CN101056160B - 在发射机与接收机之间传输位速率匹配模式的信令的方法 - Google Patents

在发射机与接收机之间传输位速率匹配模式的信令的方法 Download PDF

Info

Publication number
CN101056160B
CN101056160B CN200710096898.7A CN200710096898A CN101056160B CN 101056160 B CN101056160 B CN 101056160B CN 200710096898 A CN200710096898 A CN 200710096898A CN 101056160 B CN101056160 B CN 101056160B
Authority
CN
China
Prior art keywords
packet
receiver
signaling
transmitter
bit rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN200710096898.7A
Other languages
English (en)
Other versions
CN101056160A (zh
Inventor
M·德特林
B·拉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovation Investment Irish Knowledge Venture Co
Invention Investment Ireland Ltd
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2002101330 external-priority patent/DE10201330A1/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN101056160A publication Critical patent/CN101056160A/zh
Application granted granted Critical
Publication of CN101056160B publication Critical patent/CN101056160B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0066Parallel concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种方法用于在应用ARQ方法,尤其是混合ARQ方法,并且优选在移动无线电系统中应用时,为了实现尽可能可靠的面向包的数据传输提供,在发射机与接收机之间信令所采用的位速率匹配模式。

Description

在发射机与接收机之间传输位速率匹配模式的信令的方法
本发明申请是申请日为2002年12月27日、申请号为02826878.4的同名专利申请的一个分案申请。 
技术领域
本发明涉及一种在通信系统中,尤其是在移动无线电系统中,按照ARQ方法,尤其是混合ARQ法进行数据传输的方法以及相应安排的装置。 
背景技术
特别是与移动无线电系统相关,往往提议采用所谓的包访问方法或者说包交换的数据连接,因为收到的消息类型往往具有非常高的突发因数,从而只存在由长的静止间歇中断的短的活性周期。在这种情况下,与其中涉及连续数据流的其它的数据传输方法相比较,包交换的数据连接可显著地提高效率,因为在用连续的数据流的数据传输方法中,一次分配的资源,譬如载频或者时隙,在整个通信关系期间保留分配,就是说保留甚至占据资源,即使暂时没有数据传输时也要占据,从而这样的资源不能够提供给其它的网络用户使用。这导致移动无线电系统的紧缺的频谱得不到理想的利用。 
未来的移动无线电系统,譬如根据通用移动通信系统UMTS标准(“通用移动电信系统”),提供许多不同的业务,其中除了纯语言传输以外,多媒体应用的意义越来越大。随之而来的有不同的传输速率的业务多样性要求在未来的移动无线电系统的空气界面上有非常灵活的访问协议。事实表明包交换的数据传输方法非常适合于此。 
