crystal full-wave plate and etalon acting in conjunction curb the unnecessary longitudinal mode composition outside the center die of this fundamental frequency light, only keep center die, make fundamental frequency light be the vibration of single longitudinal mode form; Single longitudinal mode fundamental frequency light is through forming the output of single longitudinal mode multiple frequency light after the non-linear frequency multiplication effect of frequency-doubling crystal 6.
The present invention has considered that simultaneously structure is comparatively simple, and cavity loss can not be excessive and low noise laserresonator design requirement such as single longitudinal mode steady operation, the invention has the advantages that:
(1) with respect to the travelling-wave cavity method, structure is comparatively simple, only inserts two additional optical elements altogether, and can satisfactorily finish low noise output steady in a long-term requirement equally, and this makes the batch process of laser become possibility;
(2) with respect to the short cavity method, owing to do not require the chamber is long, so can place more optical elements, and longer laser crystal and frequency-doubling crystal etc., thus power output can be improved;
(3) with respect to cross-polarization method and birefringence filter method, how much not complicated on the structure, but the present invention combines the frequency-selecting effect of etalon and birefringence filter plate, makes that single longitudinal mode output is more stable, can satisfy actual needs;
(4) with respect to F-P etalon method, owing to only adopt 1 etalon, under the similar situation of frequency-selecting effect, effectively reduce loss, and reduced laser and adjusted difficulty, this just embodies the better synthesis effect.
Description of drawings
Fig. 1 is the semiconductor laser pumping intracavity frequency doubling low noise all solid-state blue laser resonant cavity schematic diagram of short cavity method frequency-selecting in the background technology
Fig. 2 is the semiconductor laser pumping intracavity frequency doubling low noise all solid-state blue laser resonant cavity schematic diagram of F-P standard general laws frequency-selecting in the background technology
Fig. 3 is the semiconductor laser pumping intracavity frequency doubling low noise all solid-state blue laser resonant cavity schematic diagram of cross-polarization modulus method frequency-selecting in the background technology
Fig. 4 is the semiconductor laser pumping intracavity frequency doubling low noise all solid-state blue laser resonant cavity schematic diagram of birefringence filter method frequency-selecting in the background technology
Fig. 5 is the semiconductor laser pumping intracavity frequency doubling low noise all solid-state blue laser resonant cavity schematic diagram of travelling-wave cavity method frequency-selecting in the background technology
Fig. 6 is an embodiment of the invention assembling schematic diagram
Embodiment
The invention will be further described below in conjunction with embodiment and accompanying drawing.
See also Fig. 6, Fig. 6 is the assembling schematic diagram of one embodiment of the invention, as seen from the figure, low noise all solid-state blue laser resonant cavity of the present invention, the pump direction that comprises semiconductor laser 1 and send along this semiconductor laser 1 with optical axis the coupling mirror 2 that sets gradually, laser crystal 3, I class phase matched frequency-doubling crystal 6, output cavity mirror 7, it is characterized in that between described laser crystal 3 and I class phase matched frequency-doubling crystal 6, being placed with etalon 4 and quartz crystal full-wave plate 5, described laser crystal 3 left sides are coated with to the antireflective film of pump light with to the high-reflecting film of fundamental frequency light, the right side is coated with the antireflective film to fundamental frequency light, described output cavity mirror 7 left sides are coated with the high-reflecting film to fundamental frequency light, the right side is coated with the antireflective film to frequency doubled light, has constituted laserresonator between the left side of described laser crystal 3 and the output cavity mirror 7; Described quartz crystal full-wave plate 5 constitutes the birefringence filter plate with I class phase matched frequency-doubling crystal 6, and described quartz crystal full-wave plate 5, I class phase matched frequency-doubling crystal 6 and etalon 4 all are coated with the antireflective film to fundamental frequency light.
Described semiconductor laser 1, coupling mirror 2, laser crystal 3, etalon 4, quartz crystal full-wave plate 5, I class phase matched frequency-doubling crystal 6, laser output cavity mirror 7 are installed in laser housing 8 successively respectively and place on coupling mirror support 9 in this laser housing 8, laser crystal bearing 10, etalon bearing 11, full-wave plate bearing 12, frequency-doubling crystal bearing 13, the output cavity mirror bearing 14.
Semiconductor laser 1 adopts the semiconductor laser element of 808nm wavelength output; Coupling mirror 2 adopts the suitable condenser lens of focal lengths, is fixed on the coupling mirror bearing 9 that aluminium alloy makes with glue.
Laser crystal 3 is the Nd:YAG crystal, and this crystal left side is coated with the high saturating deielectric-coating (HT to the 808nm pump light 808>95%) and the high inverse medium film (HR of 946nm fundamental frequency light 946>99.5%), simultaneously to 1064nm and the high saturating (HT of 1319nm 1064,1319>70%), and as the left end of laserresonator; This crystal right side is coated with the high saturating deielectric-coating (HT to 946nm 946>95%), laser crystal 3 usefulness heat-conducting glues are fixed on above the laser crystal support 10 that aluminium alloy makes.
F-P etalon 4 mainly is made up of the flat glass plate of two precisions and the space collar between plate.Space collar is formed by the very little fused silica material fine finishining of the coefficient of expansion.Etalon is fixed on the etalon support 11 that aluminium alloy makes with glue, as mentioned before, its surface reflectivity, angle of inclination and thickness have determined the modeling effect, under the situation of surface reflectivity and thickness decision, available screw is finely tuned by the etalon angle so that it meets best modeling effect.5 liang of surfaces of quartz crystal full-wave plate are coated with the high transmittance film (HT of 946nm 946>95%), blended rubber is fixed on the full-wave plate support 12 that aluminium alloy makes.
I class phase matched frequency-doubling crystal 6 is three lithium borates (LBO) crystal, and two surfaces are coated with the high transmittance film (HT of 946nm and 473nm 946>95%, HT 473>95%).6 pairs of 946nm laser of frequency-doubling crystal also play a part polarizer, combine the frequency-selecting effect of performance birefringence filter plate with quartz crystal full-wave plate 5.These frequency-doubling crystal 6 usefulness heat-conducting glues are fixed on the frequency-doubling crystal support 13 that aluminium alloy makes.
The left end concave surface of output cavity mirror 7 is coated with 946nm high-reflecting film (HR 946>99.5%) and the antireflective film (AR of 1064nm, 1319nm, 473nm 1064,1319<30%, AR 473<10%), and, form flat-concave cavity as the right-hand member of laserresonator; The plane plating 473nm antireflective film (AR of right-hand member 473<10%).Output cavity mirror 7 usefulness glue are fixed on the output cavity mirror support 14 that aluminium alloy makes.
Semiconductor laser 1, coupling mirror support 9, laser crystal bearing 10, etalon bearing 11, full-wave plate bearing 12, frequency-doubling crystal bearing 13, output cavity mirror bearing 14 all are fixed on the laser housing 8 that aluminium alloy makes.
This resonant cavity course of work is as follows:
Send pump light by coupling mirror 2 incident laser crystal 3s by semiconductor laser 1, the fluorescence that is ejected vibration in the resonant cavity of laser crystal 3 left sides and output cavity mirror 7 compositions produces many longitudinal modes fundamental frequency light; I class phase matched frequency-doubling crystal 6 and the quartz crystal full-wave plate 5 optically active to fundamental frequency light have constituted the birefringence filter plate, I class phase matched frequency-doubling crystal 6, quartz crystal full-wave plate 5 and etalon 4 actings in conjunction curb the unnecessary longitudinal mode composition outside the center die of this fundamental frequency light, only keep center die, make fundamental frequency light be the vibration of single longitudinal mode form; Single longitudinal mode fundamental frequency light is through forming the output of single longitudinal mode multiple frequency light after the non-linear frequency multiplication effect of frequency-doubling crystal 6.

