CN101001875A - 主要包含man5glcnac2糖形的免疫球蛋白 - Google Patents

主要包含man5glcnac2糖形的免疫球蛋白 Download PDF

Info

Publication number
CN101001875A
CN101001875A CN 200580024712 CN200580024712A CN101001875A CN 101001875 A CN101001875 A CN 101001875A CN 200580024712 CN200580024712 CN 200580024712 CN 200580024712 A CN200580024712 A CN 200580024712A CN 101001875 A CN101001875 A CN 101001875A
Authority
CN
China
Prior art keywords
composition
glycan
immunoglobulin
glcnac
man
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200580024712
Other languages
English (en)
Inventor
T·U·格恩格罗斯
H·李
S·维尔德特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glycofi Inc
Original Assignee
Glycofi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glycofi Inc filed Critical Glycofi Inc
Publication of CN101001875A publication Critical patent/CN101001875A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及免疫球蛋白糖蛋白组合物,该组合物具有免疫球蛋白糖蛋白上的主要的N-聚糖结构,其赋予特定效应子功能。此外,本发明涉及包含具有特定富集的N-聚糖结构的抗体的组合物,其中所述N-聚糖结构是Man5GlcNAc2

Description

主要包含MAN5GLCNAC2糖形的免疫球蛋白
相关申请
本申请要求2004年7月21提交的美国临时申请号60/589,926和2004年7月21日提交的美国临时申请号60/589,979的益处;并且是2003年2月20日提交的美国临时申请号10/371,877的部分继续申请,美国临时申请号10/371,877是2001年7月27日提交的美国临时申请号09/892,591的部分继续申请,美国临时申请号09/892,591要求2000年7月28日提交的美国临时申请号60/214,358、2000年7月30日提交的美国临时申请号60/215,638和2001年3月30日提交的美国临时申请号60/279,997的益处。上面引用的申请的每一个都完整引入本文作为参考。
发明领域
本发明涉及用于产生具有特定的N-连接糖基化(N-linkedglycosylation)模式的糖蛋白的组合物和方法。特别地,本发明涉及含有多个具有特定N-聚糖结构的N-聚糖的免疫球蛋白糖蛋白组合物,更特别地,涉及含有免疫球蛋白糖蛋白的组合物,其中多数在免疫球蛋白上具有一种或多种调节,例如促进,特定效应物功能的主要糖形(glycoform)结构。
发明背景
在人和其它哺乳动物中,糖蛋白调节许多基本的功能,包括催化,信号传导,细胞间通讯,以及分子识别和结合。糖蛋白构成了真核生物体中的非胞质蛋白的大多数(Lis and Sharon,1993,Eur.J.Biochem.218:1-27)。多种糖蛋白已被用于治疗目的,在过去的二十年间,天然存在的糖蛋白的重组形式已成为生物技术工业的主要部分。用作治疗剂的重组糖基化蛋白的实例包括促红细胞生成素(EPO),治疗用单克隆抗体(mAbs),组织纤溶酶原激活物(tPA),干扰素-β(IFN-β),粒细胞-巨噬细胞集落刺激因子(GM-CSF),和人绒膜促性腺激素(hCH)(Cumming et al.,1991,Glycobiology 1:115-130)。随着作为潜在的预防剂和治疗剂生产的重组蛋白接近临床,重组产生的糖蛋白的糖基化模式的变化最近成为科学团体关注的课题。
抗体或免疫球蛋白(Ig)是在体液免疫反应中具有重要作用的糖蛋白。抗体可以视为是接头分子,其在体液和细胞防御机制之间提供连接。抗体对抗原的特异性识别导致形成免疫复合体,其可激活多种效应机制,导致该复合体的清除和破坏。在免疫球蛋白的大类中,五个种类的抗体——IgM,IgD,IgG,IgA,和IgE——可以从生物化学上和功能上被区分开,然而局限于可变区的更精细的差别决定着抗原结合特异性。在这五种Ig中,只有两种类型的轻链,称为lambda(λ)和kappa(κ)。没有发现在具有λ或κ链的抗体之间有功能上的差异,这两种类型的轻链的比率随物种而不同。有五种重链种类或同种型,它们决定了抗体分子的功能活性。这五种功能类别的免疫球蛋白是:免疫球蛋白M(IgM),免疫球蛋白D(IgD),免疫球蛋白G(IgG),免疫球蛋白A(IgA)和免疫球蛋白E(IgE)。每个同种型在免疫反应中具有特定的功能,它们的不同的功能性质是由重链的羧基末端部分决定的,此处其不与轻链结合。IgG是血浆中最丰富的免疫球蛋白同种型,(参见例如,Immunobiology,Janeway et al,6th Edition,2004,Garland Publishing,New York)。
免疫球蛋白G(IgG)分子含有具有恒定和可变区的Fab(抗原结合片段)域和Fc(结晶片段)域。每个重链的CH2域包括在天冬酰胺残基上的用于N-连接糖基化的单个位点,其将N-聚糖连接到Ig分子上,通常是在残基Asn-297处(Kabatat et al.,Sequences of proteins ofimmunological interest,Fifth Ed.,U.S.Department of Health andHuman Services,NIH Publication No.91-3242)。
对于N-连接的低聚糖的结构和功能方面的分析是生物学中所关心的,有三个主要的原因:(1)CH2域的糖基化在进化上是保守的,暗示低聚糖具有重要的作用;(2)免疫球蛋白分子可作为低聚糖异质性分析的模型系统(Rademacher and Dwek,1984;Rademacher et al.,1982);和(3)抗体含有两个重链的二聚连接,这使得两个低聚糖单位互相直接接触,以致于该免疫球蛋白分子同时包括特定的蛋白质-碳水化合物和碳水化合物-碳水化合物相互作用。
已表明Ig的不同的糖基化模式与不同的生物学性质相关(Jefferisand Lund,1997,Antibody Eng.Chem.Immunol.,65:111-128;Wrightand Morrison,1997,Trends Biotechnol.,15:26-32)。但是,只有少数特定的糖形已知能赋予所希望的生物学功能。例如,在N-连接聚糖上具有减少的岩藻糖化的免疫球蛋白组合物据报道具有增加的与人FcγRIII的结合,因而具有增强的抗体依赖的细胞的细胞毒性(ADCC)(Shields et al.,2002,J.Biol Chem,277:26733-26740;Shinkawa et al.,2003,J.Biol.Chem.278:3466-3473)。而且,在CHO细胞中制备的岩藻糖化的G2(Gal2GlcNAc2Man3GlcNAc2)IgG组合物据报道增加补体依赖的细胞毒性(CDC)活性至比异源抗体组合物更大的程度(Raju,2004,美国专利申请No.2004/0136986)。也提示了抗肿瘤的最佳抗体是优先与激活的Fc受体(FcγRI,FcγRIIa,FcγRIII)结合,并且最小程度地与抑制性FcγRIIb受体结合的抗体(Clynes et al.,2000,Nature,6:443-446)。因此,在Ig糖蛋白上富集特定糖形的能力是高度期望的。
通常,糖蛋白上的糖基化结构(低聚糖)随表达宿主和培养条件而不同。非人宿主细胞产生的治疗蛋白质可能含有非人的糖基化,其可能在人中引发免疫原性反应-例如酵母中的超甘露糖化(Ballou,1990,Methods Enzymol.185:440-470);植物中的α(1,3)-岩藻糖和β(1,2)-木糖,(Cabanes-Macheteau et al.,1999,Glycobiology,9:365-372);中国仓鼠卵巢细胞中的N-羟乙酰神经氨酸(N-glycolylneuraminic acid)(Noguchi et al.,1995,J.Biochem.117:5-62)和小鼠中的Galα-1,3Gal糖基化(Borrebaeck et al.,1993,Immun.Today,14:477-479)。而且,半乳糖苷化可能会随细胞培养条件而变化,可能会使一些免疫球蛋白组合物产生免疫原性,这取决于它们的特定的半乳糖模式(Patel et al.,1992.Biochem J.285:839-845)。非人哺乳动物细胞产生的糖蛋白的低聚糖结构倾向于与人糖蛋白更紧密相关。因此,大部分商业的免疫球蛋白都是在哺乳细胞中生产的。然而,哺乳动物细胞作为宿主细胞用于蛋白质生产有几个重要的缺点。除了成本高昂之外,哺乳细胞中的蛋白质表达过程产生糖形的异质群体(heterogeneous populations ofglycoforms),具有低的体积滴度,并且需要持续的病毒抑制(ongoingviral containment)和显著的时间以产生稳定的细胞系。
应当理解,不同的糖形可以深切影响治疗剂的特性,包括药物代谢动力学,药物效应动力学,受体相互作用和组织特异性靶定(Graddiset al.,2002,Curr Pharm Biotechnol.3:285-297)。特别地,对于抗体来说,低聚糖结构可以影响与下列相关的特性:蛋白酶抗性,FcRn受体介导的抗体血清半衰期,与补体复合物C1的结合,其诱导补体依赖的细胞毒性(CDC),以及与FcγR受体的结合,其负责调节抗体依赖的细胞介导的细胞毒性(ADCC)途径,吞噬作用和抗体反馈。(Nose andWigzell,1983;Leatherbarrow and Dwek,1983;Leatherbarrow et al.,1985;Walker et al.,1989;Carter et al.,1992,Proc.Natl.Acad.Scl.USA,89:4285-4289)。
由于不同的糖形与不同的生物学特性相关,因此富集一种或多种特定糖形的能力可以用于阐明特定糖形和特定生物学功能之间的关系。当所希望的生物学功能与特定的糖形模式联系起来以后,富集该有利的糖形结构的糖蛋白组合物可以被生产。因此,产生富集特定糖形的糖蛋白组合物的能力是高度期望的。
发明概述
本发明提供了含有多个免疫球蛋白的组合物(a compositioncomprising a plurality of immunoglobulins),每个免疫球蛋白含有至少一个与之相连的N-聚糖(at least one N-glycan attached thereto),其中该组合物因此含有多个N-聚糖(a plurality of N-glycans),其中主要的N-聚糖基本由Man5GlcNAc2组成。在优选的实施方案中,所述的多个N-聚糖中超过50摩尔百分比基本由Man5GlcNAc2组成。更优选地,所述的多个N-聚糖中超过75摩尔百分比基本由Man5GlcNAc2组成。最优选地,所述的多个N-聚糖中超过90摩尔百分比基本由Man5GlcNAc2组成。在其他优选的实施方案中,所述Man5GlcNAc2 N-聚糖结构以比所述多个N-聚糖中次最主要的N-聚糖结构多大约5摩尔百分比到大约50摩尔百分比的水平存在。
本发明还提供了通过在免疫球蛋白上富集特定的糖形(例如Man5GlcNAc2)增加与FcγRIIIa和FcγRIIIb受体的结合并且减少与FcγRIIb受体的结合的方法。优选的实施方案提供了产生含有多个免疫球蛋白的组合物的方法,每个免疫球蛋白含有至少一个与之相连的N-聚糖,其中该组合物因而含有多个N-聚糖,其中主要的N-聚糖基本由Man5GlcNAc2组成,所述方法包括培养已被工程化的或被选择以表达所述免疫球蛋白或其片段的宿主细胞的步骤。另一个优选的实施方案提供了用于产生含有多个免疫球蛋白的组合物的方法,每个免疫球蛋白含有至少一个与之相连的N-聚糖,其中该组合物因而含有多个N-聚糖,其中主要的N-聚糖基本由Man5GlcNAc2组成,所述方法包括培养被工程化的或被选择以表达所述免疫球蛋白或其片段的低等真核宿主细胞的步骤。在本发明的其他实施方案中,宿主细胞含有编码免疫球蛋白或其片段的外源基因,所述宿主细胞被工程化或被选择以表达所述免疫球蛋白或其片段,从而产生含有多个免疫球蛋白的组合物,每个免疫球蛋白含有至少一个与之相连的N-聚糖,因而该组合物含有多个N-聚糖,其中主要的N-聚糖基本由Man5GlcNAc2组成。在本发明的其它实施方案中,低等真核宿主细胞含有编码免疫球蛋白或其片段的外源基因,所述宿主细胞被工程化或被选择以表达所述免疫球蛋白或其片段,从而产生含有多个免疫球蛋白的组合物,每个免疫球蛋白含有至少一个与之相连的N-聚糖,因而该组合物含有多个N-聚糖,其中主要的N-聚糖基本由Man5GlcNAc2组成。
在本发明的优选实施方案中,组合物含有多个免疫球蛋白,每个免疫球蛋白含有至少一个与之相连的N-聚糖,其中该组合物因而含有多个N-聚糖,其中主要的N-聚糖基本由Man5GlcNAc2组成,其中所述免疫球蛋白显示出降低的与FcγRIIb受体的结合亲和性。在本发明的其它优选实施方案中,组合物含有多个免疫球蛋白,每个免疫球蛋白含有至少一个与之相连的N-聚糖,其中该组合物因而含有多个N-聚糖,其中主要的N-聚糖基本由Man5GlcNAc2组成,其中所述免疫球蛋白显示出增加的与FcγRIIIa和FcγRIIIb受体的结合亲和性。在本发明的另一个优选实施方案中,组合物含有多个免疫球蛋白,每个免疫球蛋白含有至少一个与之相连的N-聚糖,因而该组合物含有多个N-聚糖,其中主要的N-聚糖基本由Man5GlcNAc2组成,其中所述免疫球蛋白显示出增加的抗体依赖的细胞的细胞毒性(antibody-dependentcellular cytoxicity,ADCC)。
在一个实施方案中,本发明的组合物含有基本不含岩藻糖的免疫球蛋白。在另一个实施方案中,本发明的组合物含有缺少岩藻糖的免疫球蛋白。本发明的组合物还含有药物组合物和药学可接受的载体。本发明的组合物还含有已被纯化并包括在诊断试剂盒中的免疫球蛋白的药物组合物。
相应地,本发明提供了用于产生具有预定糖基化结构的糖蛋白,特别是具有基本由Man5GlcNAc2组成的N-聚糖的免疫球蛋白或抗体分子,的组合物的材料和方法。
附图简述
图1.具有Man5GlcNAc2聚糖结构的Ig的图示。
图2.在YJN531-1中表达(如实施例2中描述)并在蛋白A柱(泳道1)和苯基琼脂糖柱(泳道2)上从培养基纯化的JC-IgG的考马斯蓝染色的SDS-PAGE凝胶。(3.0μg蛋白质/泳道)。
图3.在YGLY14中表达(如实施例2中描述)并且从培养基纯化(如实施例3中描述)的DX-IgG的考马斯蓝染色的SDS-PAGE凝胶。泳道1显示了来自苯基琼脂糖柱的2.5μg DX-IgG。
图4A.在YJN531-1中表达的用α-1,2甘露糖苷酶处理的JC-IgG的MALDI-TOF谱,显示主要为Man5GlcNAc2 N-聚糖。图4B.在YGLY14中表达的用α-1,2甘露糖苷酶处理的DX-IgG的MALDI-TOF谱,显示主要为Man5GlcNAc2N-聚糖。