与UMTS移动无线电系统相关联,对面向包的数据连接提出所谓的ARQ(“自动请求重发”)方法。在此,在接收方于解码以后检验从发射机向 接收机传输的数据包的质量。如果接收的数据包有错误,接收机就请求从发射机重新发出该数据包,就是说,从发射机向接收机发送重发的数据包,所述的重发的数据包与以前发送并且含有误差地接收的数据包相同或者部分相同(视,重发数据包含有少于还是等于原数据包的数据而异,称为完全重发或者部分重发)。鉴于这种也称为混合ARQ方法的为UMTS移动无线电标准提出的ARQ方法,不论是传输数据还是传输所谓的报头信息都拟定用数据包进行,其中报头信息还具有用于误差检验的信息,譬如CRC位(“循环冗余码检验”),并且还可以编码用于纠错(所谓的“前向纠错”FEC)。 
根据UMTS标准化的当前状态提出各个数据包及重发数据包的位的传输在借助于QAM调制(正交振幅调制)进行相应的信道编码以后进行。在此,通过称为“格雷映射”的方法把各个位映射成相应的QAM符号,所述的QAM符号构成二维的符号空间。在此成问题的是,在所提出的QAM调制带有包含四个以上QAM符号的字母范围,这显著地改变在高值位与低值位之间要传输的位的可靠性,其中这对于要进行的信道编码特别地不利,因为在此优选地采用Turbo代码,所述Turbo代码要求均匀的位可靠性以达到足够高的效率。在重发数据包与原数据包相同的混合ARQ方法中,上述的位可靠性变化的特征导致数据包和重发数据包的某些位均处在QAM符号空间的相同位置上,从而降低了整个数据传输的效率并且产生数据通过量的超前限制。 
为了解决所述问题已经提出,对出现在原来的数据包和重发数据包中的相同位置的位,通过动态地重新排列“格雷映射”在QAM符号空间中分配不同的QAM符号。 
下面参照图4A-4D对此加以详细的说明。在图4A中示出信号状况以及16-QAM调制的符号空间。在此各个位i1和i2以及q1和q2按i1q1i2q2的顺序映射为二维QAM符号空间25的相应QAM符号26。在二维QAM符号空间25中QAM符号26对每个位i1、i2、q1、q2可能的列和行各借助于相应的划线标示。从而,例如位i1=“1”可能只映射到头两列的QAM符号。基于“格雷映射”高值的位i1的可靠性大于低值的位i2的可靠性。此外,位i2的位可靠性依各传输的相应的符号26波动(就是说取决于,相应的QAM符 号26安排在QAM符号空间25的外左列还是外右列)。这同样地适用于位q1和q2,因为位q1和q2的映射等效于位i1和i2的映射(然而对此是正交的)进行。 
根据参照图4A-4D说明的常规的方法提出,为重发数据包采用与原数据包的“格雷映射”不同的“格雷映射”。就是说对第一个重发数据包例如可以采用图4B中所示的“格雷映射”,而对第二个重发数据包例如可以采用图4C中所示的“格雷映射”,对第三个重发数据包例如可以采用图4D中所示的“格雷映射”。比较图4A-4D可以看出,在同样的位组合i1q1i2q2中相应地可以安排不同的QAM符号26,就是说在二维QAM符号空间25中的不同的点。这种“格雷映射”的动态变化例如可以根据在QAM符号空间5的一个位置上每个位i1、i2、q1和q2的确定的重发数量,以非常好或者良好或差的可靠性传输的范围内进行,其中可以为不同的重发数量优化该方法。 
从图4A-4D可以看出,这种做法非常费事,因为必须为每个重发数据包改变“格雷映射”。 
发明内容
因此本发明的目的在于,提出一种方法和相应地安排的装置用于根据ARQ方法传输数据,在此以简单的技术和方式解决上述的问题,即达到高数据通过量的可靠的数据传输。 
该目的通过独立权利要求的特征部分完成。从属权利要求定义本发明的各个优选和有利的实施方案。在本发明的范围内还包括用于实施方法权利要求所定义的方法的发射装置和接收装置。 
从而本发明基于这样的构思:为了对采用的位速率匹配模式进行位速率匹配,尤其是为计算所述位匹配所需要的参数,在发射机与接收机之间发送信令或者进行传输,以在接收方以良好的质量重新得到传输的信息。 
按本发明的实施方案,位速率匹配模式的信令或者计算位速率匹配所需要的参数的传输可从发射机向接收机进行或者从接收机向发射机进行。 
特别是对于这种位速率匹配模式的信令可以设定一个例如可以随相应 的数据包传输或者作为相应的数据包的一部分传输的位;视该位是“1”还是“0”,例如存在可自解码的数据包,或者不可自解码的数据包。 
在此可自解码的数据包含有这样多的分类位:使得接收方在采用的理想的信道的情况下可以只根据数据包的位来解码该数据包。尤其是可自解码的数据包含有所有的分类位。 
本发明基于这样的理解:在重复(在数据包内部至少部分地多次传输数据包的位)总是传输所有的分类位,并且总是有一个可自解码的数据包。在此情况下,是自解码的还是不是自解码的数据包的信令就是多余的,从而为此目的设置的传输资源,例如上述的位,就可以用于其它的目的。尤其是该传输资源可以用于对要采用的位速率匹配模式信令位速率匹配,特别是用于传输计算该位速率匹配模式所需要的参数。由此还可能,对于重复的情况比打点(Punktierung)的情况有较多的自解码数据包的不同速率匹配模式。 