Claims (3)

1, low noise all solid-state blue laser resonant cavity, the pump direction that comprises semiconductor laser (1) and send along this semiconductor laser (1) with optical axis the coupling mirror (2) that sets gradually, laser crystal (3), I class phase matched frequency-doubling crystal (6), output cavity mirror (7), it is characterized in that between described laser crystal (3) and I class phase matched frequency-doubling crystal (6), being placed with etalon (4) and quartz crystal full-wave plate (5), described laser crystal (3) left side is coated with to the antireflective film of pump light with to the multilayer dielectric film of the high reflectance of fundamental frequency light, the right side is coated with the anti-reflection deielectric-coating to fundamental frequency light, described output cavity mirror (7) left side is coated with the deielectric-coating to the high reflectance of fundamental frequency light, the right side is coated with the antireflective film to frequency doubled light, has constituted laserresonator between the left side of described laser crystal (3) and the output cavity mirror (7); Described quartz crystal full-wave plate (5) constitutes the birefringence filter plate with I class phase matched frequency-doubling crystal (6), and described quartz crystal full-wave plate (5), I class phase matched frequency-doubling crystal (6) and etalon (4) all are coated with the antireflective film to fundamental frequency light.
2, low noise all solid-state blue laser resonant cavity according to claim 1 is characterized in that described semiconductor laser (1), coupling mirror (2), laser crystal (3), etalon (4), quartz crystal full-wave plate (5), I class phase matched frequency-doubling crystal (6), laser output cavity mirror (7) are installed in laser housing (8) successively respectively and place on coupling mirror support (9) in this laser housing (8), laser crystal bearing (10), etalon bearing (11), full-wave plate bearing (12), frequency-doubling crystal bearing (13), the output cavity mirror bearing (14).
3, low noise all solid-state blue laser resonant cavity according to claim 1 is characterized in that thickness d, surface reflectivity R and the laser incident angle α of described etalon (4) satisfies following two relational expressions:
1. the transmissivity of F-P etalon T ( λ ) = 1 1 + 4 R ( 1 - R ) 2 sin 2 ( δ 2 ) ,
2. incident laser gain live width Δv m = c 2 nd cos ( α n ) ,
In the formula: δ = 2 π λ * 2 nd cos θ Be phase difference by adjacent two light beams of F-P etalon surface reflection;
λ is the wavelength in the incident laser vacuum;
N is a F-P etalon d refractive index;
θ is ray refraction angle in the F-P etalon.
C is the light velocity in the vacuum.
CN 200710040846 2007-05-18 2007-05-18 Low noise all solid-state blue laser resonant cavity Pending CN101060229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710040846 CN101060229A (en) 2007-05-18 2007-05-18 Low noise all solid-state blue laser resonant cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710040846 CN101060229A (en) 2007-05-18 2007-05-18 Low noise all solid-state blue laser resonant cavity