图5A.FcγRIIIb与JC-IgG和Rtuximab的ELISA结合测定法。B.FcγRIIIB与DX-IgG和Rituximab的ELISA结合测定法。(M5=Man5GlcNAc2 N-聚糖)。
图6.FcγRIIIa-158F与JC-IgG和Rituximab的ELISA结合测定法。(M5=Man5GlcNAc2N-聚糖)。
图7.FcγRIIb与JC-IgG和Rituximab的ELISA结合测定法。FcgRIIb与DX-IgG和Rituximab的ELISA结合测定法。(M5=Man5GlcNAc2N-聚糖)。
序列简述
SEQ ID NO:1编码DX-IgG1轻链的鼠可变区和人恒定区的核苷酸序列。
SEQ ID NO:2编码DX-IgG1重链的鼠可变区和人恒定区的核苷酸序列。
SEQ ID NO:3编码IgG1轻链的人恒定区的核苷酸序列。
SEQ ID NO:4编码IgG1重链的人恒定区的核苷酸序列。SEQ IDNO:5到19编码用于通过聚合酶链式反应(PCR)合成DX-IgG1的鼠轻链可变区的重叠的寡核苷酸。
SEQ ID NO:20到23编码用于将DX-IgG1鼠轻链可变区连接到人轻链恒定区的四种寡核苷酸引物。
SEQ ID NO:24到40编码用于通过PCR合成DX-IgG1的鼠重链可变区的17个重叠的寡核苷酸。SEQ DD NO:41到44编码用于将DX-IgG1鼠重链可变区连接到人重链恒定区的四种寡核苷酸引物。
SEQ ID NO:45编码具有N-末端EcoRI位点的编码Kar2(Bip)信号序列的核苷酸序列。
SEQ ID NO:46到49编码用于将Kar2信号序列连接到DX-IgG1的轻链和重链的四种寡核苷酸引物。
SEQ ID NO:50编码对应于JC-IgG1轻链的鼠IgG1可变区的核苷酸序列(GenBank#AF013576)。
SEQ ID NO:51编码对应于JC-IgG1重链的鼠IgG1可变区的核苷酸序列(GenBank#AF013577)。
SEQ ID NO:52到63编码用于PCR合成JC-IgG1的鼠轻链可变区的12种重叠的寡核苷酸序列。
SEQ ID NO:64到75编码用于PCR合成JC-IgG1的鼠重链Fab片段的12种重叠的寡核苷酸。
SEQ ID NO:76到87编码用于PCR合成JC-IgG1的鼠重链Fc片段的12种重叠的寡核苷酸。
SEQ ID NO:88编码对应于Fc片段的3’末端的3’Kpn1引物。
SEQ ID NO:89编码人血清白蛋白(HAS)的核苷酸序列。
SEQ ID NO:90编码用于本发明的凝血酶切割的核苷酸序列。
发明详述
除非本文中另外指出,与本发明有关的科学和技术术语和短语具有所属领域普通技术人员通常理解的意义。进一步,除非上下文另外要求,单数的术语包括复数,复数的术语包括单数。通常,本文所述的与生物化学,酶学,分子和细胞生物学,微生物学,遗传学和蛋白质和核酸化学和杂交技术有关的专有名词是本领域中熟知和经常使用的。本发明的方法和技术一般根据本领域中熟知的常规方法和按照本发明说明书中引用和通篇论述的各种常规的和更具体的参考文献中所描述的实施,除非另外指出。参见,例如,Sambrook et al.MolecularCloning:ALaboratory Manual,2d ed.,Cold Spring Harbor Laboratory Press,ColdSpring Harbor,N.Y.(1989);Ausubel et al.,Current Protocols in Molecular Biology,Greene Publishing Associates(1992,and Supplements to 2002);Harlow and Lane,Antibodies:ALaboratory Manual,Cold Spring Harbor Laboratory Press,Cold SpringHarbor,N.Y.(1990);Taylor and Drickamer,Introduction to Glycobiology,OxfordUniv.Press(2003);Worthington Enzyme Manual,Worthington Biochemical Corp.,Freehold,NJ;Handbook of Biochemistry:Section A Proteins,Vol I,CRC Press(1976);Handbook of Biochemistry:Section AProteins,Vol II,CRC Press(1976);Essentials of Glycobiology,Cold Spring Harbor Laboratory Press(1999);Immunobiology,Janeway et al,6th Edition,2004,Garland Publishing,New York)。
本文提及的所有出版物,专利和其他参考文献在此以引用的方式引入其全文。
下述术语,除非另外指出,将被理解为具有下述含义:
如本文所用的术语“N-聚糖”,“聚糖”和“糖形”可以互换使用,指N-连接的低聚糖,例如通过N-乙酰氨基葡萄糖残基连接的低聚糖,该残基连接到蛋白质中的天冬酰胺残基的氨基氮上。存在于糖蛋白上的主要的糖是葡萄糖,半乳糖,甘露糖,岩藻糖,N-乙酰半乳糖胺(GalNAc),N-乙酰氨基葡萄糖(GlcNAc)和唾液酸(例如,N-乙酰-神经氨酸(NANA))。糖基团的加工在ER的腔内与翻译同时进行,在高尔基体(Golgi apparatus)中继续加工形成N-连接的糖蛋白。
N-聚糖具有共同的五糖核Man3GlcNAc2(“Man”指甘露糖;“Glc”指葡萄糖;“NAc”指N-乙酰基;GlcNAc指N-乙酰氨基葡萄糖)。N-聚糖的分支(天线(antennae))数目有所不同,该分支包括加入到也被称为“三甘露糖核”,“五糖核”或“少甘露糖核(paucimannose core)”的Man3GlcNAc2(“Man3”)核结构上的外周的糖(例如,GlcNAc,半乳糖,岩藻糖和唾液酸)。N-聚糖依据其分支成分(例如,高甘露糖形,复合型或杂交型)被分类。“高甘露糖”型的N-聚糖具有五个或更多个甘露糖残基。“复合”型的N-聚糖典型地具有至少一个连接在“三甘露糖”核的1,3甘露糖臂上的GlcNAc,和至少一个连接在“三甘露糖”核的1,6甘露糖臂上的GlcNAc。复合型N-聚糖还可以具有任选地被唾液酸或衍生物(例如,“NANA”或“NeuAc”,其中“Neu”指神经氨酸,“Ac”指乙酰基)修饰的半乳糖(“Gal”)或N-乙酰半乳糖胺(“GalNAc”)残基。复合型N-聚糖还可以具有链内的取代,包括“平分的(bisecting)”GlcNAc和核心岩藻糖(“Fuc”)。复合型N-聚糖还可以在“三甘露糖核”上具有多个天线,通常称为“多天线聚糖”。“杂交型”N-聚糖在三甘露糖核的1,3甘露糖臂的末端上至少有一个GlcNAc,在三甘露糖核的1,6甘露糖臂上有零个或更多个甘露糖。不同的N-聚糖也被称为“糖形”。
本文中所使用的缩写是本领域中通常所使用的,参见,例如,上述糖的缩写。其他常见缩写包括“PNGase”,或“聚糖酶(Glycanase)”或“葡糖苷酶(glucosidase)”,它们均指肽N-糖苷酶F(EC 3.2.2.18)。
“分离的”或“基本上纯的”核酸或多核苷酸(例如RNA,DNA或混合聚合物)是基本上与在天然宿主细胞中与原生的(native)多核苷酸天然一起存在的其它细胞组分,例如与其天然相结合的核糖体,聚合酶和基因组序列分离开。该术语包括如下核酸或多核苷酸,其(1)已从其天然存在的环境中移出,(2)不与该“分离的多核苷酸”天然存在于其中的多核苷酸的全部或部分联在一起,(3)与其在天然状态下不相连接的多核苷酸可操作地相连,或(4)天然不存在。术语“分离的”或“基本上纯的”还可以用于重组的或克隆的DNA分离物,化学合成的多核苷酸类似物,或者通过异种系统生物合成的多核苷酸类似物。
但是,“分离的”不必然要求所述的核酸或多核苷酸自身从其天然环境中被物理分离出来。例如,如果异源序列被置于内源核酸序列相邻处,使得该内源核酸序列的表达被改变,那么生物体的基因组中的该内源核酸序列在本文中被视为是“分离的”。在这种情况下,异源序列是天然地不与该内源核酸序列相邻的序列,无论该异源序列本身是内源的(来自于相同的宿主细胞或其后代)还是外源的(来自于不同的宿主细胞或其后代)。作为实例,启动子序列可以替换(例如通过同源重组)宿主细胞基因组中基因的天然启动子,以使该基因具有改变的表达模式。该基因现在成为“分离的”,因为它与至少一些天然在其侧翼的序列分离开了。
如果核酸含有任何不天然存在于基因组中的相应核酸上的修饰,其也被视为是“分离的”。例如,如果内源编码序列含有人工地,例如通过人为干预引入的插入,缺失或点突变,则其被视为是“分离的”。“分离的核酸”还包括整合到宿主细胞染色体的异源位点上的核酸和作为游离基因存在的核酸构建体。而且,当通过重组技术产生的时候,“分离的核酸”可以是基本上不含其它细胞物质的,或者基本上不含培养基的,或者当化学合成的时候基本上不含化学前体或其它化学物质的。
本文所用的短语参考核酸序列的“简并变体”包括根据标准遗传密码能被翻译从而提供与从参考核酸序列翻译而得的氨基酸序列相同的氨基酸序列的核酸序列。术语“简并寡核苷酸”或“简并引物”用于表示能与靶核酸序列杂交的,不必需在序列上相同但在一个或多个特定区段内彼此同源的寡核苷酸。
涉及核酸序列的术语“百分序列相同性”或“相同的”指当按照最大限度对应的方式排列的时候两个序列中相同的残基。序列相同性比较的长度可以是多于至少大约9个核苷酸,通常至少大约20个核苷酸,更通常至少大约24个核苷酸,典型地至少大约28个核苷酸,更典型地至少大约32个核苷酸,优选至少大约36个或更多个核苷酸。有许多本领域已知的算法可用于计算核苷酸序列相同性。例如,多核苷酸序列可以用FASTA,Gap或Bestfit进行比较,它们是WisconsinPackage Version 10.0,Genetics Computer Group(GCG),Madison,Wisconsin中的程序。FASTA提供查询和搜索序列之间最佳重叠区域的排列和百分序列相同性。Pearson,Methods Enzymol.183:63-98(1990)(在此以引用的方式引入其全文)。例如,核酸序列之间的百分序列相同性可以用FASTA以及其缺省参数(字长为6,计分矩阵用NOPAM因子)或者用Gap以及缺省参数确定,在GCG Version 6.1中提供。或者,序列也可以用计算机程序,BLAST(Altschul et al.,J.Mol.Biol.215:403-410(1990);Gish and States,Nature Genet.3:266-272(1993);Madden et al.,Meth.Enzymol.266:131-141(1996);Altschul et al.,Nucleic AcidsRes.25:3389-3402(1997);Zhang and Madden,Genome Res.7:649-656(1997)),特别是blastp或tblastn(Altschul et al.,Nucleic Acids Res.25:3389-3402(1997))来比较。
术语“显著的同源性”或“显著的相似性”,当用于核酸或其片段的时候,表示当与另一个核酸(或其互补链)利用适当的核苷酸插入或缺失进行最佳排列的时候,核苷酸序列相同性为核苷酸碱基的至少大约50%,更优选为核苷酸碱基的60%,通常为至少大约70%,更通常为至少大约80%,优选为至少大约90%,更优选为核苷酸碱基的至少大约95%,96%,97%,98%或99%,由任何熟知的序列相同性算法,例如如上所述的FASTA,BLAST或Gap测定而得。
或者,当核酸或其片段与另一种核酸,与另一种核酸的一条链,或者与其互补链在严谨杂交条件下杂交时,也存在显著的同源性或相似性。述及核酸杂交试验时,“严谨杂交条件”和“严谨洗涤条件”取决于多种不同的物理参数。核酸杂交会受到各种条件例如盐浓度,温度,溶剂,杂交物质的碱基组成,互补区域的长度,和杂交核酸之间的核苷酸碱基错配数目的影响,如所属领域技术人员容易意识到的。具有所属领域普通技术的人员知道如何改变这些参数以获得特定严谨性的杂交。
通常,“严谨杂交”在大约25℃在特定DNA杂交物的热熔解温度(Tm)以下在特定的一组条件下进行。“严谨洗涤”在大约5℃的温度在特定DNA杂交物的Tm以下在特定的一组条件下进行。Tm是50%的靶序列与完全匹配的探针杂交时的温度。参见Sambrook et al.,Molecular Cloning:A Laboratory Manual,2d ed.,Cold Spring HarborLaboratory Press,Cold Spring Harbor,N.Y.(1989),page 9.51,在此以引用的方式引入。为本发明的目的,对于溶液相杂交,“严谨条件”定义为在6X SSC(其中20X SSC含有3.0M NaCl和0.3M柠檬酸钠),1%SDS在65℃进行水性杂交(即不含甲酰胺)8-12小时,然后在0.2XSSC,0.1%SDS在65℃20分钟洗涤两次。技术人员将会意识到65℃杂交将会以不同的速度发生,这取决于多种因素包括杂交序列的长度和百分相似性。
术语“突变的”当应用于核酸序列的时候意味着与参考核酸序列相比,核酸序列中的核苷酸可以被插入,缺失或改变。单个的改变可以在某个基因座被制造(点突变)或者多个核苷酸可以在单个基因座被插入,缺失或改变。此外,一个或多个改变可以在核酸序列中的任何数目的基因座被制造。核酸序列可以用所属领域已知的任何方法被突变,包括但不限于诱变技术例如“易错PCR”(在DNA聚合酶的复制保真度低的条件下进行PCR的方法,使得在PCR产物的全长上获得高比率的点突变;参见,例如,Leung et al.,Technique,1:11-15(1989)and Caldwell and Joyce,PCR Methods Applic.2:28-33(1992));和“寡核苷酸定向诱变”(能够在任何所感兴趣的克隆的DNA区段中产生位点特异性突变的方法;参见,例如Reidhaar-Olson and Sauer,Science241:53-57(1988))。
本文所用的术语“载体”是指能够转运另一个与之相连接的核酸的核酸分子。一种类型的载体是“质粒”,其是一种环状双链DNA环,另外的DNA区段可以连接到其中。其它载体包括粘粒,细菌人工染色体(BAC)和酵母人工染色体(YAC)。另一种类型的载体是病毒载体,其中另外的DNA区段(segment)可以被连接到病毒基因组中(在下面更详细讨论)。某些载体能够在其被引入的宿主载体中自主复制(例如,具有在宿主细胞中起作用的复制起点的载体)。其它载体能够在引入到宿主细胞中的时候整合到宿主细胞基因组中,从而随着宿主基因组一起复制。而且,某些优选的载体能够指导与其可操作连接的基因的表达。这种载体在本发明中被称为“重组表达载体”(或者简单地,“表达载体”)。
本文所用的术语“感兴趣的序列”或“感兴趣的基因”指宿主细胞中通常不产生的核酸序列,典型地编码蛋白质。本文中公开的方法允许一种或多种感兴趣的序列或感兴趣的基因稳定整合到宿主细胞基因组中。感兴趣的序列的非限制性实例包括编码一种或多种具有酶活性的多肽的序列,例如影响N-聚糖在宿主中合成的酶例如甘露糖基转移酶,N-乙酰氨基葡萄糖基转移酶,UDP-N-乙酰氨基葡萄糖运输蛋白,半乳糖基转移酶,UDP-N-乙酰半乳糖基转移酶,唾液酸转移酶和岩藻糖基转移酶。
术语“标记序列”或“标记基因”指能表达某种活性以允许对宿主细胞中该序列的存在与否进行正或负选择的核酸序列。例如,P.pastoris URA5基因是标记基因,因为它的存在可以通过含有该基因的细胞在缺乏尿嘧啶的条件下生长的能力被选择。它的存在还可以通过含有该基因的细胞不能在存在5-FOA的条件下生长被反向选择(selected against)。标记序列或基因不一定需要正和负的可选择性都能显示。来自P.pastoris的标记序列或基因的非限制性实例包括ADE1,ARG4,HIS4和URA3。对于抗生素抗性标记基因,卡那霉素,新霉素,遗传霉素(或G418),巴龙霉素和潮霉素抗性基因通常被用于允许在存在这些抗生素的条件下生长。
“可操作地连接的”表达控制序列指一种连接,其中该表达控制序列与所感兴趣的基因相邻以控制感兴趣的基因,以及以顺式或在一定距离内控制感兴趣的基因的表达控制序列。
本文所用的术语“表达控制序列”指影响与其可操作地连接的编码序列的表达所必需的多核苷酸序列。表达控制序列是控制核酸序列的转录,转录后事件和翻译的序列。表达控制序列包括合适的转录起始,终止,启动子和增强子序列;有效的RNA加工信号例如剪接和多聚腺苷酸化信号;稳定细胞质mRNA的序列;增强翻译效率的序列(例如核糖体结合位点);增强蛋白质稳定性的序列;以及当需要的时候,增强蛋白质分泌的序列。这些控制序列的特性随宿主生物体而不同;在原核生物中,这种控制序列通常包括启动子,核糖体结合位点,和转录终止序列。术语“控制序列”意指包括,至少,其存在是表达所必需的所有组分,还可以包括其存在是有利的其它组分,例如前导序列和融合伴侣(fusion partner)序列。
如本文所用的,术语“重组宿主细胞”(“表达宿主细胞”,“表达宿主系统”,“表达系统”或简单地“宿主细胞”),指重组载体被引入其中的细胞。应当理解这种术语不仅仅指特定的主题细胞(subject cell),而且指这种细胞的后代。由于突变或环境影响,某些修饰可能在随后的传代中发生,这种后代可能实际上与亲本细胞不相同,但是仍然包括在本文所使用的术语“宿主细胞”的范围内。重组宿主细胞可以是分离的细胞或者在培养基中生长的细胞系,或者可以是存在于活组织或生物体中的细胞。
术语“真核”指有核的细胞或生物体,包括昆虫细胞,植物细胞,哺乳动物细胞,动物细胞和低等真核细胞。
术语“低等真核细胞”包括酵母,真菌,领鞭毛虫,微孢子虫,alveolates(例如沟鞭藻类),stramenopiles(例如褐藻,原生动物),rhodophyta门(例如红藻),植物(例如绿藻,植物细胞,苔藓)和其它原生生物。酵母和真菌包括,但不限于:毕赤酵母属(Pichia sp.),例如Pichia pastoris,Pichia finlandica,Pichia trehalophila,Pichiakoclamae,Pichia membranaefaciens,Pichia minuta(Ogataea minuta,Pichia lindneri),Pichia opunitiae,Pichia thermotolerans,Pichiasalictaria,Pichia guercuum,Pichia pijperi,Pichia stiptis和Pichiamethanolica;酵母属(Saccharomyces sp.),例如酿酒酵母(Saccharomyces cerevisiae);Hansenula polymorpha,克鲁维酵母属(Kluyveromyces sp.),例如Kluyveromyces lactis;白假丝酵母(Candidaalbicans),Aspergillus nidulans,黑曲霉(Aspergillus niger),米曲霉(Aspergillus oryzae),木霉(Trichoderma reesei),Chrysosporiumlucknowense,镰刀菌属(Fusarium sp.),例如Fusarium gramineum,Fusarium venenatum;Physcomitrella patens和粗糙链孢霉(Neurosporacrassa)。
本文所用的术语“肽”指短的多肽,例如典型地长度少于大约50个氨基酸以及更典型地长度少于约30个氨基酸的多肽。本文所用的术语包括模拟结构从而模拟生物学功能的类似物和模拟物。
术语“多肽”包括天然存在的和非天然存在的蛋白质,及其片段,突变体,衍生物和类似物。多肽可以是单体的或是聚合的。而且,多肽可以包括多个不同的域,其中每一个都具有一种或多种不同的活性。
术语“分离的蛋白质”或“分离的多肽”是蛋白质或多肽,由于其来源或衍生的来源,(1)不与天然状态下与之相伴的组分自然结合,(2)以自然中不存在的纯度存在,其中纯度可以依据其它细胞材料的存在而被判断(例如不含同一物种的其它蛋白质),(3)由来自不同物种的细胞表达,或(4)在自然中不存在(例如,它是自然中存在的多肽的片段或者它包括自然中不存在的氨基酸类似物或衍生物或与标准肽键不同的连接)。因此,化学合成的或在与它天然来源的细胞不同的细胞系统中合成的多肽是和与之天然结合的组分“分离的”。多肽或蛋白质还可以通过用所属领域熟知的蛋白质纯化技术进行分离从而基本不含与之天然结合的组分。如所定义的那样,“分离的”不必定要求所述的蛋白质,多肽,肽或寡肽从其天然环境中被物理地分离出。
本文所用的术语“多肽片段”指与全长多肽相比具有缺失,例如氨基末端和/或羧基末端缺失的多肽。在优选的实施方案中,多肽片段是连续序列,其中该片段的氨基酸序列与天然存在的序列中的相应位置是相同的。片段典型地是至少5,6,7,8,9或10个氨基酸长,优选至少12,14,16或18个氨基酸长,更优选至少20个氨基酸长,更优选至少25,30,35,40或45个氨基酸,更优选至少50或60个氨基酸长,更优选至少70个氨基酸长。
“被修饰的衍生物”指其初级结构序列基本上同源,但是包括,例如体内或体外化学和生物化学修饰或者引入了在天然多肽中不存在的氨基酸的多肽或其片段。这种修饰包括,例如乙酰化,羧化,磷酸化,糖基化,泛素化(ubiquitination),标记,例如用放射性核素标记,以及各种酶修饰,如所属领域技术人员容易意识到的。各种标记多肽的方法和各种用于这些目的的取代基或标记是本领域中熟知的,包括放射性同位素,例如125I,32P,35S,和3H,与标记的抗配体(例如抗体)相结合的配体,荧光团,化学发光试剂,酶,和能作为标记的配体的特异性结合对成员的抗配体。标记的选择取决于所需要的敏感性,与引物结合的容易性,稳定性要求,和可使用的仪器。标记多肽的方法是所属领域熟知的。参见,例如Ausubel et al.,CurrentProtocols in Molecular Biology,Greene Publishing Associates(1992,andSupplements to 2002)(在此以引用的方式引入)。
术语“融合蛋白”指含有与异源氨基酸序列连在一起的多肽或片段的多肽。融合蛋白是有用的,这是因为它们可以被构建成包含来自两个或更多个不同蛋白质的两个或更多个所希望的功能元件。融合蛋白含有来自所感兴趣多肽的至少10个连续氨基酸,更优选至少20个或30个氨基酸,更优选至少40,50或60个氨基酸,更优选至少75,100或125氨基酸。包括本发明的完整蛋白质的融合物是特别有用的。包含在本发明的融合蛋白中的异源多肽为至少6个氨基酸长,通常至少8个氨基酸长,有用地为至少15,20和25个氨基酸长。包含更大的多肽,例如免疫球蛋白Fc片段,或免疫球蛋白Fab片段或者甚至全长蛋白,例如含有绿色荧光蛋白(“GFP”)发色基团的蛋白质或全长免疫球蛋白的融合物是特别有用的。融合蛋白可以通过将编码多肽或其片段的核酸序列与编码不同的蛋白质或肽的核酸序列构建在框内,然后表达融合蛋白而被重组产生。或者,融合蛋白可以通过将多肽或其片段与另一个蛋白质交联以化学方法产生。
本文所用的术语“抗体”,“免疫球蛋白”,“Ig”和“Ig分子”可互换使用。每个抗体分子有独特的结构,允许其与其特异的抗原结合,但是所有的抗体/免疫球蛋白具有相同的本文所述的整体结构。基本的抗体结构单位已知含有亚基的四聚体。每个四聚体具有两个相同的多肽链对,每对具有一条“轻”链(大约25kDa)和一条“重”链(大约50-70kDa)。每条链的氨基末端部分包括大约100到110个或更多个氨基酸的可变区,主要负责抗原的识别。每条链的羧基末端部分确定恒定区,主要负责效应物功能。轻链被分为kappa或lambda。重链被分为gamma,mu,alpha,delta,或epsilon,分别限定抗体的同种型IgG,IgM,IgA,IgD和IgE。轻链和重链再分为可变区和恒定区(通常参见,Fundamental Immunology(Paul,W.,ed.,2nd ed.RavenPress,N.Y.,1989),Ch.7(为所有的目的以引用的方式引入其全文)。每条轻/重链对的可变区形成抗体结合位点。因此,完整的抗体具有两个结合位点。除了在双功能或双特异性抗体中,这两个结合位点是相同的。所有的链都具有相同的一般结构,相对保守的框架区(FR)由三个超可变区,也称为互补决定区或CDR连接起来。每一对的两条链的CDR由框架区排列,使得能够与特定的表位结合。该术语包括天然存在的形式,以及片段和衍生物。包括在该术语范围内的是Ig的类别,即IgG,IgA,IgE,IgM,和IgD。包括在该术语范围内的还有IgG的亚型,即IgG1,IgG2,IgG3和IgG4。该术语以其最广泛的意义使用,包括单一的单克隆抗体(包括激动剂和拮抗剂抗体)以及与多个表位或抗原结合的抗体组合物。该术语特别覆盖单克隆抗体(包括全长单克隆抗体),多克隆抗体,多特异性抗体(例如双特异性抗体),和抗体片段,只要它们包含或被修饰以包含至少重链免疫球蛋白恒定区的CH2域的部分,其含有CH2域的N-连接糖基化位点,或其变体。包含在该术语中的有含有Fc区域的分子,例如免疫粘附素(美国专利申请No.2004/0136986),Fc融合物和抗体样分子。或者,这些术语可以指至少'包含N-连接糖基化位点的至少Fab区域的抗体片段。
术语“Fc”片段指含有CH2和CH3域的抗体的C-末端区域‘结晶片段’(图1)。术语“Fab”片段指含有VH,CH1,VL和CL域的抗体的‘抗原结合片段’(图1)。
本文所用的术语“单克隆抗体”(mAb)指得自于基本上均一抗体群体的抗体,即该群体中的各个抗体都是相同的,除了可能少量存在的可能的天然发生的突变。单克隆抗体是高度特异性的,其针对单一的抗原位点。而且,与典型地包括针对不同决定簇(表位)的不同抗体的传统的(多克隆)抗体制备物相反,每个mAb针对抗原上的单个决定簇。除了它们的特异性之外,单克隆抗体的优势在于它们可以通过杂交瘤培养物被合成,不被其它免疫球蛋白污染。术语“单克隆”指抗体的特性,即其是得自于基本上均一的抗体群体,不应被解释为要求通过任何特定的方法产生抗体。例如,根据本发明所使用的单克隆抗体可以用杂交瘤方法制备,其首次由Kohler et al.,(1975)Nature,256:495描述,或者可以用重组DNA方法制备(参见,例如Cabilly etal.的美国专利No.4,816,567)
本文的单克隆抗体包括杂交的和重组的抗体,它们通过将抗体的可变(包括超变)域与恒定域拼接(例如“人源化”抗体),或者将轻链与重链拼接,或者将来自一个物种的链与来自另一个物种的链拼接,或与异源蛋白融合产生,而不管其来源物种或免疫球蛋白类或亚类名称,(参见,例如Cabilly et al.的美国专利No.4,816,567;Mage andLamoyi,in Monoclonal Antibody Production Techniques andApplications,pp.79-97(Marcel Dekker,Inc.,New York,1987).)本文的单克隆抗体特别包括“嵌合”抗体(免疫球蛋白),其中重链和/或轻链的一部分与来自第一个物种的或属于特定抗体类或亚类的抗体的相应序列相同或同源,而该链的其余部分与来自不同物种的或属于不同抗体类或亚类的抗体的相应序列相同或同源,以及这种抗体的片段,只要它们包含或被修饰以包含至少一个CH2。非人(例如鼠)抗体的“人源化”形式是包含来自于人免疫球蛋白的序列的特殊的嵌合免疫球蛋白,免疫球蛋白链或其片段(例如Fv,Fab,Fab’,F(ab’)2,或抗体的其它抗原结合亚序列)。抗体的Fv片段是保留有整个分子的结合特性和特异性的抗体的最小单位。Fv片段是抗体重链和轻链的可变域的非共价结合异二聚体。F(ab)’2片段是含有由二硫桥连接的Fab片段的两个臂的片段。
人源化抗体的最常见的形式是人免疫球蛋白(受体抗体),其中受体的互补决定区(CDR)的残基被具有所希望的特异性、亲和性和能力的非人物种(供体抗体)例如小鼠、大鼠、或兔的CDR的残基取代。在一些例子中,人免疫球蛋白的Fv框架残基被相应的非人残基取代。进一步,人源化抗体可以含有在受体抗体和输入的CDR或框架序列中都不存在的残基。这些修饰被作出以进一步改善和最优化抗体性能。通常,人源化抗体含有至少一个,典型地两个可变域的基本上全部,其中CDR区域的全部或基本上全部相应于非人免疫球蛋白的那些,CDR区域的全部或基本上全部是人免疫球蛋白共有序列中的那些。人源化抗体最佳地还含有免疫球蛋白恒定区(Fc)的至少一个部分,典型地是人免疫球蛋白的。更详细的信息参见Jones et al.,1986,Nature 321:522-524;Reichmann et al.,1988,Nature 332:323-327,和Presta,1992,Curr.Op.Struct.Biol.2:593-596。
在术语抗体或免疫球蛋白的范围内“片段”包括那些通过不同蛋白酶消化产生的,那些通过化学切割和/或化学解离产生的以及那些重组产生的,只要该片段还能特异地结合靶分子。这些片段有Fc,Fab,Fab’,Fv,F(ab’)2,和单链Fv(scFv)片段。
本发明的抗体的感兴趣的靶包括生长因子受体(例如FGFR,PDGFR,EGFR,NGFR,和VEGF)和它们的配体。其它靶是G蛋白受体,包括物质K受体,血管紧张素受体,α-和β-肾上腺素能受体,五羟色胺受体,和PAF受体。参见,例如Gilman,Ann,Rev.Biochem.56:625-649(1987)。其它靶包括离子通道(例如钙,钠,钾通道),蕈毒碱受体,乙酰胆碱受体,GABA受体,谷氨酸盐受体,和多巴胺受体(参见Harpold,U.S.5,401,629和U.S.5,436,128)。其它靶是粘附蛋白例如整联蛋白,选择蛋白,和免疫球蛋白超家族成员(参见Springer,Nature 346:425-433(1990).Osborn,Cell 62:3(1990);Hynes,Cell 69:11(1992))。其它靶是细胞因子,例如白介素IL-1到IL-13,肿瘤坏死因子α&β,干扰素α,β和γ,肿瘤生长因子β(TGF-β),集落刺激因子(CSF)和粒细胞单核细胞集落刺激因子(GMCSF),参见HumanCytokines:Handbook for Basic & Clinical Research(Aggrawal et al.eds.,Blackwell Scientific,Boston,MA 1991)。其它靶是激素,酶,和细胞内和细胞间信使,例如,腺苷酸环化酶,鸟嘌呤环化酶,和磷脂酶C。其它感兴趣的靶是白细胞抗原,例如CD20,和CD33。药物可以是感兴趣的靶,靶分子可以是人的,哺乳动物的,或细菌的。其它靶是抗原,例如来自微生物病原体,包括病毒和细菌以及肿瘤的蛋白质、糖蛋白和碳水化合物。还有其它靶在U.S.4,366,241中描述。
本文讨论的免疫Fc受体可以包括:FcγRI,FcγRIIa,FcγRIIb,FcγRIIIa,FcγRIIIb和FcRn(新生受体)。术语FcγRI可以指任何FcγRI亚型,除非特别指出。术语FcγRII可以指任何FcyRII受体,除非特别指出。术语FcγRIII可以指任何FcγRIII亚型,除非特别指出。
该术语范围内的“衍生物”包括在序列上被修饰,但仍然能与靶分子特异性结合的抗体(或其片段),包括:种间嵌合和人源化抗体;抗体融合物;异聚抗体复合物(heteromeric antibody complexes)和抗体融合物,例如双抗体(diabodies)(双特异性抗体),单链双抗体,和胞内抗体(intrabodies)(参见,例如,Intracellular Antibodies;Researchand Disease Applications,(Marasco,ed.,Springer-Verlag New York,Inc.,1998))。
术语“非肽类似物”指具有与参考多肽相似的特性的化合物。非肽化合物还可以叫做“肽模拟物”或者“拟肽”。参见,例如,
Amino Acid andPeptide Synthesis,Oxford University Press(1992);Jung,Combinatorial Peptide andNonpeptide Libraries:A Handbook,John Wiley(1997);Bodanszky et al.,PeptideChemistry--A Practical Textbook,Springer Verlag(1993);Synthetic Peptides:AUsers Guide,(Grant,ed.,W.H.Freeman and Co.,1992);Evans et al.,J.Med.Chem.30:1229(1987);Fauchere,J.Adv.Drug Res.15:29(1986);Veber and Freidinger,Trends Neurosci.,8:392-396(1985);
以及上述每一篇中引用的参考文献,在此以引用的方式引入。这种化合物通常是借助计算机化的分子建模被研发的。在结构上与本发明的有用的肽相似的肽模拟物可以用于产生等同的效果,因而是本发明的组成部分。
氨基酸取代可以包括那些:(1)减少对蛋白质水解作用的易感性的,(2)减少对氧化作用的易感性的,(3)改变形成蛋白质复合体的结合亲和性的,(4)改变结合亲和性或酶活性的,以及(5)赋予或改变该类似物的其它物理化学或功能特性的。
如本文所用的,二十个常规氨基酸和它们的缩写遵循常规的用法。参见Immunology-A Synthesis(Golub and Gren eds.,SinauerAssociates,Sunderland,Mass.,2nd ed.1991),在此以引用的方式引入。二十种常规氨基酸的立体异构体(例如D-氨基酸),非天然氨基酸例如α-,α-双取代的氨基酸,N-烷基氨基酸,和其它非常规氨基酸也可以是本发明的多肽的合适的组成成分。非常规氨基酸的实例包括:4-羟脯氨酸,γ-羧基谷氨酸,ε-N,N,N-三甲基赖氨酸,ε-N-乙酰基赖氨酸,O-磷酸丝氨酸,N-乙酰基丝氨酸,N-甲酰基甲硫氨酸,3-甲基组氨酸,5-羟基赖氨酸,N-甲基精氨酸,和其它类似的氨基酸和亚氨基酸(例如4-羟脯氨酸)。在本文所用的多肽标记中,左手末端相应于氨基末端,右手末端相应于羧基末端,与标准用法和惯例一致。
如果编码蛋白质的核酸序列与编码第二种蛋白质的核酸序列具有相似的序列,那么该蛋白质与该第二种蛋白质具有“同源性”或者是“同源的”。或者,如果一个蛋白质与第二个蛋白质具有“相似的”氨基酸序列,那么两个蛋白质是同源的。(因此,术语“同源蛋白质”是指两个蛋白质具有相似的氨基酸序列。)在优选的实施方案中,同源的蛋白质是与野生型蛋白质具有至少65%序列同源性的,更优选是具有至少70%序列同源性的。更优选的是与野生型蛋白质具有至少75%,80%,85%或90%序列同源性的同源蛋白质。在更优选的实施方案中,同源蛋白质具有至少95%,98%,99%或99.9%序列相同性。本文所用的,氨基酸序列的两个区域之间的同源性(特别是预测的结构的相似性)理解为暗示了功能上的相似性。
当“同源的”用于指蛋白质或多肽的时候,应当意识到不相同的残基位置通常是保守的氨基酸取代。“保守的氨基酸取代”是其中一个氨基酸残基被另一个具有相似化学性质(例如电荷或疏水性)的侧链(R基团)的氨基酸残基取代。通常,保守的氨基酸取代不会显著地改变蛋白质的功能特性。对于其中两个或多个氨基酸序列由于保守取代而互不相同的情况,百分序列相同性或同源性程度可以被向上调整以就取代的保守性进行校正。进行这种调整的方法是所属领域技术人员熟知的。参见,例如,Pearson,1994,Methods Mol.Biol.24:307-31和25:365-89(在此以引用的方式引入)。
下述六组每组都包含互为保守取代的氨基酸:1)丝氨酸(S),苏氨酸(T);2)天冬氨酸(D),谷氨酸(E);3)天冬酰胺(N),谷胺酰胺(Q);4)精氨酸(R),赖氨酸(K);5)异亮氨酸(I),亮氨酸(L),甲硫氨酸(M),丙氨酸(A),缬氨酸(V),和6)苯丙氨酸(F),酪氨酸(Y),色氨酸(W)。
多肽的序列同源性,也称为百分序列相同性,典型地用序列分析软件测定。参见,例如,the Sequence Analysis Software Package of thegenetics Computer Group(GCG),University of WisconsinBiotechnology Center,910 University Avenue,Madison,Wisconsin53705。蛋白质分析软件用为各种取代,缺失和其它修饰,包括保守性氨基酸取代设定的同源性衡量标准匹配相似的序列。例如,GCG包括程序如“Gap”和“Bestfit”,它们可以以缺省参数被用于确定非常相关的多肽,例如来自不同物种的生物体的同源多肽之间,或者野生型蛋白和其突变体之间的序列同源性或序列相同性。参见,例如,GCGVersion 6.1。
当将特定的多肽序列与含有大量来自不同生物体的序列的数据库相比较的时候,优选的算法是计算机程序
BLAST(Altschul et al.,J.Mol.Biol.215:403-410(1990);Gishand States,Nature Genet.3:266-272(1993);Madden et al.,Meth.Enzymol.266:131-141(1996);Altschul et al.,Nucleic Acids Res.25:3389-3402(1997);Zhang andMadden,Genome Res.7:649-656(1997)),
特别是blastp或tblastn(Altschul et al.,Nucleic Acids Res.25:3389-3402(1997))。
BLASTp的优选参数是:Expectation value:10(默认);Filter:seg(默认);Cost to open a gap:11(默认);Cost to extend a gap:1(默认);Max.alignments:100(默认);Word size:11(默认);No.of descriptions:100(默认);Penalty Matrix:BlOWSUM62。
用以比较同源性的多肽序列的长度一般是至少大约16个氨基酸残基,通常至少大约20个残基,更通常至少大约24个残基,典型地至少大约28个残基,优选多于大约35个残基。当在包含来自大量不同生物体的序列的数据库中搜索的时候,优选比较氨基酸序列。用氨基酸序列进行数据库搜索可以通过本领域已知的除blastp以外的其它算法测定。例如多肽序列可以用FASTA,GCG Version 6.1中的程序,进行比较。FASTA提供查询和搜索序列之间最佳重叠区域的排列和百分序列相同性。Pearson,Methods Enzymol.183:63-98(1990)(在此以引用的方式引入)。例如,氨基酸序列之间的百分序列相同性可以用FASTA用其缺省参数(字长为2,PAM250计分矩阵)确定,如GCGVersion 6.1中提供,在此以引用的方式引入。
“特异性结合”指两个分子优先于与环境中的其它分子结合而彼此结合的能力。典型地,“特异性结合”以至少两倍,更典型地以至少10倍,通常至少100倍区别于反应中的偶然结合。典型地,特异性结合反应的亲和力或亲和力强度(avidity),以解离常数计,是大约10-7M或更强(例如,大约10-8M,10-9M或甚至更强)。
本文所用的术语“区域”指生物分子的初级结构的物理上连续的部分。在蛋白质中,区域定义为该蛋白质的氨基酸序列的连续部分。
本文所用的术语“域”指对生物分子的已知的或怀疑的功能作出贡献的生物分子的结构。域可以与区域或其部分是同延的(co-extensive);域还可以包括生物分子的不同的,非连续的区域。
本文所用的术语“分子”意指任何化合物,包括但不限于小分子,肽,蛋白质,糖蛋白,糖,核苷酸,核酸,脂类等,这样的化合物可以是天然的或是合成的。
本文所用的术语“含有”应当被理解为是指包含所说的整体(integers)或整体组,但是不排除任何其它整体或整体组。
本文所用的术语“基本上由......组成”应当被理解为是指包含所说的整体或整体组;同时排除了显著影响或改变了所说的整体的修饰或其它整体。对于N-聚糖的种类,术语“基本上由”所说的N-聚糖“组成”应当被理解为包括N-聚糖,无论该N-聚糖是否是在直接与糖蛋白的天冬酰胺相连的N-乙酰氨基葡萄糖(GlcNAc)处被岩藻糖化。
本文所用的术语“主要”或其变化形式例如“主要的”或者“是主要的”应当被理解为是指在糖蛋白用PNGase处理并用质谱例如MALDI-TOF MS分析释放的聚糖以后,占总N-聚糖的最高的摩尔百分比(%)的聚糖种类。换句话说,短语“主要”定义为单个实体,例如特定的糖形,以比任何其它单个实体更大的摩尔百分比存在。例如,如果组合物由40摩尔百分比的A物质,35摩尔百分比的B物质和25摩尔百分比的C物质组成,则该组合物主要含有A物质,B物质是次最主要的物质。
本文所用的术语“基本不含”特定的糖残基,例如岩藻糖,或半乳糖等,用于表示糖蛋白组合物基本上缺少包含这种残基的N-聚糖。用纯度来表示,基本上不含表示包含这种糖残基的N-聚糖结构的数量不超过10%,优选低于5%,更优选低于1%,更优选低于0.5%,其中百分率是以重量或摩尔百分比计。因此,根据本发明,糖蛋白组合物中的基本上所有N-聚糖结构不含岩藻糖,或半乳糖,或二者。
如本文所用的,当任何时候都没有可检测量的特定糖残基存在于N-聚糖结构上的时候,糖蛋白组合物“缺少”这种特定的糖残基,例如岩藻糖或半乳糖。例如,在本发明的优选的实施方案中,糖蛋白组合物由上述的低等真核生物,包括酵母[例如Pichia sp.;Saccharomycessp.;Kluyveromyces sp.;Aspergillus sp.]产生,将会“缺少岩藻糖”,这是因为这些生物体的细胞没有产生岩藻糖化N-聚糖结构所需要的酶。因此,术语“基本不含岩藻糖”包括术语“缺少岩藻糖”。然而,如上所述的,即使组合物在某个时候包含岩藻糖化的N-聚糖结构或者包含有限的,但是可检测量的岩藻糖化N-聚糖结构,该组合物也可以是“基本不含岩藻糖”。
本文所用的短语“增加的结合活性”与“增加的结合亲和性”可互换使用,指IgG分子与受体-或者另外提到的分子的结合的增加。
本文所用的短语“减少的结合活性”与“减少的结合亲和性”可互换使用,指IgG分子与受体-或者另外提到的分子的结合的减少。
本文所用的短语“吞噬作用”是指免疫复合体的清除。吞噬作用是免疫细胞——包括但不限于巨噬细胞和嗜中性白细胞的免疫活性。
抗体和抗体-抗原复合体与免疫系统的细胞之间的相互作用和反应的种类,包括抗体依赖的细胞介导的细胞毒性(ADCC)和补体依赖的细胞毒性(CDC),免疫复合体的清除(吞噬作用),B细胞产生抗体和IgG血清半衰期分别在如下文献中定义:Daeron et al.,1997,Annu.Rev.Immunol.15:203-234;Ward and Ghetie,1995,Therapeutic Immunol.2:77-94;Cox and Greenberg,2001,Semin.Immunol.13:339-345;Heyman,2003,Immunol.Lett.88:157-161;and Ravetch,1997,Curr.Opin.Immunol.9:121-125。
除非另外说明,本文所用的所有技术和科学术语具有与本发明所属领域的普通技术人员通常理解的相同的意思。示例性的方法和材料描述如下,虽然与本文描述的类似或等同的方法和材料也可以用于实施本发明,这对本领域技术人员来说是显而易见的。本文提及的所有出版物和其它参考文献都以引用的方式引入其全文。在不一致的情况下,以本说明书,包括定义,为准。材料,方法和实施例仅是举例说明而不是进行限制。
重组Ig-Man5GlcNAc2分子
本发明提供了包含具有主要的Man5GlcNAc2 N-连接的糖形的糖基化Ig群体的组合物。本发明还提供了Ig和Ig组合物,其具有介导抗体效应子功能,如受体结合的主要的Man5GlcNAc2 N-连接的糖形。优选地,本发明的Ig和FcγRIII受体之间的相互作用提供了直接结合活性的增加。并且,优选地,本发明的Ig和FcγRIIb受体之间的相互作用提供了直接结合活性的降低(或者缺少)。在另一实施方案中,本发明的Ig或者Ig组合物显示出糖形结构的富集/优势赋予的增加的结合活性。本发明的突出特征是它提供了具有主要的、特异糖形的Ig和Ig组合物,其介导抗体效应子功能,如ADCC活性的增加或者B细胞的抗体产生的增加。在另一实施方案中,本发明的Ig或者Ig组合物显示出一种糖形的富集/优势赋予的增加的ADCC活性或者B细胞的增加的抗体产生。此外,技术人员将容易明白,产生具有主要糖形的Ig组合物的一个优点是它避免了产生具有不希望的糖形的Ig和/或产生Ig的异质性混合物,其可以诱导不希望的效应和/或稀释更有效的Ig糖形的浓度。因此,预期包含具有主要的Man5GlcNAc2糖形的药物组合物将具有有益特征,包括但不限于,对FcγRIIb的降低的结合、对FcγRIIIa和FcγRIIIb的增加的结合,和因此可以在较低剂量下有效,从而具有更高的功效/效力。
在一个实施方案中,本发明的Ig分子包含在介导Ig分子中抗体效应子功能的Fc区上重链的CH2结构域的Asn-297处的Man5GlcNAc2聚糖结构。优选地,Man5GlcNAc2聚糖结构在二聚化Ig中每个CH2区的每个Asn-297上(图1)。在另一实施方案中,本发明提供了包含Ig的组合物,所述Ig主要用基本上由Man5GlcNAc2聚糖结构组成的N-聚糖在Asn-297处糖基化(图1)。备选地,在Ig分子上发现的一个或多个糖部分可以缺失和/或加入到该分子,从而在Ig上加入或者缺失所述数目的糖基化位点。此外,Ig分子的CH2区内的N-连接的糖基化位点的位置可以通过在该分子的不同位置引入天冬酰胺(Asn)或者N-糖基化位点而改变。尽管Asn-297是通常在鼠和人Ig分子内发现的N-糖基化位点(Kabat等人,Sequences of Proteins of ImmunologicalInterest,1991),但是该位点不是可以想象的唯一位点,该位点也不必为了功能而被保持。使用已知的诱变方法,技术人员可以改变编码本发明的Ig的DNA分子,从而Asn-297的N-糖基化位点可以缺失,并且可以进一步改变DNA分子,在Ig分子的其他位置产生一个或多个N-糖基化位点。优选在Ig分子的CH2区内产生N-糖基化位点。然而,已经在30%的血清抗体内描述了Ig的Fab区的糖基化——通常在Asn-75处发现(Rademacher等人,1986,Biochem.Soc.Symp.,51:131-148)。在Ig分子的Fab区中的糖基化在额外位点,其可以与Fc区中的N-糖基化位点结合组合,或者单独存在。
在一个实施方案中,本发明提供了具有主要Man5GlcNAc2 N-聚糖结构的重组Ig组合物,其中所述Man5GlcNAc2聚糖结构存在的水平比重组Ig组合物的次主要聚糖结构(the next predominant glycanstructure)的水平高至少约5摩尔百分数。在优选实施方案中,本发明提供了具有主要Man5GlcNAc2聚糖结构的重组Ig组合物,其中所述Man5GlcNAc2聚糖结构存在的水平比重组Ig组合物的次主要聚糖结构的水平高至少约10摩尔百分数到约25摩尔百分数。在更优选的实施方案中,本发明提供了具有主要Man5GlcNAc2聚糖结构的重组Ig组合物,其中所述Man5GlcNAc2聚糖结构存在的水平比重组Ig组合物的次主要聚糖结构的水平高至少约25摩尔百分数到约50摩尔百分数。在优选实施方案中,本发明提供了具有主要Man5GlcNAc2聚糖结构的重组Ig组合物,其中所述Man5GlcNAc2聚糖结构存在的水平比重组Ig组合物的次主要聚糖结构的水平高约50摩尔百分数。在另一优选实施方案中,本发明提供了具有主要Man5GlcNAc2聚糖结构的重组Ig组合物,其中所述Man5GlcNAc2聚糖结构存在的水平比重组Ig组合物的次主要聚糖结构的水平高约75摩尔百分数。在再一个优选实施方案中,本发明提供了具有主要Man5GlcNAc2聚糖结构的重组Ig组合物,其中所述Man5GlcNAc2聚糖结构存在的水平比重组Ig组合物的次主要聚糖结构的水平高约90摩尔百分数。具有主要Man5GlcNAc2 N-聚糖(72%)的JC-IgG的N-聚糖的MALDI-TOF分析在图4A中显示。具有主要Man5GlcNAc2 N-聚糖(90%)的DX-IgG的N-聚糖的MALDI-TOF分析在图4B中显示。
Ig-Man5GlcNAc2与FcγRIII受体的增加的结合
Ig结合FcγRIIIa和FcγRIIIb的效应子功能,如ADCC的活化,由Ig分子的Fc区介导。不同功能由该区域中的不同结构域(domain)介导。因此,本发明提供了Ig分子和组合物,其中Ig分子上的Fc区域具有能够进行效应子功能的主要的Man5GlcNAc2 N-聚糖。在一个实施方案中,具有主要的Man5GlcNAc2 N-聚糖的Fc区赋予对FcγRIIIa(图6)和FcγRIIIb(图5)受体的结合的增强。在另一实施方案中,Fc具有主要的Man5GlcNAc2 N-聚糖。技术人员容易理解,包含Fc区的分子,如免疫粘附素(Chamow和Ashkenazi,1996,Trends Biotechnol.14:52-60;Ashkenazi和Chamow,1997,Curr Opin.Immunol.9:195-200)、Fc融合和抗体样分子也包括在本发明中。
Ig分子对Fc受体的结合活性(亲和力)可以通过测定法测定。实施例6中描述了使用IgG进行的FcγRIII结合测定法的实例。技术人员认识到该测定法可以容易地适合与用于任何免疫球蛋白分子的测定法结合使用。
具有主要的Man5GlcNAc2 N-聚糖的JC-IgG(根据本发明制备的Ig)与Rituximab相比对FcγRIIIb的结合活性增加至5-10倍,如图5A中所示,并且与Rituximab相比对FcγRIIIa的结合活性增加至10倍以上,如图6中所示。具有主要的Man5GlcNAc2 N-聚糖的DX-IgG(根据本发明制备的另一种Ig)与Rituximab相比对FcγRIIIb的结合活性增加至5-10倍,如图5B中所示。
最有趣地,FcγRIIIa基因二态性产生了两种同种异型:FcγRIIIa-158V和FcγRIIIa-158F(Dall′Ozzo等人,2004,Cancer Res.64:4664-4669)。对FcγRIIIa-158V纯合的基因型与对Rituximab的更高的临床应答有关(Cartron等人.,2002,Blood,99:754-758)。然而,该群体的多数携带一个FcγRIIIa-158F等位基因,使得Rituximab在通过FcγRIIIa结合诱导ADCC方面,群体的多数的有效性较低。然而,当Rituximab样抗-CD20抗体在缺少岩藻糖基转移酶活性的宿主细胞中表达时,该抗体在通过FcγRIIIa-158F和FcγRIIIa-158V增强ADCC方面同等有效(Niwa等人.,2004,Clin.Cane Res.10:6248-6255)。本发明的某些优选的实施方案的抗体在宿主细胞中表达,所述宿主细胞不向N-聚糖加入岩藻糖(例如,巴斯德毕赤酵母——缺少岩藻糖的一种酵母宿主;见实施例1和2)。因此,预期缺少岩藻糖并且对FcγRIIIa-158F具有增强的结合的本发明的抗体可以特别用于治疗许多显示出对Rituximab的降低的临床应答的患者。
Ig-Man5GlcNAc2对FcγRIIb受体的降低的结合
Ig对FcγRIIb结合的效应子功能,如B细胞的增强的抗体产生和增加的ADCC活性,由Ig分子的Fc区介导。不同的功能由该区中的不同结构域介导。因此,本发明提供了Ig分子和组合物,其中Ig分子上的Fc区具有主要Man5GlcNAc2 N-聚糖,其能够进行效应子功能。在一个实施方案中,Ig的具有主要Man5GlcNAc2 N-聚糖的Fc区赋予对FcγRIIb受体的结合的减弱。技术人员容易明白,包含Fc区的分子,如免疫粘附素(Chamow和Ashkenazi,1996,Trends Biotechnol.14:52-60;Ashkenazi和Chamow,1997,Curr Opin.Immunol.9:195-200)、Fc融合和抗体样分子也包括在本发明中。
Ig分子对Fc受体的结合活性(亲和力)可以通过测定法测定。实施例6中描述了使用IgG1进行的FcγRIIb结合测定法的实例。技术人员认识到该公开的测定法可以容易地适合与任何免疫球蛋白分子结合使用。
具有主要的Man5GlcNAc2 N-聚糖的JC-IgG(根据本发明制备的Ig)与Rituximab相比对FcγRIIb的结合活性降低至1/8,如图7A中所示。具有主要的Man5GlcNAc2 N-聚糖的DX-IgG(根据本发明制备的另一种Ig)与Rituximab相比对FcγRIIb的结合活性也降低至1/8,如图7B中所示。
增加的依赖抗体的细胞介导的细胞毒性
在再一个实施方案中,具有作为主要N-聚糖的Man5GlcNAc2的Ig分子或者组合物的FcγRIIIa或FcγRIIIb结合的增强可以赋予FcγRIII介导的ADCC的增加。已确定FcγRIII(CD 16)受体负责ADCC活性(Daeron等人,1997,Annu.Rev.Immunol.15:203-234)。在另一实施方案中,具有作为主要N-聚糖的Man5GlcNAc2的Ig分子或者组合物的FcγRIIb结合的减弱赋予ADCC的增加(Clynes等人,2000,上文)。在另一实施方案中,本发明的Ig分子或者组合物显示出主要Man5GlcNAc2聚糖的存在赋予的增加的ADCC活性。
在实施例7中公开了测量B细胞减少的体外测定法和荧光释放ADCC测定法的实例。本领域技术人员认识到这些公开的测定法可以容易适于与用于任何Ig分子的测定法结合使用。此外,根据Borchmann等人.,2003,Blood,102:3737-3742,Niwa等人.,2004,Cancer Research,64:2127-2133和实施例7,动物模型中的体内ADCC测定法可以适于任何特定IgG。
B细胞的增加的抗体产生
已经证明了抗体通过调节性FcγR途径参与抵抗肿瘤(Clynes等人.,2000,Nature,6:443-446)。具体地,已知当FcγRIIb与含有基于免疫受体酪氨酸的活化基序(immunoreceptor tyrosine based activation motifs,ITAM)的受体,如B细胞受体(BCR)、FcγRI、FcγRIII、和FcεRI共交联时,它抑制ITAM介导的信号(Vivier和Daeron,1997,Immunol.Today,18:286-291)。例如,FcgRII特异抗体的加入阻断了Fc与FcgRIIB的结合,导致增强的B细胞增殖(Wagle等人,1999,J of Immunol.162:2732-2740)。因此,在一个实施方案中,本发明的Ig分子可以介导FcγRIIb受体结合的减弱,导致B细胞的活化,其又催化浆细胞产生抗体(Parker,D.C.1993,Annu.Rev.Immunol.11:331-360)。实施例6中描述了用IgG1测量B细胞的抗体产生的测定法的实例。本领域技术人员认识到该测定法可以容易地适于与用于任何免疫球蛋白分子的测定法结合使用。
其他免疫学活性
已经表明嗜中性粒细胞上效应细胞分子的改变的表面表达增加对细胞感染的敏感性(Ohsaka等人,1997,Br.J.Haematol.98:108-113)。已经进一步阐明IgG与FcγRIIIa效应细胞受体的结合调节肿瘤坏死因子α(TNF-α)的表达(Blom等人,2004,Arthritis Rheum.,48:1002-1014)。此外,FcγR-诱导的TNF-α还增加嗜中性粒细胞结合和吞噬IgG包被的红细胞的能力(Capsoni等人,1991,J.Clin.Lab Immunol.34:115-124)。因此预期显示出对FcγRIII的结合增强的本发明的Ig分子和组合物赋予TNF-α表达的增加。
已经表明FcγRIII受体活性的增加增强了溶酶体β-葡糖醛酸糖苷酶以及其他溶酶体酶的分泌(Kavai等人,1982,Adv.Exp Med.Biol.141:575-582;Ward和Ghetie,1995,Therapeutic Immunol.,2:77-94)。此外,免疫受体被它们的配体衔接(engagement)后的重要步骤是它们的内化和向溶酶体的递送(Bonnerot等人,1998,EMBO J.,17:4906-4916)。因此预期显示出对FcγRIIIa和FcγRIIIb的结合增强的本发明的Ig分子或组合物可以赋予溶酶体酶的分泌的增加。
当前仅在嗜中性粒细胞上,FcγRIIIb在免疫复合体的装配中起主要作用,并且它的聚集活化吞噬作用、脱粒和呼吸爆发,导致受调理的病原体的破坏。嗜中性粒细胞的活化导致受体的对应于两种细胞外结构域的蛋白酶切割的可溶形式的分泌。可溶的FcγRIIIb通过依赖FcγR的效应子功能的竞争性抑制和通过结合补体受体CR3发挥调节功能,导致产生炎性介体(Sautes-Fridman等人,2003,ASHI Quarterly,148-151)。本发明从而提供了包含基本上由Man5GlcNAc2组成的N-聚糖的免疫球蛋白分子;并且提供了包含免疫球蛋白和连接到其的许多N-聚糖的组合物,其中所述许多N-聚糖内的主要N-聚糖基本上由Man5GlcNAc2组成。在任一实施方案中,免疫球蛋白上所述Man5GlcNAc2 N-聚糖的优势除了赋予对FcγRIIIa和FcγRIIIb的增强的结合和对FcγRIIb的降低的结合外,还赋予所希望的治疗效应子活性,如本文所述。
免疫球蛋白亚类
已经证明IgG亚类对Fc受体具有不同的结合亲和力(Huizinga等人,1989,J.of Immunol,142:2359-2364)。每种IgG亚类可以在本发明的不同方面提供特定优点。从而,在一方面,本发明提供了IgG1组合物,其包含作为连接到IgG1分子的主要N-聚糖的Man5GlcNAc2。另一方面,本发明包含IgG2组合物,其包含作为连接到IgG2分子的主要N-聚糖的Man5GlcNAc2。再一方面,本发明包含IgG3组合物,其包含作为连接到IgG3分子的主要N-聚糖的Man5GlcNAc2。另一方面,本发明包含IgG4组合物,其包含作为连接到IgG4分子的主要N-聚糖的Man5GlcNAc2
备选地,本发明可以应用于所有五个主要类别的免疫球蛋白:IgA、IgD、IgE、IgM和IgG。本发明的优选的免疫球蛋白是人IgG并且优选来自亚类IgG1、IgG2、IgG3或IgG4之一。更优选地,本发明的免疫球蛋白是IgG1分子。
产生介导抗体效应子功能和活性的重组免疫球蛋白(Ig)分子
在一方面,本发明提供了产生重组Ig分子的方法,该Ig分子具有基本上由CH2结构域的Asn-297处的Man5GlcNAc2聚糖结构组成的N-聚糖,其中该Ig分子介导抗体效应子功能和活性,并且类似地,提供了免疫球蛋白组合物,其中连接到该免疫球蛋白的主要N-聚糖是Man5GlcNAc2。在一个实施方案中,Ig的重链和轻链使用重叠的寡核苷酸合成并且单独克隆到表达载体(实施例1)中以在宿主细胞中表达。在优选实施方案中,重组Ig重链和轻链在宿主菌株中合成,该宿主菌株主要催化加入Man5GlcNAc2。在一个实施方案中,糖形结构更具体地表示为[Manα1,3(Manα1,3 Manα1,6 Manα1,6)-Man β 1,4-GlcNAcβ 1,4-GlcNAc],其在Ig上的Fc区的氨基酸Asn-297的氮和Man5GlcNAc2聚糖上的N-乙酰基-β-D-葡糖胺的羟基之间形成连接。在再一个实施方案中,该主要聚糖可以加入到Ig分子内的不同位点处的天冬酰胺(不同于Asn-297),或者与Fab区中的N-糖基化位点组合。
产生在低等真核细胞中具有主要Man5GlcNAc2的Ig
本发明的一方面提供了重组低等真核宿主细胞,其可以用于产生主要具有Man5GlcNAc2糖形的免疫球蛋白或者抗体分子,其与在天然地以低产量产生所述糖形的哺乳动物细胞中表达的糖蛋白的组合物相比具有优点。
本发明的另一优点是提供了糖蛋白的组合物,其具有容易再现的预定的糖基化模式。为了所希望的性质对此类组合物的性质进行评估和优化,而可以一起最小化或者避免不利效果。
本发明还提供了产生重组宿主细胞的方法,所述宿主细胞经工程化或者选择而表达一种或多种核酸,用于产生包含基本上由Man5GlcNAc2组成的N-聚糖的Ig分子和具有主要为Man5GlcNAc2聚糖结构的Ig组合物。在本发明的一些优选实施方案中,重组宿主细胞,优选重组低等真核宿主细胞用于产生所述Ig分子和具有主要为Man5GlcNAc2聚糖的组合物。在其他优选实施方案中,本发明包含可以从重组宿主细胞得到或者通过本发明方法得到的糖蛋白。
本发明的宿主细胞可以用编码所希望的Ig区的载体转化,或者用编码一种或多种本文描述的糖基化相关酶的载体转化,然后筛选重组Ig分子的表达或者具有主要的Man5GlcNAc2 N-聚糖的组合物。本发明的重组宿主细胞可以是真核或者原核宿主细胞,如动物、植物、昆虫、细菌细胞等等,所述宿主细胞已经经工程化或者选择而产生具有主要为Man5GlcNAc2 N-聚糖结构的Ig组合物。优选地,本发明的重组宿主细胞是低等真核宿主细胞,其已经如本领域描述的进行基因工程化(WO 02/00879、WO 03/056914、WO 04/074498、WO 04/074499、Choi等人,2003,PNAS,100:5022-5027;Hamilton等人,2003,Nature,301:1244-1246和Bobrowicz等人,2004,Glycobiology,14:757-766)。特别地,WO 02/00879公开了具有Man5GlcNAc2 N-聚糖的糖蛋白,WO04/074499公开了具有主要为Man5GlcNAc2 N-聚糖的糖蛋白(和免疫球蛋白的特别公开)。
在一个实施方案中,将编码IgG1的载体,例如,含有JC-IgG的AOX1/pPICZA载体(实施例1)导入酵母巴斯德毕赤酵母YJN531-1菌株,其与菌株BK64-1相似(Choi等人,2003,上文),只是YJN531-1菌株具有如美国专利申请号11/020808中公开的受到破坏的MNN4b基因并且还通过破坏AMR2基因而缺少β-甘露糖基化,如所述(美国专利申请号11/118008)。该YJN531-1菌株表达具有主要的Man8GlcNAc2的糖蛋白,从而导致具有主要为Man8GlcNAc2的JC-IgG。用α-1,2甘露糖苷酶处理具有主要为Man8GlcNAc2的JC-IgG(实施例3)导致具有主要为Man5GlcNAc2 N-聚糖的JC-IgG(图4A)。
在另一实施方案中,将在含有DX-IgG的AOX1/pPICZA中编码IgG1的载体(实施例1)导入酵母巴斯德毕赤酵母YGLY14菌株,其类似于菌株BK64-1(Choi等人,2003,上文),只是如美国专利申请号11/020808中公开的,YGLY14菌株的PN01和MNN4b的基因被破坏,并且还通过破坏AMR2基因而缺少β-甘露糖基化,如所述(美国专利申请号11/118008)。该YGLY14菌株表达具有主要为Man8GlcNAc2的糖蛋白,从而,导致具有主要为Man8GlcNAc2的DX-IgG。用α-1,2甘露糖苷酶处理具有主要为Man8GlcNAc2的DX-IgG(实施例3)导致具有主要为Man5GlcNAc2 N-聚糖的DX-IgG(图4B)。
备选地,可以用本领域已知的几种方法表达本发明的抗体(Monoclonal Antibody Production Techniques and Applications,pp.79-97(Marcel Dekker,Inc.,New York,1987)。
在低等真核生物中表达糖基转移酶和稳定的遗传整合
已经描述了使用选择标记如URA3、URA5、HIS4、SUC2、G418、BLA或SH BLA在低等真核宿主菌株(例如,巴斯德毕赤酵母)中导入异源基因和证实异源基因整合的方法。当在低等真核生物中产生表达系统时,此类方法可以适于产生本发明的Ig。此外,已经描述了允许重复使用URA3标记来消除不希望的甘露糖基转移酶活性的方法。Alani等人,1987,Genetics,116:541-545和美国专利号6,051,419描述了基于破坏巴斯德毕赤酵母中的URA3基因的选择系统。优选地,PpURA3-或者PpURA5-blaster盒用于破坏URA3、URA5或者尿嘧啶生物合成途径中的任何基因,允许基于尿嘧啶的营养缺陷型和对5-氟乳清酸(5FOA)的抗性进行正和负选择(Boeke,等人,1984,Mol.Gen.Genet,197:345-346)。因此,技术人员认识到此类系统允许通过选择和反选择插入多个异源基因。
其他酶促修饰
其他酶促缺失对于分离没有甘露糖基磷酸化或者β-甘露糖基化的Ig可以是有益或者必须的,所述甘露糖基磷酸化或者β-甘露糖基化可以赋予人体中异常的免疫原性活性。如所提到的,美国专利申请号11/020808公开了消除甘露糖基磷酸化的方法,美国专利申请号11/118008公开了消除β-甘露糖基化的方法。
在其他蛋白质表达系统中产生具有主要为Man5GlcNAc2的聚糖结构的Ig
本领域技术人员理解选择表达宿主系统(生物)用于异源蛋白质表达,所述系统可以需要或者可以不需要工程化以表达具有主要的聚糖结构的Ig。本文提供的实例是进行在Asn-297或者另一N-糖基化位点或者两个位点都具有特定聚糖的Ig的表达的一种方法的实例。本领域技术人员可以容易地适应本发明的这些细节和任何蛋白质表达宿主系统(生物)的实例。
包括动物、植物、昆虫、细菌细胞等等的其他蛋白质表达宿主系统可以用于产生根据本发明的Ig分子和组合物。此类蛋白质表达宿主系统可以经工程化或者选择来表达主要的糖形或者备选地可以天然产生具有主要的聚糖结构的糖蛋白。产生主要的糖形的糖蛋白的经工程化的蛋白质表达宿主系统的实例包括基因敲除/突变(Shields等人,2002,JBC,211:26733-26740);基因工程化(Umafia等人,1999,NatureBiotech.,17:176-180)或者两者的组合。备选地,一些细胞天然表达主要的糖形-例如,鸡、人和奶牛(Raju等人,2000,Glycobiology,10:477-486)。从而,本领域技术人员通过选择至少一种或者许多表达宿主系统可以得到主要具有根据本发明的一种特定聚糖结构的Ig糖蛋白或者组合物的表达。在本领域中发现的用于产生糖蛋白的其他表达宿主系统包括:CHO细胞:Raju WO9922764A1和Presta WO03/035835A1;杂交瘤细胞:Trebak等人,1999,J.Immunol.Methods,230:59-70;昆虫细胞:Hsu等人,1997,JBC,272:9062-970,和植物细胞:Gerngross等人,WO04/074499A2。
IgG的纯化
用于纯化和分离抗体的方法是本领域已知的并且已经公开。见例如,Kohler & Milstein,(1975)Nature 256:495;Brodeur等人,Monoclonal Antibody Production Techniques and Applications,pp.51-63,Marcel Dekker,Inc.,New York,1987);.Goding,MonoclonalAntibodies:Principles and Practice,pp.59-104(Academic Press,1986);和Jakobovits等人.(1993)Proc.Natl.Acad.ScL USA 90:2551-255和Jakobovits等人,(1993)Nature 362:255-258。在另一实施方案中,使用目的抗原选择合适的抗体或者抗体片段,可以从用McCafferty等人(1990)Nature,348:552-554(1990)中描述的技术产生的抗体噬菌体文库分离抗体或者抗体片段。
根据本发明的方法产生的重组Ig分子可以根据实施例3中概述的方法纯化。图2显示了从YJN531-1纯化的JC-IgG的SDS-PAGE考马斯染色的凝胶。图3显示了从YGLY14纯化的DX-IgG的SDS-PAGE考马斯染色的凝胶。在另一实施方案中,纯化的Ig抗体具有作为主要N-聚糖的Man5GlcNAc2。任何Ig分子上的聚糖分析和分布可以通过本领域已知的一些质谱法测定,所述方法包括但不限于:HPLC、NMR、LCMS和MALDI-TOF MS。图4A显示了从YJN531-1纯化并用α-1,2甘露糖苷酶处理的JC-IgG的MALDI-TOF谱(实施例3)。该MALDI-TOF表明约72摩尔%的总N-聚糖是Man5GlcNAc2。图4B显示了从YGLY14纯化并用α-1,2甘露糖苷酶处理的DX-IgG的MALDI-TOF谱。该MALDI-TOF表明约90摩尔%的总N-聚糖是Man5GlcNAc2
药物组合物
本发明的抗体可以掺入到药物组合物,该药物组合物包含作为活性治疗剂的所述抗体和多种其他药学上可接受的组分。见Remington′sPharmaceutical Science(15th ed.,Mack Publishing Company,Easton,Pennsylvania,1980)。优选的形式取决于预期的施用方式和治疗应用。取决于所希望的制剂,组合物还可以包括药学上可接受的、非毒性载体或者稀释剂,其定义为通常用于配制用于动物或者人施用的药物组合物的载体。选择稀释剂使得不影响组合的生物活性。此类稀释剂的实例是蒸馏水、生理磷酸盐缓冲盐水、林格液、葡萄糖溶液,和Hank′s溶液。此外,药物组合物或者制剂还可以包括其他载体、佐剂或者非毒性、非治疗性、非免疫原性稳定剂等等。
用于肠胃外施用的药物组合物是无菌的、基本上等渗的、无致热原并且根据FDA或者类似机构的GMP制备。抗体可以作为抗体的溶液或者悬浮液的可注射的剂量施用,所述抗体用药物载体溶解或者悬浮在生理学上可接受的稀释剂中,所述药物载体可以是无菌液体,如水、油、盐水、甘油或者乙醇。此外,组合物中可以存在辅助物质,如增湿剂或者乳化剂、表面活性剂、pH缓冲物质等等。药物组合物的其他组分为石油、动物、植物,或者合成来源的组分,如花生油、大豆油、和矿物油。通常,二元醇如丙二醇或者聚乙二醇为优选的液体载体,尤其可注射的溶液。抗体可以以贮库注射液或者植入制剂的形式施用,所述贮库注射液或者植入制剂可以以允许活性成分的持续释放的方式配制。通常,将组合物制备为可注射的,作为液体溶液或者悬浮液;还可以制备固体形式,其适于在注射前溶解或者悬浮在液态载体中。制剂还可以乳化或者包裹在脂质体或者微粒如聚乳酸、聚乙醇酸交酯,或者共聚物中以得到增强的佐剂效应,如上文讨论(Langer,Science 249,1527(1990)和Hanes,Advanced Drug Delivery Reviews 28,97-119(1997)。
诊断产物
本发明的抗体还可以掺入多种诊断试剂盒和其他诊断产品,如阵列中。通常提供预先结合固相,如结合微量滴定板的孔的抗体。试剂盒通常含有用于检测抗体结合的试剂,和提供试剂盒的使用说明的标记。免疫测定或者夹层测定是诊断试剂盒的优选的形式(见US4,376,110、4,486,530、5,914,241和5,965,375)。例如,US 5,922,615、US 5,458,852、US 6,019,944、和US 6,143,576描述了抗体阵列。
治疗应用
本发明提供了糖蛋白组合物,其包含糖蛋白上的主要地特定糖形。本发明的特征是,当施用于包括人的哺乳动物时,在优选实施方案中,包含新的糖蛋白组合物的药物组合物当与具有相似的一级结构的其他糖蛋白组合物比较时,有利地显示出优秀的体内性质。从而,当前无论在哪里使用糖蛋白药剂,本发明的新的组合物可以有利地在生产批之间和生产批始终提供有利的性质以及增加的均匀性。本发明的制剂可以掺入溶液、单位剂型,如片剂和胶囊剂中用于经口递送,以及掺入混悬剂、软膏剂等,这取决于具体药物或者医药和其靶标区域。
在具体方面,本发明提供了糖蛋白药剂、药物或者医药的新的组合物,其中糖蛋白包含免疫球蛋白分子并且组合物包含糖蛋白剂的主要的特定糖形。根据本发明的特定方面,提供的组合物包含主要为具有如本文所述的Man5GlcNAc2聚糖结构的N-连接的寡糖的免疫球蛋白糖蛋白。在优选方面,糖蛋白是抗体并且特别可以是单克隆抗体。本发明还提供了用于产生本发明的组合物的方法和工具。
本发明还包括包含本发明的糖形制剂的药物组合物。该组合物优选是无菌的。当组合物是水溶液时,糖蛋白优选是可溶的。当组合物是冻干的粉剂时,该粉剂优选可以用合适的溶剂重构。
在其他方面,本发明涉及治疗疾病状态的方法,其包括对需要其的哺乳动物施用治疗有效剂量的本发明的药物组合物。本发明的另一目的是在制成品或者试剂盒中提供糖形制剂,所述制成品或者试剂盒可以用于治疗疾病或者病症的目的。
具有主要为Man5GlcNAc2 N-聚糖的本发明的Ig分子具有用于适应症的许多治疗应用,所述适应症为诸如癌症、炎性疾病、感染、免疫疾病、自身免疫疾病,包括特发性血小板减少性紫癜、关节炎、系统性红斑狼疮,和自身免疫性溶血性贫血。
下面是参考Ig糖蛋白组合物的产生阐明本发明的组合物和方法的实施例。这些实施例不应该被理解为限定-包括这些实施例仅用于阐明的目的。技术人员认识到本公开的许多修饰和外延(包括优化)是可能的。认为此类修饰和外延是本发明的部分。
实施例1
用于在巴斯德毕赤酵母中表达的DX-IgG1的克隆
DX-IgG1(抗-CD20 IgG1)的轻链(L)和重链(H)由小鼠可变区和人恒定区组成。轻链公开为SEQ ID NO:1,重链公开为SEQ IDNO:2。使用从Integrated DNA Technologies(IDT)购买的重叠寡核苷酸合成重链和轻链序列。对于轻链可变区,15种重叠的寡核苷酸(SEQ IDNOs:5-19)为购买的并且使用Extaq(Takada)在PCR反应中退火以产生具有5’M1yI位点的轻链可变区片段。然后通过重叠PCR,使用5′MlyI引物CD20L/up(SEQ ID NO:20)、3′可变/5′恒定引物LfusionRTVAAPS/up(SEQ ID NO:21)、3′恒定区引物LfusionRTVAAPS/lp(SEQ ID NO:22)和3′CD20L/lp(SEQ ID NO:23),将该轻链可变片段与轻链恒定区(SEQ ID NO:3)(Gene Art,Toronto,Canada)。然后将最后的MlyI轻链片段(其包括5’AG碱基对)插入pCR2.1topo载体(Invitrogen),得到pDX343。对于重链,对应于小鼠重链可变区的17种重叠的寡核苷酸(SEQ ID NOs:24-40)购自IDT并且使用Extaq退火。然后通过重叠PCR,使用5′MlyI引物CD20H/up(SEQID NO:41)、5′可变/恒定引物HchainASTKGPS/up(SEQ ID NO:42)、3′可变/恒定引物HchainASTKGPS/lp(SEQ ID NO:43)和3′恒定区引物HFckpnl/lp(SEQ ID NO:44),将该重链可变片段与重链恒定区(SEQ ID NO:4)(Gene Art)连接。最终的Mlyl重链片段(其包括5’AG碱基对)插入pCR2.1 topo载体(Invitrogen),得到pDX360。从各自topo载体分离全长轻链和全长重链作为Mly1和Notl片段。然后使用4种重叠的寡核苷酸——P.BiPss/UPl-EcoRI、P.BiPss/LP1、P.BiPss/UP2和P.BiP/LP2(分别为SEQ ID NOS:46-49),将这些轻链和重链片段连接到Kar2(Bip)信号序列(SEQ ID NO:45),接着连接到pPICZA的EcoRI-Notl位点,得到携带Kar2-轻链的pDX344和携带Kar2重链的pDX468。然后将来自pDX344的BgIII-BamHI的片段亚克隆到含有用于染色体整合的AOX2启动子基因的pBK85,得到pDX458。接着将来自pDX468的携带重链的BgIII-BamHI片段亚克隆到pDX458,得到pDX478,其含有处于AOX1启动子下的CD20的重链和轻链。然后转化前用SpeI线性化该质粒后以整合到AOX2基因座,用Zeocin抗性选择转化体(见实施例2)。
克隆用于在巴斯德毕赤酵母中表达的JC-IgG
小鼠可变区的JC-IgG1的轻链(L)和重链(H)由小鼠可变区和人恒定区组成。小鼠可变轻链公开为SEQ ID NO:50(GenBank#AF013576),小鼠可变重链公开为SEQ ID NO:51(GenBank#AF013577)。用购自Integrated DNA Technologies(IDT)的重叠的寡核苷酸合成重链和轻链序列。对于轻链,购买12种重叠的寡核苷酸(SEQID NOs:52-63)并将其用Extaq(Takada)在PCR反应中退火产生具有5’EcoRI位点和3’KpnI位点的660个碱基对的轻链。然后将该轻链亚克隆到pPICZa载体(Invitrogen),作为EcoRI-KpnI片段。对于重链,购买对应于Fab片段的12种寡核苷酸(SEQ ID NOs:64-75)并将其用Extaq退火以产生660个碱基对的Fab片段。使用12种重叠的寡核苷酸(SEQ ID NOs:76-87)合成Fc片段,所述寡核苷酸在相似的重叠PCR反应中退火。然后使用对应于重链Fab片段的5’的5′EcoRI引物(SEQID NO:64)和对应于Fc片段的3’末端的3′KpnI引物(SEQ ID NO:88),使用pFU Turbo聚合酶(Stratagene)将重链的Fab和Fc片段退火,产生1,330个碱基对的重链。使用引物中编码的5′EcoRI和3′KpnI位点,将重链克隆到pPICZa载体。将AOX2启动子序列(作为整合基因座)亚克隆到最终的pPICZa载体。接着,将含有AOX1启动子的BgIII-BstBI片段和含有来自人肝脏cDNA文库(SEQ ID NO:89)的HSA序列、凝血酶位点(SEQ ID NO:90)和JC轻链的BstBI-BamHI片段都亚克隆到该AOX2/pPICZa载体的BamHI位点中。然后将含有AOX1启动子的另一BgIII-BstBI片段和含有HSA序列、凝血酶位点和JC重链的BstIBl-BamHI亚克隆到该同一pPICZa载体的BamHI位点中。该最终载体含有AOX2整合基因座、HSA标记的JC轻链和HSA标记JC重链,得到pJC140。将该表达盒整合到巴斯德毕赤酵母菌株的AOX2基因座,对转化体选择zeocin抗性(见实施例2)。
Rituximab/Rituxan是购自Biogen-IDEC/Genentech,SanFrancisco,CA的抗-CD20小鼠/人嵌合IgG1。
PCR扩增。Eppendorf Mastercycler用于所有PCR反应。PCR反应含有模板DNA、125μM dNTPs、0.2μM每种正向和反向引物、Ex Taq聚合酶缓冲液(Takara Bio Inc.),和Ex Taq聚合酶或者pFU Turbo聚合酶缓冲液(Stratagene)和pFU Turbo聚合酶。将DNA片段用97℃2分钟的最初的变性步骤;30个循环的97℃15秒、55℃15秒和72℃90秒;和72℃7分钟的最终延伸步骤进行扩增。
通过琼脂糖凝胶电泳分离PCR样品,提取DNA带并用Qiagen的Gel Extraction Kit纯化。除了最终的PCR(所有三种片段的重叠)(其用去离子水稀释)外,所有DNA纯化物都用10mM Tris,pH8.0稀释。
实施例2
将IgG载体转化到巴斯德毕赤酵母菌株YJN531-1和YGLY14。通过加入乙酸钠至终浓度0.3M制备载体DNA。然后向DNA样品加入100%冰预冷的乙醇至终浓度70%。DNA通过离心(12000g×10分钟)沉淀并用70%冰预冷的乙醇洗涤两次。将DNA干燥并重悬浮在50μl10mMTris,pH8.0中。待转化的YJN531-1和YGLY14酵母培养物(Choi等人,2003;Hamilton等人,2003)通过以较小的培养物在BMGY(缓冲的最小甘油:100mM磷酸钾,pH6.0;1.34%酵母氮碱基;4×10-5%生物素;1%甘油)中扩大到~2-6的O.D.来制备。然后将细胞细胞在1M山梨糖醇中洗涤三次并重悬浮在~1-2ml 1M山梨糖醇中使得电感受态(electrocompetent)。将DNA(1-2μg)与100μl感受态酵母混合并在冰上温育10分钟。然后将酵母细胞用BTX Electrocell Manipulator 600使用下面的参数电穿孔:1.5kV,129ohms,和25μF。向电穿孔的细胞加入1毫升YPDS(1%酵母提取物、2%蛋白胨、2%葡萄糖、1M山梨糖醇)。转化的酵母随后在含有zeocin的选择性琼脂板上接种(见实施例3)。
巴斯德毕赤酵母中IgG1的培养条件。将用pDX478转化的YGLY14或者用pJC140转化的YJN531-1的单个菌落接种到50ml Falcon离心管中的10ml BMGY培养基(由1%酵母提取物、2%蛋白胨、100mM磷酸钾缓冲液(pH6.0)、1.34%酵母氮碱基,4×10-5%生物素,和1%甘油组成)中。培养物在24℃/170-190转/分钟摇动下培育48小时,直到培养物饱和。然后向500ml带挡板的烧瓶中加入100ml BMGY。然后将种子培养物转移到含有100ml BMGY培养基的带挡板烧瓶中。该培养物在24℃/170-190转/分钟摇动下培育24小时。将烧瓶的内容物倾析入50ml Falcon离心管中并以3000转/分钟离心10分钟。细胞沉淀物用20ml没有甘油的BMGY洗涤一次,然后用20ml BMMY(用1%MeOH代替1%甘油的BMGY)温和重悬浮。将悬浮的细胞转移到250ml带挡板烧瓶中。将烧瓶的内容物倾析入两个50ml Falcon离心管中并以3000转/分钟离心10分钟。通过ELISA分析培养上清液以确定近似的抗体效价后进行蛋白质分离(见实施例3)。通过酶联免疫吸附测定(ELISA)进行培养上清液中抗体的定量:将高结合微量滴定板(Costar)用10ml PBS,pH7.4中的24μg山羊抗人Fab(Biocarta,Inc,San Diego,CA)包被并在4℃过夜温育。除去缓冲液并加入封闭缓冲液(PBS中的3%BSA),然后在室温温育1小时。除去封闭缓冲液并将平板用PBS洗涤3次。最后一次洗涤后,加入渐增体积量的抗体培养上清液(0.4、0.8、1.5、3.2、6.25、12.5、25和50μl)并在室温温育1小时。将平板用PBS+0.05%Tween20洗涤。最后洗涤后,以1∶2000 PBS溶液加入抗人Fc-HRP,然后在室温温育1小时。然后用PBS-Tween20洗涤平板4次。用TMB底物试剂盒按照生产商的使用说明(PierceBiotechnology)分析平板。
实施例3
IgG1的纯化
使用Streamline蛋白A柱,从培养上清液捕获单克隆抗体。将抗体用Tris-甘氨酸(pH3.5)稀释并用1M Tris pH8.0中和。用疏水相互作用层析(HIC)进一步纯化。HIC柱的具体类型取决于抗体。对于JC-IgG和DX-IgG,使用苯基琼脂糖柱(也可以使用辛基琼脂糖)与20mM Tris(7.0),1M(NH4)2SO4缓冲液,并用1M到0M(NH4)2SO4线性梯度缓冲液洗脱。合并来自苯基琼脂糖柱的抗体级分并交换到50mM NaOAc/Tris pH5.2缓冲液,用于通过阳离子交换(SP SepharoseFast Flow)(GE Healthcare)柱进行最后的纯化。用50mM Tris,1M NaCl(pH7.0),使用线性梯度洗脱抗体。
用α-1,2甘露糖苷酶处理Ig-Man8GlcNAc2
对于α-1,2甘露糖苷酶处理,将5mg纯化的Ig-Man8GlcNAc2(JC-IgG或者DX-IgG)缓冲液交换到50mM NH4Ac pH5.0中。在硅化管中,向50mM NH4Ac pH5.0中纯化的IgG加入0.03Uα-1,2甘露糖苷酶(EMD Biosciences,La jolla,CA)并在37℃温育16-24小时。见其样品蒸发至干,重悬浮在水中并通过MALDI-TOF分析。然后按照如上述的苯基琼脂糖纯化,从α-1,2甘露糖苷酶纯化抗体。
实施例4
纯化的Ig的检测
将纯化的JC-IgG或者DX-IgG与合适体积的加样缓冲液混合并用预制凝胶根据生产商的使用说明(NuPAGE bis-Tris电泳系统;Invitrogen Corporation,Carlsbad,Calif)进行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)。凝胶蛋白质用考马斯亮蓝染色(Bio-Rad,Hercules,CA)。见图2和3。
抗体浓度
使用Bradford测定法(Bradford,M.1976,Anal.Biochem.(1976)72,248-254),用白蛋白作为标准品(Pierce,Rockford,IL)测定蛋白质层析级分的浓度。
实施例5
IgG1糖类分析
基质辅助的激光解吸/电离飞行时间质谱法(MALDI-TOF MS)。天冬酰胺-连接的寡糖的MALDI-TOF分析:使用Papac等人,Glycobiology 8,445-454(1998)的方法,从JC-IgG和DX-IgG释放N-连接的聚糖。将抗体样品还原并羧甲基化,并封闭膜,用水洗涤孔三次。通过加入含有1mU N-聚糖酶(EMD Biosciences,La Jolla,CA)的30μl 10mM NH4HCO3(pH8.3),将Ig蛋白质去糖基化。37℃下16小时后,通过离心除去含有聚糖的溶液并蒸发至干。来自每孔的经干燥的聚糖溶解在15μl水中,将0.5μl点样在不锈钢样品板上并与0.5μl S-DHB基质(9mg/ml二羟基苯甲酸/1mg/ml 5-甲基-水杨酸溶于1∶1水/乙腈/0.1%三氟乙酸中)并允许干燥。通过用脉冲的氮激光(337nm)照射产生4ns脉冲时间产生离子。仪器以延迟提取模式运行,使用125-ns延迟和20kV的加速电压。载网电压为93.00%,导线电压为0.1%,内部压力<5×10-7托(1托=133Pa),低质量选通为875Da。从共100-200次激光脉冲产生光谱并用500-MHz数字化仪获得。(Man)5(GlcNAc)2寡糖用作内部分子量标准。用仪器以正离子模式产生所有光谱。
实施例6
抗原结合ELISA测定法
将高结合微量滴定板(Costar)用PBS,pH7.4中的10μ个抗原包被并在4℃下过夜温育。除去缓冲液并加入封闭缓冲液(PBS中的3%BSA),然后在室温温育1小时。除去封闭缓冲液并将平板用PBS洗涤3次。
最后一次洗涤后,加入渐增量的从0.2ng到100ng的纯化的抗体并在室温温育1小时。将平板用PBS+0.05%Tween20洗涤。最后洗涤后,以1∶2000 PBS溶液加入抗人Fc-HRP,然后在室温温育1小时。然后用PBS-Tween20洗涤平板4次。用TMB底物试剂盒按照生产商的使用说明(Pierce Biotechnology)分析平板。
Fc受体结合测定法
根据以前描述的方案(Shields等人,2001,J.Biol.Client,276:6591-6604)进行FcγRIIb、FcγRIIIa和FcγRIIIb的Fc受体结合测定法。对于FcγRIII结合:将PBS,pH7.4中的1μg/ml的FcγRIIIb(图5)和FγRIIb(图7)融合蛋白或者PBS,pH7.4中的FcγRIIIa-LF(图6)融合蛋白在4℃包被在ELISA板(Nalge-Nunc,Naperville,IL)上48小时。平板用PBS中的3%牛血清白蛋白(BSA)在25℃封闭1小时。通过在25℃下混合2∶1摩尔量的JC-IgG或DX-IgG和HRP-缀合的F(Ab′)2抗-F(Ab′)21小时,用PBS中的1%BSA制备JC-IgG或DX-IgG二聚体复合体。然后将二聚体复合体用1%BSA/PBS以1∶2连续稀释,并在25℃下在平板上包被1小时。所用的底物是3,3’,5,5’-四甲基联苯胺(TMB)(Vector Laboratories)。按照生产商的使用说明(Vector Laboratories)读出450nm的吸光度。
B细胞中抗体反馈的ELISPOT测定法
如Westman,等人,1997,Scand.J.Immunol.46:10-15中描述的进行该测定法。首先将BSA(牛血清白蛋白)缀合到IgG抗体,得到BSA-IgG复合体。用ELISPOT测定法测定分泌BSA特异性IgG的B细胞的数目。从注射的小鼠除去脾脏并在含有0.5%正常小鼠血清的DMEM(Gibco,New York)制备细胞悬浮液。将100微升细胞悬浮液应用于BSA包被的微量滴定板(见上面的ELISA方案)并在37℃、5%CO2下温育3.5小时。洗涤平板并用以1/100 PBS-Tween稀释的50μl碱性磷酸酶缀合的绵羊抗小鼠IgG在4℃温育。斑点在室温下用50μl磷酸5-溴-4-氯-3-吲哚酯(Sigma-Aldrich)显影1小时并在立体显微镜下计数。
实施例7
如Vugmeyster和Howell,2004,Int.Immunopharm.4:1117-1124描述的 使用血液基质研究(B-细胞耗尽)测定的ADCC。将耗尽血浆和红细胞(RBC)的全血用染色缓冲液(含有1%BSA和0.1%叠氮化钠的Hank’s平衡盐溶液(HBSS))重构,得到染色缓冲液的白细胞悬浮液。然后将全血样品以1000g离心5分钟,丢弃上清液(血浆)并将沉淀物用氯化铵裂解(ACL)试剂处理,洗涤,并重悬浮在等体积的染色缓冲液中。对于 B细胞耗尽测定:将10μl 100μg/ml抗体溶液或者染色缓冲液加入90μl SB基质并在37℃温育1小时。样品立即用抗-CD19-FITC和抗-CD45-PE在25℃染色30分钟。然后将样品在1%甲醛中固定并一式三份运行。通过流式细胞术得到B细胞耗尽的定量。B细胞耗尽的流式细胞术分析:装备自动化FACS进样器(Loader)和细胞查询软件(Cell Quest Software)的FACS Calibur(BD Biosciences)仪器用于采集和分析所有样品。血细胞计数器QC和设置包括运行CaliBrite珠和SpheroTech彩虹珠(BD Biosciences)以证明仪器的功能性和检测器线性。用每种测定法运行同种型和代偿对照以证明仪器设置。通过下面的选通策略得到总的淋巴细胞的B细胞百分数。淋巴细胞群体在正向散射/侧向散射散射图上标记以定义区域1(R1)。使用R1中的事件,为CD19和CD45标记显示荧光密度散点图。荧光标记的同种型对照用于确定CD19和CD45确实性的各自截断点。用CellQuest确定%B作为R1区中具有CD19-阳性、CD45阳性表型的细胞的分数。对于每个处理组运行一式三份的样品。用公式平均[100*(1-用对照抗体处理的%B/平均[用SB处理的%])来计算%B细胞耗尽。 荧光染料释放ADCC测定:PBMC分离:将来自健康个体或者血液供者(10-20)的外周静脉血收集到肝素化的vacutainer管(Becton Dickinson Vacutainer Systems,Rutherford,NJ,USA)中。植入2只小鼠需要约5ml血液。使用OptiPrep按照生产商的使用说明,通过离心分离外周血单核细胞(PBMC)。将PBMC用由RPMI1640、2mML-谷氨酰胺、100IU/ml青霉素、100g/ml链霉素(Gibco/BRL)组成并补加20%胎牛血清的完全培养基(CM)洗涤一次,然后以1×106/ml CM的浓度重悬浮,并转移到250ml培养瓶(Falcon,NJ,USA)用于单核细胞耗尽。在37℃和5%CO2下温育1小时后,回收未贴壁的细胞,用培养基洗涤一次,并将外周血淋巴细胞(PBL)调节到2.5×107/ml CM。荧光染料释放ADCC。ADCC测定的前提是结合CD20或者CD40抗原呈递细胞(分别为Raji细胞系或者BCL1-3B3细胞)的抗体刺激靶细胞结合效应细胞上的Fcγ受体。这又促进呈递CD20或者CD40抗原的靶细胞的裂解,释放可以定量的内部荧光染料。Alamar-blue荧光用于代替51Cr标记靶细胞。将50μl CD20呈递Raji细胞悬浮液(1×104个细胞)与50μl量的抗-DX-IgG或者抗JC-IgG mAb(多种浓度)和50μl量的如上述分离的PBMC效应细胞(效应细胞与靶细胞的比例可以为100∶1、50∶1、25∶1和12.5∶1)在96孔组织培养板中组合并在37℃温度和5%CO2中温育4小时以促进Raji或者BCL1-3B3细胞的裂解。加入50μl Alamar blue并继续温育5小时以允许染料的摄入和以其荧光状态代谢。平板在摇动器上冷却到室温并在荧光计中以530nm的激发波长和590nm的发射波长读出荧光。将相对荧光单位(RFU)对mAb浓度作图并从使用对照抗体-例如Rituximab得到的标准曲线计算样品浓度。 使用重症联合免疫缺陷(SCID)小鼠进行体内 ADCC(Niwa等人.,2004,Cancer Research,64:2127-2133)。可以使用移入来自健康供者的人外周血单核细胞(PBMC)的小鼠模型测定体内ADCC活性,所述PBMC包括杂合(FcγRIIIa-LF/FcγRIIIa-LV)和纯合(FcγRIIIa-LV/FcγRIIIa-LV和FcγRIIIa-LF/FcγRIIIa-LF)基因型。使用该模型系统,对具有主要N-聚糖的Ig测定与Rituximab或者任何其他对照抗体相比的增强的ADCC活性。该体内ADCC测定法的详细和充分的方案见Niwa等人.,2004,上文。
序列表
SEQ ID NO:01(小鼠/人嵌合IgG1轻链)
caaatcgtcttgtctcaatccccagctattttgtctgcttcccctggagagaaggtcaccatgacttgtagagcctcttcctctgt
ctcttacattcactggttccagcaaaagccaggttcctctccaaagccatggatctacgctacttccaacttggcttccggtgtt
ccagttagattctctggttctggttccggtacctcctactctcttaccatctccagagttgaagccgaggacgctgctacttact
actgtcagcaatggacttctaacccaccaactttcggtggtggtaccaaattggagattaagagaactgttgctgctccatcc