总之通过本发明根据ARQ方法的数据传输较灵活并且较充分地利用可得到的传输资源。 
本发明的一个扩展还基于这样的构思:在原数据包的各个位上以及各个重发数据包的各个位上采用不同的速率匹配模式,就是说不同的打点模式或者重复模式,从而带有相同的信息源的位,尤其是相同信息源的所有的位,在实行了位匹配以后在数据包中与重发数据包的不同位置上,从发射机向接收机传输。 
由此相应的位在进行QAM调制以前就达到各个数据包中的不同位置,并且从而不用改变“格雷映射”就在QAM符号空间中分配不同的点或者QAM符号。 
借助于在原发送的数据包为一方面与一个或多个后续的重发数据包为另一方面之间的速率匹配模式的推移,从而得到可以改善传输质量和位误差率的同一个代码率。 
以此方式达到在数据包和后续的重发数据包之间传输的位的可靠性的均匀分布,从而例如可以采用Turbo编码进行高效率的信道编码,从而在实现高数据通过量的同时保证总体上高效率的信息传输或者说数据传输。
在要求多个重发数据包时,如果相应使用的速率匹配模式,也就是说相应的打点/重复模式,以逐一重复数据包的推移方式被应用是有利的。 
另一个方案为位速率匹配采用一种公知的速率匹配算法,其中根据这种位速率匹配算法使用的,大体上确定相应使用的速率匹配模式的偏移值在原数据包和一个或多个重发数据包之间变化。通过这种偏移值的变化可以得到比常规的混合ARQ方法更有效的编码。 
在此优选地可以把信道编码的位流划分到多个并列的分位流上(所谓的位分离),其中对各个分位流采用各相互独立的位打点或者位重发,从而在该分位流的相应的位的最终组合(所谓的位集合)后可达到所要求的在原数据包和各个重发数据包方面有不同的偏移值的速率匹配。通过把位流划分成多个并列的分位流可以在信道编码时达到特别的高度灵活性。 
因为以此方式和方法处理的数据包或重发数据包的相应接收机应当知道相应采用的偏移值,并且详尽地传输该偏移值可能是不利的,所以所述的偏移值例如可以与相应的时隙(“time slot”)号码同步改变和/或与相应的帧(“Frame”)号同步地改变,使得接收机能够从相应地接收时隙或者帧直接地推导出相应使用的偏移值。本发明的另一个实施方案是要在发射机和接收机之间传偏移值信令。 
在上述的将位划分到多个并列的分位流的位分离时,在最终的位集合时还可以把不同的并列分位流按每数据包或每重发数据包成比例地相互组合,这时在使用位重复时可特别地有利采用。上述的偏移值可以对原数据包或各个重发数据包这样地调配:使得由此得出的速率匹配模式的推移相互为最大的,和/或在最终调制时尽可能多的原数据包及相应重发数据包的相互对应的位映射到二维符号空间中的不同的点。 
如果紧接在进行速率匹配后把位映射到相应地要求的调制符号空间上,上述的方法工作得理想。然而这却不总是这种情况,因为在数率匹配和调制之间往往还发生所谓的交插,通过所述交插在时间上重排所述的位。在一种随机交插器中把相邻的位随机地划分到二维符号空间的相应的点或符号上,从而可以通过上述的偏移值改变可达到的一位的推移,也会产生二维符号空间的点或者符号的随机改变。然而这却不是理想的,因为 最好这样的改变分配:使得在传输原数据包时较低可靠性的位在后续的要传输的重发数据包中映射到有较高可靠性的调制符号空间(例如QAM符号空间),并且反之亦然,而在随机的交换时只能够达到最高可达到的增益的约50%的增益。 
因此优选地对所述的交插采用非常规则的交插器,例如阻塞交插器,此外,在其上交插器分布接着进行列交换或列置换的位的列数,以及不同的程度加权的或者不同可靠的相应采用的符号空间的点或者符号应当是不可公约的(teilerfremd),从而得到理想的分配。 
该实施方案相对于前序部分所述的和由现有技术公知的做法有显著较低的复杂性。 
附图说明
下面参照附图借助于在移动通信系统中的包交换数据传输的优选实施例说明本发明,其中本发明当然不局限于移动无线电系统,而是可以用于各种其中要将ARQ方法用于数据传输的通信系统中。 
图1示出根据本发明所述的包交换ARQ方法的信号处理, 
图2示出移动无线电系统中的通信, 
图3示出一种位速率匹配算法,所述的算法例如可以在本发明的范围内用于速度匹配, 
图4A-4D示出根据现有技术从原来发送的数据包的位以及从相应的重发数据包的位映射到QAM符号。 
具体实施方式
如前面已经说明,下面着手于,借助于本发明应当实现的,例如如图2中所示的,在移动无线电系统中的包交换的数据传输。在此于图2中示例性示出在移动无线电系统,例如UMTS移动无线电系统,的基地台1与移动台2之间的通信。从基地台1向移动台2的信息传输通过所谓的“下行耦合”-信道DL进行,而从移动台2向基地台1的信息传输通过所谓的“上行耦合”-信道进行。
下面借助于从基地台1向移动台2的包交换的数据传输,也就是说借助于“下行耦合”-信道的包交换的数据传输,说明本发明,其中本发明也可以类似地用于通过“上行耦合”-信道的数据传输。此外,下面借助于在相应的发射机中进行的信号处理措施说明本发明,然而其中要注意的是,在相应的接收机中为了分析以这样的方式在发射机方处理的数据,要求沿反向的序列的信息处理,从而本发明不只涉及发射机方,而是还涉及接收机方。 
在图1中示出根据本发明的混合ARQ方法在数据包中要传输的数据信息和报头信息的信号处理。 
在报头方由功能块3产生的报头信息向功能块12传送,所述的功能块12负责把应当在同一个无线电包中发送的所有数据包的全部报头汇集成一个单个报头(所谓的“报头并置”)。功能块13向由此产生的报头信息添加CRC位用于报头识别。接着由功能块14进行信道编码并且由功能块15进行由此产生的位流的速率匹配。交插器16用作,把向其传送的符号或者位以一定的方式和方法重新排序并且按时间展开。由交插器16输出的数据块由功能块17向各个发射帧或者说无线电帧分配(所谓的“无线电帧分割”)。 
在数据方同样设置功能块4用于添加CRC位。功能块5用作分裂向信道编码器6传送的数据:使得由信道编码器6总是进行限制到一定的位数的编码。 
通过由信道编码器6进行的信道编码把向真正要发送的数据添加冗余的信息。由信道编码器输出分类位和奇偶检验位,其中分类位分别与信息位相同,而奇偶检验位是从信息位得出的冗余位。在ARQ方法中,相继发送的数据包包含具有相同的信息起源的位,也就是相应地取决相同的信息位的位。 
由信道编码器6输出的位向功能块19传送,功能块19通过抽取或者删除单个的位(所谓的打点)或者通过重复单个位(所谓重复)相应地调节位流的位速率。由后接的功能块9可以向数据流添加所谓的DTX(“间歇传输”)位。此外在数据方设置功能块10和11,所述的功能块10和11 具有设置在报头方的功能块16和17的相同功能。 
接着,在数据方和报文方输出的位由功能块18映射到或者说多路传输(所谓的“多路传输系统”)到现有的物理传输信道或者说发射信道,并且借助于适当的调制,例如QAM调制,向接收机传输。 
在混合ARQ方法中以含有误差地接收或者含有误差地解码数据包时通过接收机请求重发的数据包。所述的重发数据包与先前发送并且含有误差地接收的包完全相同(HARQ类型1,槽路组合)或者部分相同。后一方法称为部分增量冗余(增量冗余,IR)法,或称为HARQ类型III。作为另一种可能性,重发包还可以纯由附加的冗余信息(所谓的奇偶检验位)构成(完全IR,或者称HARQ类型II)。 
取决于重发数据包具有比原数据包少的数据还是具有与原数据包相同的数据,称为完全重发或者部分重发。数据包和相应的重发数据包从而至少部分具有相同的信息起源。接收机从而可以通过总体分析原发送的数据包以及所要求的续后重发的数据包,以较好质量重新获得原发送的信息。 
功能段19包含功能块20,所述的功能块20取决于功能块3的控制把由前置的信道编码器6输出的编码的位划分到至少两个并列的分位流上,这两个分位流相互分开地,就是说相互独立地经受一种速率匹配。图1中与此相关地示出三个分位流A-C,其中对每个分位流设置一个功能块21-23用于进行目应的速率匹配,就是说,用于打点或者说重复各个位。以此方式形成多个不同地编码的并列的分位流,所述的并列的分位流向另一个功能块24传送。所述的另一个功能块24的任务是,把并列的位流的各个位汇集(位收集)成由功能块20为分离,就是说为划分成各个并列的分位流所采用的同一个序列中。以此方式保证,速率匹配后剩余的位的整个序列不会改变。 
如前文已述,为各个分位流A-C拟定的速率匹配可以通过功能块21-23完全相互独立地进行。尤其是一或多个分位流的位根本不经受打点或者说重复。总之,这样的选择各个并列的分位流A-C的速率匹配:使得由整个功能段19在由功能块6输出的信道编码的位流上每数据包或者说每重发数据包使用所希望的速率匹配模式。用图1中所示的有多个并列进行 的速率匹配的的功能段19的执行可以在编码时得到特别高的灵活性。 
这样地安排功能段19:使之依据于功能块3的控制,在重发数据包的位上使用与相应的原发数据包的位上使用的不同的速率匹配模式。这就是说功能块19从功能块3得出是否从相应的接收机要求重发数据包,其中在此情况下功能块19这样地选择或者说调节由相应的功能块21-23实现的速率匹配模式:使得带有与作为基础的原发数据包的位有不同的速率匹配模式的位全部受到处理。 
全部由功能段19实现的速率匹配例如可以按照图3中所示的速率匹配算法进行,所述的速率匹配算法是现有技术中已经公知的。 
含在UMTS标准中的速率匹配算法在[25.212]中说明。作为重要的参数,该算法采用: 
●xb:位流b中每包编码的位数 
●eini“开始的误差值(NTTI/3) 
●eplus打点/重复时误差值的增量 
●eminus:每输出的位误差值的减量 
这些参数在现有技术中,例如对于有固定的位位置的下行耦合turbo编码的传输信道([25.212]中第4.2.7.2.1节),在打点的情况下,按如下得出: 
eini=Nmax            (5.1) 
在此Nmax表示在速率匹配以前通过所有的传输格式和传输信道得出了每奇偶检验位位流最大的位数。误差值的增量和减量用下式计算: 
e plus = a × N max , e min us = a × | ΔN i b | , - - - ( 5.2 )
式是对于第一奇偶检验位位流有a=2,而对于第二奇偶检验位位流有a=1。|ΔNb i|是传输信道i的每位流b打点的位的数量。 
在此特别地采用速率匹配参数eini,所述的速率匹配参数eini相对相应地使用的速率模式表示适用于相应进行的速率匹配的偏移值。在图3中所示的速率匹配算法的开始时,初始化带有该偏移值eini的误差变量e,其中误差e在打点的情况下例如表明当前打点速率与所要求的打点速率之间的 比例。 
接着把当前要处理的位的指数m设置到第一位,也就是设置成值1,并且初始化辅助误差参数eplus。 
接着对各个要处理的i号数据包的全部的位进行循环,其中用Xi标示各个数据包的位数。 
在此循环的内部首先在采用另一个辅助误差参数emins的条件下更新误差e,并且检验这样得出的误差e是否大于零,以用这样的方式确定,是否应当打点相应的位。如果这满足前面说明的条件,就把相应的位设置为辅助值δ,并且以此打点,就是说禁止后续的数据传输。 
如果相反地不满足前述的条件,就为相应的数据传输选取相应的位,并且采用刚才所述的辅助误差参数eplus重新计算误差e。 
在速度匹配算法或者说打点算法结束时,增加位指数的值并且从而为此前说明的处理选取下一个位。 
用在数据包或重发数据包上的位上速率匹配模式明显可受相应地选取的偏移值eini影响。通过这种偏移值eini的变化从而可以对重发数据包采用与对相应原发射数据包的不同的速度匹配模式,其中,特别地可以参照各个分位流A-C(比较图1)的奇偶检验采用速率匹配。 
对于原发送的数据包和重发数据包有利地这样选取偏移值eini:使得这样得出的速率匹配模式相互是最大的,就是说尽可能地大的。此外对于原发送的数据包和重发数据包有利地这样选取偏移值eini:使得在结束的调制时,尤其是在QAM调制时,这两个数据包的尽可能多的相互相应的位映射到不同的点,也就是说映射到相应的二维QAM符号空间的不同的QAM符号上(比较这方面示例的图4的映射)。 
对于首次传输,一般地采用可自编码的数据包,就是说,例如传输所有分类位。如果扣除该分类位还只对奇偶检验位的一部分在传输中有位置,就相应地打点所述的奇偶检验位(就是说不传输)。然而如果现有的位置大于所有存在的奇偶检验位,就用相同的速率重发分类位和奇偶检验位(重复)。打点/重复的位的选择在UMTS中通过一种在编码的数据块中实现尽可能均匀地分布所述的打点/重发的位的算法进行。
在重发传输中,基于一定数量的信令位,这样地选择速率匹配模式并且从而选择相应地要传输的位:使得一方面实现各种不同的HARQ类型,而另一方面在每次传输中尽可能地传输其它的位,以达到解码增益和/或在所有的位上均匀地分布总能量。一定的速率匹配模式或者计算一定的速率匹配模式用的参数在此相应于一定的冗余类型。本发明的一个方案示出,譬如对于给定数量的用于信令不同冗余类型的位,不论是对于打点的情况还是对于重复的情况都可以优化冗余类型的选择。 
为了接收机能够正确地判读接收的数据,在发射机与接收机之间发出信令:数据包涉及可自解码的数据包还是不可自解码的数据包。为此需要有一位的信令信息。然后在相应的类型(可自解码的数据包或不可自解码的数据包)的内可以定义其它的同样地可详尽地信令的冗余类型。如果有n个位可用于信令,从而整个要信令的信息由一位不同的可自解码的/不可自解码的和以n-1个为说明许多冗余类型中的某些冗余类型的位组成: 
信令位的应用 
  
可自解码的位 1位
冗余类型 n-1位
可自解码的/不可自解码的区别却只在打点的情况下有意义,在此情况下不可能传输所有编码的位。在重复的情况下给以可自解码性优先权,因为这样所有的编码位,甚至有些都可以多次地传输。在重复的情况下,采用所有的n个位区别不同的冗余类型在此是有利的。尤其是从而在重复的情况下即使对于小的n也可以确保显著的改善,使得在传输一个重复数据包和接收机方把第一数据包与重发数据包叠加以后达到对所有传输的位尽可能均衡的能量分布。根据本发明的信令位应用的一个实施例示于下表中: 
在打点和重复中信令位的应用 
  
  打点 重复
  
可自解码的位 1位 0位
冗余类型 n-1位 n位
例如在此可以选择n=3。这使得能够有合理的不同冗余类型的数量,而另一方面不要求过分大数量的信令位。 
在此提出的方法优化了信令,其中信令位的意义取决于在相应传输中位是重复的还是打点的。如果拟定总共Ng个信令句(就是说如果拟定n位信令Ng=2n),从而如下地划分Ng个信令句: 
在打点时把信令句划分成两个分量,一个用于传输可自解码的类型(就是说含有分类位),另一个用于传输不可自解码的类型(一般地不含有分类位,特别是不含有分类位)。在这种分量的内部区别不同的信令句然后区别不同的冗余类型。 
在此可以选择Ns个可自解码的类型的冗余类型(部分增量的冗余),所述的冗余类型指出可自解码的的冗余类型并且提供Ng-Ns个不可自解码的类型(完全增量冗余)。如果Ns=Ng/2成立,就可以使用前述的编码。另一个极端的情况是Ns=1。在这种情况下只拟定一个单一的可自解码的类型(这是为第一次传输拟定的)和Ng-1个不可自解码的类型。如果Ng较小(最多为8)这种选择是理想的,因为尽管这样还可以定义较高数量的有完全IR的冗余类型。 
在重复时不构成分量并且使用所有的信令句用以区分不同的信令类型。 
该实施例的重要创新是信令位意义上的重复和打点的情况的区别,和在给定数量的信令位时在不论是重复的情况还是打点的情况下优化可能的HARQ类型的数量,以及不同的冗余类型。 
在此,产生不同的冗余类型可以按照参数eini的参数变量进行,然而也可以通过任意其它的方法产生。 
至此只说明了影响HARQ分类的速率匹配或者位选择的参数,以及可以如何信令这样的参数。事实上还可以通过其它参数变量达到传输速率的改善。这样的参数的一个例子是在分配调制符号的步骤中对16个QAM符号的 位分配的变量。这种方法的原理在以下的标准化文件中说明: 
R1-01-0237,松下,“带有信号构像重排的强化HARQ方法”3GPP TSGRAM WG1,Las Vegas,USA,2001年2月27日至3月2日; 
R1-01-1059,松下,“16-QAM的HARQ方案比较”3GPP TSG RAM WG1,Sophia Ant ipolis,France,2001年11月5日至7日; 
R1-01-0151,松下,“16-QAM HARQ位映射方案”Espoo,Finland,2002年1月。 
如果重复采用相同的冗余类型(槽路组合),或者如果这些冗余类型在其位内容上只有很少的区别时,这些方法在实质上可以得到良好的结果。与此相反的情况,如果各个发送出的冗余类型区别很大时,增量冗余就得到最佳结果。因此理想地可以这样地设计信令:对于向16QAM符号的位映射(位分配)既使用不同的冗余类型也使用不同的分配变量。由于提供的信令位有限,这样做并不总是可行的。在此情况下必须要决定,使用信令位选择冗余类型还是选择分配变量。下面说明这些实施变例的扩展。 
所述实施例的第一方面,如果不采用16QAM或者9或者更高价的调制,而是只采用BPSK、QPSK或者没有不同值的调制符号的其它的调制技术,就不信令分配变量而是专门信令冗余类型。 
所述实施例的另一方面,如果传输的位多达可以传输所有现存的位,换言之,如果不必采用打点进行速率匹配,在采用16QAM调制时优选地信令分配变量而放弃信令冗余类型。 
在另一个实施例中,如果尽管对传输提供的位少到不能够传输所有现存的位,换言之,如果必须采用打点进行速率匹配,如果打点率,也就是说要打点的位比例,不超过一定的预给的值,也优选地信令分配变量(在一定的情况下可放弃信令冗余类型)。所述的预给的值在原则上是任意选择的,然而它小于50%是有意义的,因为通过选择两个完全正交的也就是分离的冗余变量,在50%的打点时可以通过增量冗余达到非常良好的改善。其它方面在此情况下不能够通过分配变量达到附加的增益,因为这两种传输不含有其中可给出增益的共同的位。也就是在此情况下也不绝对必要除冗余类型外还信令分配变量。
在另一个实施方案中可以如下地扩展上述的实施方案:不是依赖于上述的参数生硬地在信令格式之间反复转换,而是视参数不同或多或少地信令冗余类型或者分配变量。下面是这种情况的一个例子,其中总共可能信令四种选项; 
-在多于50%打点的范围内,对于信令冗余类型采用所有的四种选项,而不信令分配变量。 
-在50%至33%打点的范围内,对于信令冗余类型采用三种选项,并且对于分配变量信令一种选项(这种选项可以在一个特定的冗余类型中使用)。 
-在33%至20%打点的范围内,对于信令冗余类型采用二种选项(也就是1位),并且同样地对于分配变量信令二种选项(也就是1位)。从而可以相互独立地选择冗余类型和分配变量。 
-在20%至10%打点的范围内,对于信令冗余类型采用一种选项(这种选项可以在一个特定的冗余类型中使用),并且对于分配变量信令采用三种选项。 
-在低于10%的打点至低于33%重复的范围内,所有的四个种选项都用于分配变量,而不信令冗余类型。 
-在高于33%重复的范围内,又是对于信令冗余类型和分配变量各信令二种选项(也就是各1位)。从而可以相互独立地选择冗余类型和分配变量。 
在以上说明的实施例中,采用供传输的位与现有的位的比例,以及由此得出的打点率或者重复率,作为标准。对此应当指出所述打点率可以是,从信道编码后的位的数量与传输的位的数量的比得出的打点率,然而,也可以是进行其它中间步骤的情况。例如首先进行到与接收存储器的大小相应的中间位数打点,并且从该数量起进行到要传输的位的打点或者说重复。在此情况下所述标准优选是在该第二步骤中的打点率/重复率,而不是总率。 
对于1中所示的功能块10根据本发明的一个实施方案采用一种交插器,所述的交插器不进行随机交插,而是进行非常有规律的交插。从而例 如可以对于功能块10采用一种阻塞交插器。如果用作功能块10的交插器是非常规则的交插器,并且如果所述的交插器把向该交插器输送的位分布于其上的列数,以及在二维QAM符号空间中不同程度加权的点数,或者一般地不同程度加权的调制点的数是不可公约的,就可以得出理想的分配。根据当前的UMTS标准,作为交插器提出用带有附加的列交换的阻塞交插器,所述阻塞交插器把相邻的位分布到相互分隔开多倍的“5”的列上,并且接着交换列。采用30个列的进行例如按照以下方案的列置换:列号:0、20、10、5、15、25、3、13、23、8...。因为值“5”与例如在16-QAM调制(即二位)和64QAM调制(即三位)中的不同的位的数量不可公约,在这样的组合中得出对相应的调制点良好的偏移或者说映射。 
这种上述的做法既可以用于打点和重复,也可以用于不同的传输格式。通过适当地选择参数(例如冗余类型的数据、位流的数量)可以适应不同的调制方案和编码方案。 
参考文献 
[25.212]“multiplexing and channel coding(FDD)(1999年发表),”技术规范3GPP TS25.212。

Claims (2)

1.一种用于按照ARQ 方法传输数据的方法,
其中从发射机(1)向接收机(2)传输数据包形式的数据,
其中发射机(1)发射数据包以后,在出现接收机(2)的相应要求时向接收机(2)传输至少一个重发数据包,
其中,要在数据包或者重发数据包中传输的位,在其从发射机(1)向接收机(2)传输以前,通过打点或者重发经受位速率匹配,
其中所述位速率匹配按照一种位速率匹配模式进行,
其中将位速率匹配模式或者将为计算所述位速率匹配模式的参数在发射机(1)与接收机(2)之间用信令发送,
其中按照一种QPSK调制或一种按照16QAM调制或者8PSK调制来传输数据包,
其特征在于,
只对于16QAM调制或者8PSK调制的情况,在发射机(1)与接收机(2)之间用信令发送把数据包的位分配到调制符号用的分配规则或者说明所述分配规则的参数,其中为此采用在所述QPSK调制的情况下为了用信令发送位速率匹配模式或者用于计算所述的位速率匹配模式的参数而使用的信令资源。 
2.用于接收按照ARQ 方法由发射机(1)传输的数据包形式的数据的方法,
其中,由接收机(2)接收和分析处理按照权利要求1所述方法由发射机(1)传输的数据包或者重发数据包,以便通过对在数据包和重发数据包中接收的位进行共同的分析处理来确定数据包的信息量,
其中,为在接收侧进行位速率匹配,该接收机使用在发射机(1)和接收机(2)之间用信令发送的位速率匹配模式或者为计算所述位速率匹配模式所需的参数,
其中,按照一种QPSK调制或按照一种16QAM调制或者8PSK调制来传输数据包,
其特征在于,
由接收机(2)处理用信令发送的位,其中,只对于16QAM调制或者8PSK调制的情况,在发射机(1)与接收机(2)之间用信令发送把数据包的位分配到调制符号用的分配规则或者说明所述分配规则的参数,其中为此采用在所述QPSK调制的情况下为了用信令发送位速率匹配模式或者用于计算所述的位速率匹配模式的参数而使用的信令资源。
CN200710096898.7A 2002-01-07 2002-12-27 在发射机与接收机之间传输位速率匹配模式的信令的方法 Expired - Lifetime CN101056160B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2002100296 DE10200296A1 (de) 2002-01-07 2002-01-07 Verfahren und Vorrichtung zur Datenübertragung
DE10200296.7 2002-01-07
DE10201330.6 2002-01-15
DE2002101330 DE10201330A1 (de) 2002-01-15 2002-01-15 Verfahren und Vorrichtung zur Datenübertragung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB028268784A Division CN1326344C (zh) 2002-01-07 2002-12-27 传输位速率匹配模式的信令的数据传输方法和装置