Publications (1)

Publication Number Publication Date
CN101060229A true CN101060229A (en) 2007-10-24

Family

ID=38866178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710040846 Pending CN101060229A (en) 2007-05-18 2007-05-18 Low noise all solid-state blue laser resonant cavity

Country Status (1)

Country Link
CN (1) CN101060229A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112584960A (en) * 2018-06-22 2021-03-30 Uab阿尔特克纳研究与开发所 Method for manufacturing spatial modulation wave plate
CN112799118A (en) * 2020-12-30 2021-05-14 西北核技术研究所 Scintillation detector capable of improving detection efficiency and detection method thereof
CN113422654A (en) * 2021-05-20 2021-09-21 同济大学 Moving data energy simultaneous transmission system based on resonant light

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112584960A (en) * 2018-06-22 2021-03-30 Uab阿尔特克纳研究与开发所 Method for manufacturing spatial modulation wave plate
CN112799118A (en) * 2020-12-30 2021-05-14 西北核技术研究所 Scintillation detector capable of improving detection efficiency and detection method thereof
CN112799118B (en) * 2020-12-30 2024-04-26 西北核技术研究所 Scintillation detector capable of improving detection efficiency and detection method thereof
CN113422654A (en) * 2021-05-20 2021-09-21 同济大学 Moving data energy simultaneous transmission system based on resonant light
CN113422654B (en) * 2021-05-20 2022-06-24 同济大学 Moving data energy simultaneous transmission system based on resonant light

Similar Documents

Publication Publication Date Title
CN104659643B (en) A kind of 0.9 μm of laser of both-end polarized pump
CN101483317A (en) Pump mode for semiconductor laser
CN101060229A (en) Low noise all solid-state blue laser resonant cavity
CN201044328Y (en) Low-noise full-solid blue ray laser resonant cavity
CN102025100A (en) Single frequency visible laser based on self frequency doubling laser crystal
CN1105409C (en) Frequency-doubling diode-pumped solid-state laser
CN2829156Y (en) Four-frequency-multiplication laser
CN100337374C (en) High power inner cavity frequency doubling laser
CN206116866U (en) High temperature LD pumping quadrature porro prism polarization coupling output cavity
CN201781186U (en) Solid laser capable of outputting laser with high polarization ratio
CN113381279A (en) Narrow-linewidth ultraviolet Raman laser
CN105633796A (en) Miniaturized high repetition frequency mode-locked semiconductor thin disk laser
CN1890847A (en) Laser diode-pumped monolithic solid state laser device and method for application of said device
CN101494355A (en) Dual-cavity laser
CN108832472B (en) Intracavity pumped low-internal-heat solid laser system
CN2833967Y (en) Single-mode green light laser for semiconductor pump
CN212810846U (en) Diamond Raman laser of semiconductor direct pumping
CN112421370A (en) Self-frequency-doubling full-solid-state laser based on quasi-two-level laser radiation
CN102035131A (en) Continuous wave single frequency full solid-state laser with novel structure
CN1671012A (en) Lath structure type solid-state laser in edge rounding pumping form
CN1694317A (en) Intracavity frequency doubling fuell solid-state laser and its noise removing method
CN201877672U (en) Continuous wave single frequency all-solid-state laser with novel structure
CN2569376Y (en) Intracavity frequency multiplication single longitudinal module full solid laser of laser diode pumping
CN1212694C (en) High power all-solid-phase double resonance sum frequency blue light laser arrangement
CN1832276A (en) Barium acid lutetium crystal micro-chip laser device of mixing with active ions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication