CN101042923A - sense amplifier - Google Patents
sense amplifier Download PDFInfo
- Publication number
- CN101042923A CN101042923A CN 200610071485 CN200610071485A CN101042923A CN 101042923 A CN101042923 A CN 101042923A CN 200610071485 CN200610071485 CN 200610071485 CN 200610071485 A CN200610071485 A CN 200610071485A CN 101042923 A CN101042923 A CN 101042923A
- Authority
- CN
- China
- Prior art keywords
- coupled
- current
- source
- gate
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims 4
- 238000010586 diagram Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
Landscapes
- Amplifiers (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种读出放大器(sense amplifier),特别是涉及一种可以增加读出电压的读出范围的读出放大器。The invention relates to a sense amplifier, in particular to a sense amplifier capable of increasing the read range of the read voltage.
背景技术Background technique
由于非易失性存储器在没有电力提供下仍可长期保存数据,已成为目前存储器的主流。以磁阻式存储器(Magnetoresistive RAM,MRAM)与电阻式存储器(Resistive RAM,RAM)来说,其储存数据的方式是利用存储器内存储单元的阻值不同来区分0或1的数据。而读取磁阻式存储器与电阻式存储器内的数据便是利用与流经一参考存储单元的电流比较,进而得知存储单元储存的数据。一般来说,读取的方式均是利用一读出放大器(SenseAmplifier,SA)来读出存储单元内的电流,以得知存储单元的状况。因为存储单元内逻辑状态0与1时具有不同电阻值,在对存储单元施加一偏压后,便会有不同的电流,藉由判断电流的大小来得知存储单元内逻辑状态0或1。Since the non-volatile memory can store data for a long time without power supply, it has become the mainstream of the current memory. For Magnetoresistive RAM (MRAM) and resistive RAM (Resistive RAM, RAM), the way of storing data is to distinguish between 0 and 1 data by using the different resistance values of memory cells in the memory. To read the data in the magnetoresistive memory and the resistive memory is to use the comparison with the current flowing through a reference memory unit to obtain the data stored in the memory unit. Generally speaking, the way of reading is to use a sense amplifier (Sense Amplifier, SA) to read the current in the memory cell, so as to know the status of the memory cell. Because the
此外,存储单元的读取速度亦与读出放大器有相当的关系。读出放大器判断存储单元状态所需的时间越短越好,而读出的时间除了取决于读出放大器本身外,也与流经存储单元的电流大小有关。In addition, the reading speed of the memory cell also has a considerable relationship with the sense amplifier. The shorter the time required for the sense amplifier to judge the state of the memory cell, the better, and the read time is not only dependent on the sense amplifier itself, but also related to the current flowing through the memory cell.
图1为一现有的读出放大器的电路示意图。控制电流源11耦接一高电压源VDD与晶体管N11的漏极与栅极。一电阻组件R耦接晶体管N11的源极与一地电位。晶体管P11的源极耦接高电压源VDD,其栅极与漏极耦接晶体管N12的漏极与晶体管P12的栅极。晶体管P12的源极耦接高电压源VDD,且其漏极耦接晶体管N13的漏极。晶体管N13的栅极耦接晶体管N12的栅极。存储单元12耦接晶体管N12的源极与地电位。参考存储单元13耦接晶体管N13的源极与地电位。存储单元12内具有一等效电阻Rcell且流经该等效电阻Rcell的电流为Icell。参考存储单元13内具有并联的两电阻Rmax与Rmin,且流经该电阻的电流分别为IH与IL。控制电流源11用以产生一控制电流Ibias,并利用晶体管P11与P12的通道长宽比的不同(在图1中为1:晶体管P12的电流为Iref,流经晶体管P11的电流为1/2Iref。电阻Rmax与Rmin分别表示存储单元12在储存逻辑1与逻辑0时的电阻值,而在施加一固定偏压后便可分别得到电流IH与IL。而本技术便是利用存储单元12在储存逻辑1或逻辑0时的电阻值,施加以该固定偏压,使得存储单元电流Icell为IH或IL,并且在端点14与15之间产生一电压差,通过一比较器判断得知存储单元12储存的数据。但本技术中,参考电流Iref为IH与IL之和,因此读出放大器须具备有将电流IH与IL除以二的功能,而这会增加读出放大器的面积,且因流经存储单元12与参考存储单元13的电流差距不大,在判断的速度及准确率会受到影响。且图1的读出放大器其电流读出范围为1/2(IL-IH)或1/2(IH-IL),如果电流IH与IL的差异不够大,图1的读出放大器就可能不够灵敏且容易受到噪声的干扰。FIG. 1 is a schematic circuit diagram of a conventional sense amplifier. The control
图2为另一现有的读出放大器的电路示意图。图2所示的电路图为美国专利号6,762,953中所提及的电路图。图2中的读出放大器亦是利用电流镜,将Iref与Icell作处理,使得比较器21的两个输入端22与23读出到的电流分别为Iref-Icell以及Icell-Iref,利用这样的方式可得到比图1的读出放大器中较大的电流范围(图1的读出放大器仅有Iref-Icell的电流范围)。但在图2中,Iref的值仍为1/2(IH+IL),读出放大器必须利用一外部电路将电流Iref作除二处理,或在读出放大器内设定电流镜的比例为1∶2,才能使得读出放大镜正常运作。在图2的读出放大器中,其电流读出范围为(IL-IH)或(IH-IL),明显较图1的读出放大器的读出范围增加,但是需要较多的晶体管与较多的电路面积来完成。FIG. 2 is a schematic circuit diagram of another conventional sense amplifier. The circuit diagram shown in FIG. 2 is the circuit diagram mentioned in US Patent No. 6,762,953. The sense amplifier in Fig. 2 also utilizes the current mirror to process Iref and Icell, so that the currents read by the two
在现有技术中,读出放大器的电流读出范围不是太小(如图1),就是需要更多的晶体管与电路面积(如图2),以得到较大的电流读出范围。因此,一个以更少的晶体管以及更简单的电路设计来得到较大的电流读出范围的读出放大器是有其必要性的。In the prior art, the current sensing range of the sense amplifier is either too small (as shown in FIG. 1 ), or requires more transistors and circuit area (as shown in FIG. 2 ) to obtain a larger current sensing range. Therefore, there is a need for a sense amplifier that can obtain a larger current sense range with fewer transistors and a simpler circuit design.