Publications (2)

Publication Number Publication Date
CN101056160A CN101056160A (zh) 2007-10-17
CN101056160B true CN101056160B (zh) 2015-04-29

Family

ID=7711589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710096898.7A Expired - Lifetime CN101056160B (zh) 2002-01-07 2002-12-27 在发射机与接收机之间传输位速率匹配模式的信令的方法

Country Status (3)

Country Link
CN (1) CN101056160B (zh)
DE (1) DE10200296A1 (zh)
ES (1) ES2360070T3 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005018870A1 (de) * 2005-04-22 2006-10-26 Siemens Ag Verfahren zur Datenübertragung, Sender und Empfänger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273725A (zh) * 1998-07-03 2000-11-15 诺基亚网络有限公司 带有信息次序改变的自动重新传输
WO2001047124A2 (en) * 1999-12-20 2001-06-28 Research In Motion Limited Hybrid automatic repeat request system and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273725A (zh) * 1998-07-03 2000-11-15 诺基亚网络有限公司 带有信息次序改变的自动重新传输
WO2001047124A2 (en) * 1999-12-20 2001-06-28 Research In Motion Limited Hybrid automatic repeat request system and method

Also Published As

Publication number Publication date
ES2360070T3 (es) 2011-05-31
DE10200296A1 (de) 2003-07-17
CN101056160A (zh) 2007-10-17

Similar Documents

Publication Publication Date Title
CN1326344C (zh) 传输位速率匹配模式的信令的数据传输方法和装置
CN100459482C (zh) 按照arq方法传输数据的方法和装置
CN100391136C (zh) 在移动通信系统中用于分组重发的发送/接收装置和方法
CN100454800C (zh) 在cdma移动通信系统中执行编码和速率匹配的设备和方法
US8085739B2 (en) Quality dependent data communications channel
CN1427568B (zh) 用于有效重发高速信息分组数据的无线收发装置和方法
CN100593290C (zh) 无线通信系统
CN1893342B (zh) 多载波hsdpa的业务传输信道编码方法和编码装置
CA2408452C (en) Transmitting/receiving apparatus and method for packet retransmission in a mobile communication system
CN101365175B (zh) 在无线通信系统中发送控制信息的方法
CN100578990C (zh) 无线通信系统中的速率适配
CN102224689A (zh) 用于支持多小区高速下行链路分组数据接入的无线通信系统的信道质量指示符传输功率控制方法和装置
CN1535041A (zh) 传送块大小(tbs)信令增强
CN1980112B (zh) 支持扩展的链路适应技术的移动通信终端及其方法
CN101154989B (zh) 增强上行控制信道的发送方法
EP1436933B1 (en) Transmission method
CN101237297A (zh) 一种传输增强上行专用信道控制信息的方法、装置及系统
CN1184760C (zh) 高速数据接入系统下行高速共享信道的数据传输控制方法
KR20010080386A (ko) 링크 적응 및 증가하는 중복을 지원하는 무선 통신을 위한시스템 및 방법
CN101056160B (zh) 在发射机与接收机之间传输位速率匹配模式的信令的方法
CN101860427B (zh) 多载波hsdpa的业务传输信道编码方法和编码装置
CN103036638A (zh) 控制信息的传输方法、接收方法和装置
CN101072082A (zh) 传输方法
CA2345507A1 (en) Data communication channel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151118

Address after: Delaware

Patentee after: III holding 7 LLC

Address before: Munich, Germany

Patentee before: Siemens AG

TR01 Transfer of patent right

Effective date of registration: 20210225

Address after: Ai Erlandubailin

Patentee after: Innovation investment Irish knowledge venture Co.

Address before: Delaware, USA

Patentee before: III holding 7 LLC

Effective date of registration: 20210225

Address after: Delaware, USA

Patentee after: Invention investment Ireland Ltd.

Address before: Ai Erlandubailin

Patentee before: Innovation investment Irish knowledge venture Co.

TR01 Transfer of patent right
CX01 Expiry of patent term

Granted publication date: 20150429

CX01 Expiry of patent term