发明内容Contents of the invention
本发明提供一种读出放大器,耦接一存储单元,包括一第一电流镜单元、一第二电流镜单元、一第一阻抗组件、一第二阻抗组件以及一第三电流镜单元。该第一电流镜单元,具有一第一输出端与一第二输出端,耦接一高电压源,根据一第一电流于该第一输出端输出该第一电流以及于该第二输出端输出一第二电流,其中该第二电流为该第一电流的两倍。该第二电流镜单元,具有一第三输出端,耦接一高电压源,根据一参考电流于该第三输出端输出该参考电流。该第一阻抗组件,具有一第一阻抗值,耦接该第二输出端以及一低电压源。该第二阻抗组件,具有该第一阻抗值,耦接该第三输出端以及该低电压源。该第三电流镜单元,耦接该第一输出端、该第二输出端以及该第三输出端,并以该第一电流为该第三电流镜单元的参考电流,使得流经该第一阻抗组件的电流为该第一电流,流经该第二阻抗组件的电流为一第四电流。The invention provides a sense amplifier coupled to a storage unit, including a first current mirror unit, a second current mirror unit, a first impedance component, a second impedance component and a third current mirror unit. The first current mirror unit has a first output terminal and a second output terminal, is coupled to a high voltage source, outputs the first current at the first output terminal according to a first current, and outputs the first current at the second output terminal Outputting a second current, wherein the second current is twice the first current. The second current mirror unit has a third output terminal coupled to a high voltage source, and outputs a reference current at the third output terminal according to a reference current. The first impedance component has a first impedance value and is coupled to the second output end and a low voltage source. The second impedance component, having the first impedance value, is coupled to the third output terminal and the low voltage source. The third current mirror unit is coupled to the first output terminal, the second output terminal and the third output terminal, and uses the first current as the reference current of the third current mirror unit, so that the current flowing through the first The current of the impedance component is the first current, and the current flowing through the second impedance component is a fourth current.
本发明还提供一种读出放大器,包括一第一阻抗组件、一第二阻抗组件、一存储单元电流源、一参考存储单元电流源、第一到第八晶体管。该第一阻抗组件与该第二阻抗组件耦接一低电压源。该存储单元电流源,耦接一低电压源,用以提供一第一电流。该参考存储单元电流源,耦接该低电压源,用以提供一参考电流。第一晶体管,具有一第一源极、一第一漏极以及一第一栅极,其中该第一源极耦接一高电压源、该第一漏极以及该第一栅极耦接该存储单元电流源。一第二晶体管,具有一第二源极、一第二漏极以及一第二栅极,其中该第二源极耦接该高电压源,该第二栅极耦接该第一栅极,该第二漏极耦接该第一阻抗组件。第三晶体管,具有一第三源极、一第三漏极以及一第三栅极,其中该第三源极耦接该高电压源,该第三栅极耦接该第一栅极。一第四晶体管,具有一第四源极、一第四漏极以及一第四栅极,其中该第四源极耦接该高电压源,该第四漏极耦接该第二阻抗组件。第五晶体管,具有一第五源极、一第五漏极以及一第五栅极,其中该第五源极耦接该高电压源,该第五栅极耦接该第四栅极与该第五漏极,该第五漏极耦接该参考存储单元电流源。第六晶体管,具有一第六源极、一第六漏极以及一第六栅极,其中该第六漏极耦接该第一阻抗组件与该第二漏极,该第六源极耦接该低电压源。第七晶体管,具有一第七源极、一第七漏极以及一第七栅极,其中该第七漏极耦接该第三漏极、该第六栅极以及该第七栅极,该第七源极耦接该低电压源。第八晶体管,具有一第八源极、一第八漏极以及一第八栅极,其中该第八漏极耦接该第二阻抗组件与该第四漏极,该第八栅极耦接该第七栅极,该第八源极耦接该低电压源。The present invention also provides a sense amplifier, which includes a first impedance component, a second impedance component, a storage unit current source, a reference storage unit current source, and first to eighth transistors. The first impedance component and the second impedance component are coupled to a low voltage source. The memory cell current source is coupled to a low voltage source for providing a first current. The reference memory cell current source is coupled to the low voltage source for providing a reference current. The first transistor has a first source, a first drain and a first gate, wherein the first source is coupled to a high voltage source, the first drain and the first gate are coupled to the memory cell current source. A second transistor has a second source, a second drain and a second gate, wherein the second source is coupled to the high voltage source, the second gate is coupled to the first gate, The second drain is coupled to the first impedance component. The third transistor has a third source, a third drain and a third gate, wherein the third source is coupled to the high voltage source, and the third gate is coupled to the first gate. A fourth transistor has a fourth source, a fourth drain and a fourth gate, wherein the fourth source is coupled to the high voltage source, and the fourth drain is coupled to the second impedance element. The fifth transistor has a fifth source, a fifth drain and a fifth gate, wherein the fifth source is coupled to the high voltage source, and the fifth gate is coupled to the fourth gate and the The fifth drain is coupled to the reference memory cell current source. The sixth transistor has a sixth source, a sixth drain and a sixth gate, wherein the sixth drain is coupled to the first impedance element and the second drain, and the sixth source is coupled to the low voltage source. The seventh transistor has a seventh source, a seventh drain and a seventh gate, wherein the seventh drain is coupled to the third drain, the sixth gate and the seventh gate, the The seventh source is coupled to the low voltage source. The eighth transistor has an eighth source, an eighth drain, and an eighth gate, wherein the eighth drain is coupled to the second impedance element and the fourth drain, and the eighth gate is coupled to The seventh gate and the eighth source are coupled to the low voltage source.
附图说明Description of drawings
图1为一现有的读出放大器的电路示意图。FIG. 1 is a schematic circuit diagram of a conventional sense amplifier.
图2为另一现有的读出放大器的电路示意图。FIG. 2 is a schematic circuit diagram of another conventional sense amplifier.
图3为根据本发明的一实施例的示意图。FIG. 3 is a schematic diagram according to an embodiment of the present invention.
图4为图3中第一电流镜单元31的一实施例的电路图。FIG. 4 is a circuit diagram of an embodiment of the first
图5为图3中第二电流镜单元32的一实施例的电路图。FIG. 5 is a circuit diagram of an embodiment of the second
图6为图3中第三电流镜单元33的一实施例的电路图。FIG. 6 is a circuit diagram of an embodiment of the third
图7为根据本发明的另一实施例的电路示意图。FIG. 7 is a schematic circuit diagram according to another embodiment of the present invention.
图8为根据本发明的另一实施例的电路示意图。FIG. 8 is a schematic circuit diagram according to another embodiment of the present invention.
图9为根据本发明的另一实施例的电路示意图。FIG. 9 is a schematic circuit diagram according to another embodiment of the present invention.
附图符号说明Description of reference symbols
11~控制电流源11~control current source
12~存储单元12~storage unit
13~参考存储单元13 ~ reference storage unit
14、15、22、23、31a、31b、32a~端点14, 15, 22, 23, 31a, 31b, 32a to endpoint
16、21、36、75、85~比较器16, 21, 36, 75, 85~comparator
P11、P12、N11、N12、N13、T1、T2、T3、T4、T5、T6、T7、T8、T71、T72、T73、T74、T75、T76、T77、T78、T81、T82、T83、T84、T85、T86、T87、T88~晶体管P11, P12, N11, N12, N13, T1, T2, T3, T4, T5, T6, T7, T8, T71, T72, T73, T74, T75, T76, T77, T78, T81, T82, T83, T84, T85, T86, T87, T88~Transistor
31~第一电流镜单元31 ~ the first current mirror unit
32~第二电流镜单元32~Second current mirror unit
33~第三电流镜单元33 ~ the third current mirror unit
34、72、82~第一阻抗组件34, 72, 82~the first impedance component
35、73、83~第二阻抗组件35, 73, 83 ~ the second impedance component
41、71、81~存储单元电流源41, 71, 81 ~ memory cell current source
51、74、84~参考电流源51, 74, 84~reference current source
具体实施方式Detailed ways
图3为根据本发明的一实施例的示意图。第一电流镜单元31耦接一高电压源VDD,具有一第一输出端31a与一第二输出端31b,并根据一电流源(图上未绘出)通过第二输出端31b输出一电流I1与通过第一输出端31a输出电流I2,其中I2=2I1。第二电流镜单元32耦接该高电压源VDD,具有一输出端32a,并根据一参考电流源(图上未绘出)通过输出端32a输出一电流Iref。第三电流镜单元33耦接第一输出端31a、第二输出端31b、输出端32a以及一接地端,并以由第二输出端31b输出的电流I1为第三电流镜单元33的参考电流。第一阻抗组件34耦接第一输出端31a与一接地端,具有一阻抗值Z1。第二阻抗组件35耦接输出端32a与一接地端,具有一阻抗值Z2。因为第一输出端31a耦接第三电流镜33与第一阻抗组件34,而第三电流镜单元33以由第二输出端31b输出的电流I1为参考电流,因此由第一输出端31a流入第三电流镜单元的电流为I1。而原先由第一输出端31a流出的电流为I2(2I1),因此流经第一阻抗组件34的电流大小为I1。同理,流经第二组抗组件35的电流I4大小为(Iref-I1)。FIG. 3 is a schematic diagram according to an embodiment of the present invention. The first
在本实施例中,电流I1为以一固定偏压读出一存储单元所得到的电流,而当存储单元储存的数据为逻辑高电平时,以固定偏压读出该存储单元所得到的电流为IH,而当存储单元储存的数据为逻辑低电平时,以固定偏压读出该存储单元所得到的电流为IL。在本实施例中,参考电流Iref的大小为(IH+IL)。当存储单元储存的数据为逻辑高电平时,此时的电流I1为IH,因此在端点37可得到一电压(IH×Z1)。而流经第二阻抗组件35的电流I4大小为IL,因此在端点38可得到一电压(IL×Z2)。而比较器36便可输出一电压差(IH×Z1-IL×Z2)。若第一阻抗组件34的阻抗值Z1等于第二阻抗组件35的阻抗值Z2,则该电压差为(IH-IL)×Z1。In this embodiment, the current I1 is the current obtained by reading a memory cell with a fixed bias voltage, and when the data stored in the memory cell is logic high level, the current obtained by reading the memory cell with a fixed bias voltage The current is I H , and when the data stored in the memory cell is at a logic low level, the current obtained by reading the memory cell with a fixed bias voltage is I L . In this embodiment, the magnitude of the reference current I ref is (I H +I L ). When the data stored in the memory cell is logic high level, the current I 1 at this time is I H , so a voltage (I H ×Z1 ) can be obtained at the terminal 37 . The magnitude of the current I 4 flowing through the
图4为图3中第一电流镜单元31的一实施例的电路图。PMOS晶体管T1具有一第一源极、第一漏极以及一第一栅极,其中第一源极耦接高电压源VDD,第一栅极与第一漏极耦接一存储单元电流源41,该存储单元电流源用以产生存储单元的感应电流I1。PMOS晶体管T2具有一第二源极、第二漏极以及一第二栅极,其中第二源极耦接高电压源VDD,第二栅极耦接第一栅极,第二漏极则耦接第一输出端31a。PMOS晶体管T3具有一第三源极、第三漏极以及一第三栅极,其中第三源极耦接高电压源VDD,第三栅极耦接第一栅极,第三漏极则耦接第二输出端31b。在本实施例中,为使得第一输出端31a输出的电流为第二输出端31b输出的电流的两倍,因此在PMOS晶体管T2的通道长宽比(W/L)设计为PMOS晶体管T3的通道长宽比的两倍。FIG. 4 is a circuit diagram of an embodiment of the first
图5为图3中第二电流镜单元32的一实施例的电路图。PMOS晶体管T4具有一第四源极、第四漏极以及一第四栅极,其中第四源极耦接高电压源VDD,第四漏极耦接输出端32a。PMOS晶体管T5具有一第五源极、第五漏极以及一第五栅极,其中第五源极耦接高电压源VDD,第五栅极与第五漏极耦接第四栅极,第五漏极还耦接一参考电流源51,该参考电流源用以产生参考电流Iref。利用PMOS晶体管T4与T5形成的电流镜电路,使得输出端32a可以输出参考电流Iref。FIG. 5 is a circuit diagram of an embodiment of the second
图6为图3中第三电流镜单元33的一实施例的电路图。NMOS晶体管T7具有一第七源极、一第七栅极以及一第七漏极,其中第七源极与第七栅极耦接第二输出端31b,用以接收第二输出端31b输出的电流I1,第七漏极耦接一接地电位。在第三电流镜单元33中,NMOS晶体管T7根据第二输出端31b输出的电流I1为第三电流镜单元33的参考电流源。第六晶体管T6具有一第六源极、一第六栅极以及一第六漏极,其中第六漏极耦接第一输出端31a,第六栅极耦接第七栅极,第六源极耦接接地电位。第八晶体管T6具有一第八源极、一第八栅极以及一第八漏极,其中第八漏极耦接输出端32a,第八栅极耦接第七栅极,第八源极耦接接地电位。利用NMOS晶体管T6、T7与T8形成的电流镜电路,使得流经NMOS晶体管T6、T7与T8的电流皆为I1,因此流经第一阻抗组件34的电流为I1,流经第二阻抗组件35的电流I4为(Iref-I1)。FIG. 6 is a circuit diagram of an embodiment of the third
图7为根据本发明的另一实施例的电路示意图。晶体管T71、T72、T73、T74以及T75的第一源/漏极耦接高电压源VDD。晶体管T71与T72的栅极耦接晶体管T73的栅极。晶体管T71的栅极与第二源/漏极耦接一存储单元电流源71,存储单元电流源71是以一固定偏压去读出一存储单元所得的电流Icell。当存储单元储存的数据为逻辑高电平时,以该固定偏压读出该存储单元所得的电流为IH。当存储单元储存的数据为逻辑低电平时,以该固定偏压读出该存储单元所得的电流为IL。晶体管T72的第二源/漏极耦接晶体管T76的第一源/漏极与第一阻抗组件72的一端点,其中第一阻抗组件72具有一阻抗值Zload。在本实施例中,流经晶体管T72的电流为流经晶体管T73的电流的两倍,而其中一个达到此目的的方法为设计晶体管T72的通道长宽比(W/L)为晶体管T73的两倍。晶体管T73的第二源/漏极耦接晶体管T77的第一源/漏极与栅极。晶体管T74的栅极耦接晶体管T75的栅极与第二源/漏极,晶体管T74的第二源/漏极耦接晶体管T78的第一源/漏极与第二阻抗组件73的一端点,其中第二阻抗组件73具有一阻抗值Zload。晶体管T75的第二源/漏极耦接一参考电流源74,参考电流源74是以该固定偏压去读出一参考存储单元所得的一参考电流Iref,在本发明中,参考电流Iref为(IH+IL)。晶体管T76、T77以及T78的第二源/漏极耦接一接地电位。FIG. 7 is a schematic circuit diagram according to another embodiment of the present invention. The first sources/drains of the transistors T71, T72, T73, T74 and T75 are coupled to the high voltage source VDD. The gates of the transistors T71 and T72 are coupled to the gate of the transistor T73. The gate and the second source/drain of the transistor T71 are coupled to a memory cell current source 71. The memory cell current source 71 uses a fixed bias voltage to read a current I cell obtained from a memory cell. When the data stored in the memory cell is logic high level, the current obtained by reading the memory cell with the fixed bias voltage is I H . When the data stored in the memory cell is logic low level, the current obtained by reading the memory cell with the fixed bias voltage is I L . The second source/drain of the transistor T72 is coupled to the first source/drain of the transistor T76 and an end of the first impedance element 72 , wherein the first impedance element 72 has an impedance value Z load . In this embodiment, the current flowing through the transistor T72 is twice the current flowing through the transistor T73, and one way to achieve this is to design the channel aspect ratio (W/L) of the transistor T72 to be twice that of the transistor T73. times. The second source/drain of the transistor T73 is coupled to the first source/drain and the gate of the transistor T77. The gate of the transistor T74 is coupled to the gate of the transistor T75 and the second source/drain, and the second source/drain of the transistor T74 is coupled to the first source/drain of the transistor T78 and one terminal of the second impedance component 73, Wherein the second impedance component 73 has an impedance value Z load . The second source/drain of the transistor T75 is coupled to a reference current source 74. The reference current source 74 uses the fixed bias to read a reference current I ref obtained by a reference memory cell. In the present invention, the reference current I ref ref is (I H +I L ). The second sources/drains of the transistors T76, T77 and T78 are coupled to a ground potential.
当存储单元中储存的数据为逻辑高电平时,此时以该固定偏压读出该存储单元所得到的电流为IH(亦即Icell=IH)。晶体管T76、T77与T78形成一电流镜架构,且以流入晶体管T77的电流IH为参考电流,因此流经晶体管T76的电流为IH,流经第一阻抗组件72的电流为IH。晶体管T74与T75形成一电流镜架构,故由晶体管T74流出的电流为Iref,但流经晶体管T78的电流为IH,故流经第二阻抗组件73的电流为IL(因为Iref=IH+IL)。比较器75耦接第一阻抗组件72与第二阻抗组件73,并根据电压Vo与Vob输出一电压Vout,电压Vout即为此读出放大器的读出范围。在本实施例中,电压Vo为(IH×Zload),电压Vob为(IL×Zload),故电压Vout为(IH-IL)×Zload。When the data stored in the memory cell is logic high level, the current obtained by reading the memory cell with the fixed bias voltage is I H (ie, I cell =I H ). The transistors T76 , T77 and T78 form a current mirror structure, and the current I H flowing into the transistor T77 is used as a reference current, so the current flowing through the transistor T76 is I H , and the current flowing through the first impedance element 72 is I H . The transistors T74 and T75 form a current mirror structure, so the current flowing out of the transistor T74 is I ref , but the current flowing through the transistor T78 is I H , so the current flowing through the second impedance element 73 is IL (because I ref = I H + I L ). The comparator 75 is coupled to the first impedance component 72 and the second impedance component 73 , and outputs a voltage V out according to the voltages V o and V ob , and the voltage V out is the sense range of the sense amplifier. In this embodiment, the voltage V o is (I H ×Z load ), the voltage V ob is (I L ×Z load ), so the voltage V out is (I H −I L )×Z load .
当存储单元中储存的数据为逻辑低电平时,此时以该固定偏压读出该存储单元所得到的电流为IL(亦即Icell=IL)。晶体管T76、T77与T78形成一电流镜架构,且以流入晶体管T77的电流IL为参考电流,因此流经晶体管T76的电流为IL,流经第一阻抗组件72的电流亦为IL。晶体管T74与T75形成一电流镜架构,故由晶体管T74流出的电流为Iref,但流经晶体管T78的电流为IL,故流经第二阻抗组件73的电流为IH(因为Iref=IH+IL)。比较器75耦接第一阻抗组件72与第二阻抗组件73,并根据电压Vo与Vob输出一电压Vout,电压Vout即为此读出放大器的读出范围。在本实施例中,电压Vo为(IL×Zload),电压Vob为(IH×Zload),故电压Vout为(IL-IH)×Zload。与图1所示的现有读出放大器相比,本发明的读出放大器无论存储单元储存的数据为逻辑高电平或逻辑低电平,其读出的电压范围都较图1所示的读出放大器增加一倍,且与图2所示的读出放大器相比,具有电路简单且节省电路面积的优点。When the data stored in the memory cell is logic low level, the current obtained by reading the memory cell with the fixed bias voltage is I L (that is, I cell = IL ). The transistors T76, T77 and T78 form a current mirror structure, and the current IL flowing into the transistor T77 is used as a reference current, so the current flowing through the transistor T76 is IL , and the current flowing through the first impedance element 72 is also IL . The transistors T74 and T75 form a current mirror structure, so the current flowing out of the transistor T74 is I ref , but the current flowing through the transistor T78 is I L , so the current flowing through the second impedance element 73 is I H (because I ref = I H + I L ). The comparator 75 is coupled to the first impedance component 72 and the second impedance component 73 , and outputs a voltage V out according to the voltages V o and V ob , and the voltage V out is the sense range of the sense amplifier. In this embodiment, the voltage Vo is (I L ×Z load ), the voltage V ob is (I H ×Z load ), so the voltage V out is (I L −I H )×Z load . Compared with the existing sense amplifier shown in Figure 1, the sense amplifier of the present invention has a higher voltage range than that shown in Figure 1 regardless of whether the data stored in the memory cell is a logic high level or a logic low level. The sense amplifier is doubled, and compared with the sense amplifier shown in FIG. 2 , it has the advantages of simple circuit and saving circuit area.
图8为根据本发明的另一实施例的电路示意图。晶体管T86、T87以及T88的第一源/漏极耦接高电压源VDD,晶体管T87以及T88的栅极耦接晶体管T86的栅极。晶体管T86的第二源/漏极耦接晶体管T82的第一源/漏极以及第一阻抗组件82。晶体管T87的第二源/漏极耦接晶体管T87的栅极与晶体管T83的第一源/漏极。晶体管T88的第二源/漏极耦接晶体管T84的第一源/漏极以及第二阻抗组件83。存储单元电流源81耦接高电压源VDD与晶体管T81的第一源/漏极与栅极,存储单元电流源81是以一固定偏压去读出一存储单元所得的电流Icell。当存储单元储存的数据为逻辑高电平时,以该固定偏压读出该存储单元所得的电流为IH。当存储单元储存的数据为逻辑低电平时,以该固定偏压读出该存储单元所得的电流为IL。参考电流源84耦接高电压源VDD与晶体管T85的第一源/漏极与栅极,参考电流源84是以该固定偏压去读出一参考存储单元所得的一参考电流Iref,在本发明中,参考电流Iref为(IH+IL)。晶体管T81、T82、T83、T84以及T85的第二源/漏极耦接一接地电位。晶体管T82以及T83的栅极耦接晶体管T81的栅极。晶体管T84的栅极耦接晶体管T85的栅极。在本实施例中,流经晶体管T82的电流为流经晶体管T81的电流的两倍,而其中一个达到此目的的方法为设计晶体管T82的通道长宽比(W/L)为晶体管T81的两倍。此外,在本实施例中,第一阻抗组件82与第二阻抗组件83具有一阻抗值Zload。FIG. 8 is a schematic circuit diagram according to another embodiment of the present invention. The first sources/drains of the transistors T86, T87 and T88 are coupled to the high voltage source VDD, and the gates of the transistors T87 and T88 are coupled to the gate of the transistor T86. The second source/drain of the transistor T86 is coupled to the first source/drain of the transistor T82 and the first impedance component 82 . The second source/drain of the transistor T87 is coupled to the gate of the transistor T87 and the first source/drain of the transistor T83. The second source/drain of the transistor T88 is coupled to the first source/drain of the transistor T84 and the second impedance component 83 . The memory cell current source 81 is coupled to the high voltage source VDD and the first source/drain and gate of the transistor T81. The memory cell current source 81 uses a fixed bias voltage to read a current I cell obtained from a memory cell. When the data stored in the memory cell is logic high level, the current obtained by reading the memory cell with the fixed bias voltage is I H . When the data stored in the memory cell is logic low level, the current obtained by reading the memory cell with the fixed bias voltage is I L . The reference current source 84 is coupled to the high voltage source VDD and the first source/drain and gate of the transistor T85. The reference current source 84 uses the fixed bias voltage to read a reference current I ref obtained from a reference memory cell. In the present invention, the reference current I ref is (I H +I L ). Second sources/drains of the transistors T81, T82, T83, T84 and T85 are coupled to a ground potential. The gates of the transistors T82 and T83 are coupled to the gate of the transistor T81. The gate of the transistor T84 is coupled to the gate of the transistor T85. In this embodiment, the current flowing through the transistor T82 is twice the current flowing through the transistor T81, and one way to achieve this is to design the channel aspect ratio (W/L) of the transistor T82 to be twice that of the transistor T81. times. In addition, in this embodiment, the first impedance component 82 and the second impedance component 83 have an impedance value Z load .
当存储单元中储存的数据为逻辑高电平时,此时以该固定偏压读出该存储单元所得到的电流为IH(亦即Icell=IH)。晶体管T86、T87与T88形成一电流镜架构,且以流入晶体管T87的电流IH为参考电流,因此流经晶体管T86的电流为IH,流经第一阻抗组件82的电流为IH。晶体管T84与T85形成一电流镜架构,由晶体管T84流出的电流为Iref,但流经晶体管T88的电流为IH,故流经第二阻抗组件83的电流为IL(因为Iref=IH+IL)。比较器85耦接第一阻抗组件82与第二阻抗组件83,并根据电压Vo与Vob输出一电压Vout,电压Vout即为此读出放大器的读出范围。在本实施例中,电压Vo为(VDD-IH×Zload),电压Vob为(VDD-IL×Zload),故电压Vout为(IH-IL)×Zload。When the data stored in the memory cell is logic high level, the current obtained by reading the memory cell with the fixed bias voltage is I H (ie, I cell =I H ). The transistors T86 , T87 and T88 form a current mirror structure, and the current I H flowing into the transistor T87 is used as a reference current, so the current flowing through the transistor T86 is I H , and the current flowing through the first impedance element 82 is I H . The transistors T84 and T85 form a current mirror structure, the current flowing out of the transistor T84 is I ref , but the current flowing through the transistor T88 is I H , so the current flowing through the second impedance component 83 is IL (because I ref =I H + IL ). The comparator 85 is coupled to the first impedance component 82 and the second impedance component 83 , and outputs a voltage V out according to the voltages V o and V ob , and the voltage V out is the sense range of the sense amplifier. In this embodiment, the voltage V o is (VDD-I H ×Z load ), the voltage V ob is (VDD-I L ×Z load ), so the voltage V out is (I H -I L )×Z load .
当存储单元中储存的数据为逻辑低电平时,此时以该固定偏压读出该存储单元所得到的电流为IL(亦即Icell=IL)。晶体管T86、T87与T88形成一电流镜架构,且以流入晶体管T87的电流IL为参考电流,因此流经晶体管T86的电流为IL,流经第一阻抗组件72的电流亦为IL。晶体管T84与T85形成一电流镜架构,故由晶体管T84流出的电流为Iref,但流经晶体管T88的电流为IL,故流经第二阻抗组件83的电流为IH(因为Iref=IH+IL)。比较器85耦接第一阻抗组件82与第二阻抗组件83,并根据电压Vo与Vob输出一电压Vout,电压Vout即为此读出放大器的读出范围。在本实施例中,电压Vo为(VDD-IL×Zload),电压Vob为(VDD-IH×Zload),故电压Vout为(IL-IH)×Zload。与图1所示的现有读出放大器相比,本发明的读出放大器无论存储单元储存的数据为逻辑高电平或逻辑低电平,其读出的电压范围都较图1所示的读出放大器增加一倍,且与图2所示的读出放大器相比,具有电路简单且节省电路面积的优点。When the data stored in the memory cell is logic low level, the current obtained by reading the memory cell with the fixed bias voltage is I L (that is, I cell = IL ). The transistors T86, T87 and T88 form a current mirror structure, and the current IL flowing into the transistor T87 is used as a reference current, so the current flowing through the transistor T86 is IL , and the current flowing through the first impedance element 72 is also IL . The transistors T84 and T85 form a current mirror structure, so the current flowing out of the transistor T84 is I ref , but the current flowing through the transistor T88 is I L , so the current flowing through the second impedance component 83 is I H (because I ref = I H + I L ). The comparator 85 is coupled to the first impedance component 82 and the second impedance component 83 , and outputs a voltage V out according to the voltages Vo and V ob , and the voltage V out is the sense range of the sense amplifier. In this embodiment, the voltage Vo is (VDD-I L ×Z load ), the voltage V ob is (VDD-I H ×Z load ), so the voltage V out is (I L -I H )×Zload. Compared with the existing sense amplifier shown in Figure 1, the sense amplifier of the present invention has a higher voltage range than that shown in Figure 1 regardless of whether the data stored in the memory cell is a logic high level or a logic low level. The sense amplifier is doubled, and compared with the sense amplifier shown in FIG. 2 , it has the advantages of simple circuit and saving circuit area.
图9为根据本发明的另一实施例的电路示意图。晶体管T91、T92、T93、T94以及T95的第一源/漏极耦接高电压源VDD,晶体管T91的栅极耦接晶体管T92与T93的栅极,晶体管T94的栅极耦接T95的栅极。存储单元电流源91耦接晶体管T91的第二源/漏极与栅极。存储单元电流源91是以一固定偏压去读出一存储单元所得的电流Icell。当存储单元储存的数据为逻辑高电平时,以该固定偏压读出该存储单元所得的电流为IH。当存储单元储存的数据为逻辑低电平时,以该固定偏压读出该存储单元所得的电流为IL。晶体管T92的第二源/漏极耦接第一阻抗组件92与比较器95。晶体管T93的第二源/漏极耦接晶体管T96的第一源/漏极、晶体管T96与T98的栅极。参考电流源94耦接晶体管T95的第二源/漏极与晶体管T95的栅极。晶体管T94的第二源/漏极耦接晶体管T98的第一源/漏极、第二阻抗组件93以及比较器95。FIG. 9 is a schematic circuit diagram according to another embodiment of the present invention. The first source/drain of the transistors T91, T92, T93, T94 and T95 are coupled to the high voltage source VDD, the gate of the transistor T91 is coupled to the gates of the transistors T92 and T93, and the gate of the transistor T94 is coupled to the gate of T95 . The memory cell
当存储单元中储存的数据为逻辑高电平时,此时以该固定偏压读出该存储单元所得到的电流为IH(亦即Icell=IH)。晶体管T91、T92以及T93形成一电流镜架构,使得流经第一阻抗组件92与晶体管T96与T98形成的电流镜的电流为IH。晶体管T94与T95形成一电流镜架构,由晶体管T94流出的电流为Iref,但流经晶体管T98的电流为IH,故流经第二阻抗组件93的电流为IL(因为Iref=IH+IL)。比较器95耦接第一阻抗组件92与第二阻抗组件93,并根据电压Vo与Vob输出一电压Vout,电压Vout即为此读出放大器的读出范围。在本实施例中,电压Vo为(IL×Zload),电压Vob为(IH×Zload),故电压Vout为(IH-IL)×Zload。与图1所示的现有读出放大器相比,本发明的读出放大器无论存储单元储存的数据为逻辑高电平或逻辑低电平,其读出的电压范围都较图1所示的读出放大器增加一倍,且与图2所示的读出放大器相比,具有电路简单且节省电路面积的优点。When the data stored in the memory cell is logic high level, the current obtained by reading the memory cell with the fixed bias voltage is I H (ie, I cell =I H ). The transistors T91 , T92 and T93 form a current mirror structure, so that the current flowing through the current mirror formed by the
当存储单元中储存的数据为逻辑低电平时,此时以该固定偏压读出该存储单元所得到的电流为IL(亦即Icell=IH)。晶体管T91、T92以及T93形成一电流镜架构,使得流经第一阻抗组件92与晶体管T96与T98形成的电流镜的电流为IL。晶体管T94与T95形成一电流镜架构,由晶体管T94流出的电流为Iref,但流经晶体管T98的电流为IL,故流经第二阻抗组件93的电流为IH(因为Iref=IH+IL)。比较器95耦接第一阻抗组件92与第二阻抗组件93,并根据电压Vo与Vob输出一电压Vout,电压Vout即为此读出放大器的读出范围。在本实施例中,电压Vo为(IH×Zload),电压Vob为(IL×Zload),故电压Vout为(IL-IH)×Zload。与图1所示的现有读出放大器相比,本发明的读出放大器无论存储单元储存的数据为逻辑高电平或逻辑低电平,其读出的电压范围都较图1所示的读出放大器增加一倍,且与图2所示的读出放大器相比,具有电路简单且节省电路面积的优点。When the data stored in the memory cell is at logic low level, the current obtained by reading the memory cell with the fixed bias voltage is I L (that is, I cell =I H ). The transistors T91 , T92 and T93 form a current mirror structure, so that the current flowing through the current mirror formed by the
虽然本发明已以较佳实施例披露如上,然其并非用以限定本发明,本领域的技术人员在不脱离本发明的精神和范围的前提下可作若干的更动与润饰,因此本发明的保护范围以本发明的权利要求为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection is based on the claims of the present invention.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200610071485 CN101042923B (en) | 2006-03-24 | 2006-03-24 | sense amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200610071485 CN101042923B (en) | 2006-03-24 | 2006-03-24 | sense amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101042923A true CN101042923A (en) | 2007-09-26 |
CN101042923B CN101042923B (en) | 2010-05-12 |
Family
ID=38808344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200610071485 Expired - Fee Related CN101042923B (en) | 2006-03-24 | 2006-03-24 | sense amplifier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101042923B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101777374A (en) * | 2010-01-12 | 2010-07-14 | 上海宏力半导体制造有限公司 | Readout amplifier with process and current compensation |
CN102044303A (en) * | 2009-10-14 | 2011-05-04 | 无锡华润上华半导体有限公司 | ROM (Read-Only Memory) |
CN102592649A (en) * | 2011-01-06 | 2012-07-18 | 上海华虹集成电路有限责任公司 | Flash EEPROM sensitive amplifier circuit |
CN102722213A (en) * | 2012-06-26 | 2012-10-10 | 昆明物理研究所 | Photovoltaic detector read-out unit circuit applying inverted voltage follower |
CN105027218A (en) * | 2013-03-08 | 2015-11-04 | 密克罗奇普技术公司 | Resistive random access memory (reram) and conductive bridging random access memory (cbram) cross coupled fuse and read method and system |
CN106448736A (en) * | 2015-08-06 | 2017-02-22 | 复旦大学 | Method for generating reading reference current related to resistance value |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100205530B1 (en) * | 1996-04-24 | 1999-07-01 | 윤종용 | Sense amplifier |
KR100308195B1 (en) * | 1999-09-30 | 2001-11-02 | 윤종용 | Sense amplifier circuit for use in a semiconductor memory device |
CN100502244C (en) * | 2004-10-15 | 2009-06-17 | 宇田控股有限公司 | Switch operation amplifier and its acting method |
-
2006
- 2006-03-24 CN CN 200610071485 patent/CN101042923B/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102044303A (en) * | 2009-10-14 | 2011-05-04 | 无锡华润上华半导体有限公司 | ROM (Read-Only Memory) |
CN101777374A (en) * | 2010-01-12 | 2010-07-14 | 上海宏力半导体制造有限公司 | Readout amplifier with process and current compensation |
CN101777374B (en) * | 2010-01-12 | 2014-01-29 | 上海宏力半导体制造有限公司 | Readout amplifier with process and current compensation |
CN102592649A (en) * | 2011-01-06 | 2012-07-18 | 上海华虹集成电路有限责任公司 | Flash EEPROM sensitive amplifier circuit |
CN102722213A (en) * | 2012-06-26 | 2012-10-10 | 昆明物理研究所 | Photovoltaic detector read-out unit circuit applying inverted voltage follower |
CN105027218A (en) * | 2013-03-08 | 2015-11-04 | 密克罗奇普技术公司 | Resistive random access memory (reram) and conductive bridging random access memory (cbram) cross coupled fuse and read method and system |
CN105027218B (en) * | 2013-03-08 | 2019-07-26 | 密克罗奇普技术公司 | Resistive random access memory (RERAM) and conductive bridge-type random access memory (CBRAM) cross-linked fuse and read method and system |
CN106448736A (en) * | 2015-08-06 | 2017-02-22 | 复旦大学 | Method for generating reading reference current related to resistance value |
Also Published As
Publication number | Publication date |
---|---|
CN101042923B (en) | 2010-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101042923A (en) | sense amplifier | |
KR101294573B1 (en) | Controlled value reference signal of resistance based memory circuit | |
EP2380175B1 (en) | Balancing a signal margin of a resistance based memory circuit | |
US7369441B2 (en) | Sensing circuit for multi-level flash memory | |
US9293215B2 (en) | Reference current circuit with temperature coefficient correction | |
JP2003317466A (en) | Storage device using resistance change storage element and method for determining reference resistance value of the device | |
CN1208834C (en) | Constant voltage generating circuit and semiconductor memory device | |
US7483306B2 (en) | Fast and accurate sensing amplifier for low voltage semiconductor memory | |
US7394295B2 (en) | Sense amplifier | |
JP2015536520A (en) | Low voltage current reference generator for sense amplifier | |
CN112444323A (en) | Temperature sensor comprising a diode and a capacitor | |
CN101131865A (en) | Multistable sense amplifier applied to memory | |
US7635994B1 (en) | Fast rail-to-rail voltage comparator and method for rail-to-rail voltage comparison | |
US7321513B2 (en) | Semiconductor device and method of generating a reference voltage therefor | |
CN104795093A (en) | Low-power-consumption readout circuit based on folding comparator and control method | |
TW583677B (en) | Flash memory with sensing amplifier using load transistors driven by coupled gate voltages | |
US8189405B2 (en) | Data readout circuit and semiconductor memory device | |
US10340857B2 (en) | Amplifier circuit | |
US20060256619A1 (en) | Sense amplifier circuit for parallel sensing of four current levels | |
WO2008039624A2 (en) | Sense amplifier circuit for low voltage applications | |
JP2008005547A (en) | Hysteresis comparator | |
CN104795095A (en) | STT-RAM readout circuit based on folding comparator and control method | |
JP2004259404A (en) | Semiconductor device and inter-semiconductor device signal transmission system | |
US20230206962A1 (en) | Semiconductor device | |
US9470582B2 (en) | Temperature sensing circuit and method for sensing temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100512 Termination date: 20200324 |
|
CF01 | Termination of patent right due to non-payment of annual fee |