gttttcattttcccaccatccgacgaacaattgaagtctggtacagcttccgttgtttgtttgttgaacaacttctacccaagaga
ggctaaggttcagtggaaggttgacaacgctttgcaatccggtaactcccaagaatccgttactgagcaggattctaaggatt
ccacttactccttgtcctccactttgactttgtccaaggctgattacgagaagcacaaggtttacgcttgtgaggttacacatca
gggtttgtcctccccagttactaagtccttcaacagaggagagtgttaa
SEQ ID NO:01(小鼠/人嵌合IgG1重链)
caagtccagttgcaacagcctggtgccgagttggtcaagccaggtgcttctgttaagatgtcctgtaaggcttctggttacact
ttcacctcctacaacatgcactgggtcaagcaaactccaggtagaggtttggagtggttggtgccatctacccaggtaacgg
tgacacttcttacaaccaaaaattcaagggaaaggctactcttaccgctgataagtcctcttccaccgcctacatgcaattgtct
tccttgacttctgaagattctgctgtttactactgtgctagatccacctactacggtggagacgtgtacttcaacgtttggggtgc
tggtaccactgtcaccgtttccgctgcttctactaagggaccatccgtttttccattggctccatcctctaagtctacttccggtg
gtactgctgctttgggatgtttggttaaggactacttcccagagcctgttactgtttcttggaactccggtgctttgacttctggtg
ttcacactttcccagctgttttgcaatcttccggtttgtactccttgtcctccgttgttactgttccatcctcttccttgggtactcaga
cttacatctgtaacgttaaccacaagccatccaacactaaggttgacaagaaggctgagccaaagtcctgtgacaagacac
atacttgtccaccatgtccagctccagaattgttgggtggtccatccgttttcttgttcccaccaaagccaaaggacactttgat
gatctccagaactccagaggttacatgtgttgttgttgacgtttctcacgaggacccagaggttaagttcaactggtacgttga
cggtgttgaagttcacaacgctaagactaagccaagagaggagcagtacaactccacttacagagttgtttccgttttgactg
ttttgcaccaggattggttgaacggaaaggagtacaagtgtaaggtttccaacaaggctttgccagctccaatcgaaaagac
tatctccaaggctaagggtcaaccaagagagccacaggtttacactttgccaccatccagagatgagttgactaagaacca
ggtttccttgacttgtttggttaaaggattctacccatccgacattgctgttgagtgggaatctaacggtcaaccagagaacaa
ctacaagactactccaccagttttggattctgacggttccttcttcttgtactccaagttgactgttgacaagtccagatggaaca
gggtaacgttttctcctgttccgttatgcatgaggctttgcacaaccactacactcaaaagtccttgtctttgtccccaggtaagt
aa
SEQ ID NO:03(人IgG1的轻链恒定区)
agaactgttgctgctccatccgttttcattttcccaccatccgacgaacaattgaagtctggtacagcttccgttgtttgtttgttg
aacaacttctacccaagagaggctaaggttcagtggaaggttgacaacgctttgcaatccggtaactcccaagaatccgtta
ctgagcaggattctaaggattccacttactccttgtcctccactttgactttgtccaaggctgattacgagaagcacaaggttta
cgcttgtgaggttacacatcagggtttgtcctccccagttactaagtccttcaacagaggagagtgttaa
SEQ ID NO:04(人IgG1的重链恒定区)
tctactaagggaccatccgtttttccattggctccatcctctaagtctacttccggtggtactgctgctttgggatgtttggttaag
gactacttcccagagcctgttactgtttcttggaactccggtgctttgacttctggtgttcacactttcccagctgttttgcaatctt
ccggtttgtactccttgtcctccgttgttactgttccatcctcttccttgggtactcagacttacatctgtaacgttaaccacaagc
catccaacactaaggttgacaagaaggctgagccaaagtcctgtgacaagacacatacttgtccaccatgtccagctccag
aattgttgggtggtccatccgttttcttgttcccaccaaagccaaaggacactttgatgatctccagaactccagaggttacatg
tgttgttgttgacgtttctcacgaggacccagaggttaagttcaactggtacgttgacggtgttgaaagttcacaacgctaagac
taagccaagagaggagcagtacaactccacttacagagttgtttccgttttgactgttttgcaccaggattggttgaacggaa
aggagtacaagtgtaaggtttccaacaaggctttgccagctccaatcgaaaagactatctccaaggctaagggtcaaccaa
gagagccacaggtttacacttttgccaccatccagagatgagttgactaagaaccaggtttccttgacttgtttggttaaaaggat
tctacccatccgacattgctgttgagtgggaatctaacggtcaaccagagaacaactacaagactactccaccagttttggat
tctgacggttccttcttcttgtactccaagttgactgttgacaagtccagatggaacagggtaacgttttctcctgttccgttatgc
atgaggctttgcacaaccactacactcaaaagtccttgtctttgtccccaggtaagtaa
SEQ ID NO:05(CD20LF1)
aggagtcgtattcaaatcgtcttgtctcaatccccagctattttg
SEQ ID NO:06(CD20LF2)
tctgcttcccctggagagaaggtcaccatgacttgtagagcctct
SEQ ID NO:07(CD20LF3)
tcctctgtctcttacattcactggttccagcaaaagccaggttcc
SEQ ID NO:08(CD20LF4)
tctccaaagccatggatctacgctacttccaacttggcttccggt
SEQ ID NO:09(CD20LF5)
gttccagttagattctctggttctggttccggtacctcctactct
SEQ ID NO:10(CD20LF6)
cttaccatctccagagttgaagccgaggacgctgctacttactac
SEQ ID NO:11(CD20LF7)
tgtcagcaatggacttctaacccaccaactttcggtggtggtacc
SEQ ID NO:12(CD20LF8)
aaattggagattaagagaactgttgctgctccatcc
SEQ ID NO:13(CD20LR1)
caacagttctcttaatctccaatttggtaccaccaccgaaagttg
SEQ ID NO:14(CD20LR2)
gtgggtta gaagtccattgctgacagtagtaagtagcagcgtcct
SEQ ID NO:15(CD20LR3)
cggcttcaactctggagatggtaagagagtaggaggtaccggaac
SEQ ID NO:16(CD20LR4)
agaaccagagaatctaactggaacaccggaagccaagttggaag
SEQ ID NO:17(CD20LR5)
tagcgtagatccatggctttggagaggaacctggcttttgctgga
SEQ ID NO:18(CD20LR6)
ccagtgaatgtaagagacagaggaagaggctctacaagtcatgg
SEQ ID NO:19(CD20LR7)
tgaccttctctccaggggaagcagacaaaatagctggggattgag
SEQ ID NO:20(CD20L/up)
aggagtcgtattcaaatcgtc
SEQ ID NO:21(LfusionRTVAAPS/up)
agaactgttgctgctccatcc
SEQ ID NO:22(LfusionRTVAAPS/lp)
ggatggagcagcaacagttc
SEQ ID NO:23(CD20L/lp)
ctggtaccttaacactctcctctgttgaag
SEQ ID NO:24(CD20HF1)
aggagtcgtattcaagtccagttgca3cagcctggtgccgagttg
SEQ ID NO:25(CD20HF2)
gtcaagccaggtgcttctgttaagatgtcctgtaaggcttctggt
SEQ ID NO:26(CD20HF3)
tacactttcacctcctacaacatgcactgggtcaagcaaactcca
SEQ ID NO:27(CD20HF4)
ggtagaggtttggagtggattggtgccatctacccaggtaacggt
SEQ ID NO:28(CD20HF5)
gacacttcttacaaccaaaaattcaagggaaaggctactcttacc
SEQ ID NO:29(CD20HF6)
gctgataagtcctcttccaccgcctacatgcaattgtcttccttg
SEQ ID NO:30(CD20HF7)
acttctgaagactctgctgtttactactgtgctagatccacctac
SEQ ID NO:31(CD20HF8)
tacggtggagactggtacttcaacgtttggggtgctggtaccact
SEQ ID NO:32(CD20HF9)
gtcaccgtttccgctgcttctactaagggaccatcc
SEQ ID NO:33(CD20HR1)
tagtagaagcagcggaaacggtgacagtggtaccagcaccccaaa
SEQ ID NO:34(CD20HR2)
cgttgaagtaccagtctccaccgtagtaggtggatctagcacag
SEQ ID NO:35(CD20HR3)
agtaaacagcagagtcttcagaagtcaaggaagacaattgcatgt
SEQ ID NO:36(CD20HR4)
aggcggtggaagaggacttatcagcggtaagagtagcctttccct
SEQ ID NO:37(CD20HR5)
tgaatttttggttgtaagaagtgtcaccgttacctgggtagatgg
SEQ ID NO:38(CD20HR6)
caccaatccactccaaacctctacctggagtttgcttgacccagt
SEQ ID NO:39(CD20HR7)
gcatgttgtaggaggtgaaagtgtaaccagaagccttacaggaca
SEQ ID NO:40(CD20HR8)
tcttaacagaagcacctggcttgaccaactcggcaccaggctgtt
SEQ ID NO:41(CD20H/up)
Aggagtcgtattcaagtccag
SEQ ID NO:42(HchainASTKGPs/up)
gcttctactaagggaccatcc
SEQ ID NO:43(HchainASTKGPs/lp)
ggatggtcccttagtagaagc
SEQ ID NO:44(HFckpn1/lp)
ctggtattacttacctggggacaaagac
SEQ ID NO:45(Kar2 signal sequence with  EcoRI)
gaattcgaaacgatgctgtcgttaaaaccatcttggctgactttggcggcattaatgtatgccatgctattggtcgtagtgccat
ttgctaaacctgaagagct
SEQ ID NO:46(P.BiPss/UP1-EcoRI)
aattcgaaacgatgctgtctttgaagccatcttggcttactttggctgctttgatgtacgctatgctttt
SEQ ID NO:47(P.BiPss/LP1)
ccaaagtaagccaagatggcttcaaagacagcatcgtttcg
SEQ ID NO:48(P.BiPss/UP2)
ggttgttgttccatttgctaagccagttagagct
SEQ ID NO:49(P.BiPss/LP2)
agctctaactggcttagcaaatggaacaacaaccaaaagcatagcgtacatcaaagcag
SEQ ID NO:50(GenBank#AF013576)
gatgctgttatgactcaaaacccattgtctttgcctgtttctcttggtgatgaagcttctatttcttgtagatcctctcaatctttgga
aaactctaacggtaacactttcttgaactggttctttcagaagccaggtcaatctccacaattgttgatttacagagtttctaaca
gattttctggtgttccagatagattttctggttctggttctggtactgatttcactttgaagatttctagagttgaagctgaagatttg
ggtgtttacttctgtttgcaagttactcatgttccatacacttttggtggtggtactactttggaaattaagagaactgttgctgctc
catctgtcttcatctttccaccatctgatgaacaattgaagtctggtactgcttctgttgtttgtcttcttaacaacttctacccaaga
gaagctaaggttcagtggaaggttgataacgctttgcaatctggtaactctcaagaatctgttactgaacaagattctaaggat
tctacttactctttgtcttctactttgactttgtctaaggctgattacgaaaagcataaggtttacgcttgtgaagttactcatcaag
gtttgtcttctccagttactaagtcctttaacagaggtgaatgttag
SEQ ID NO:51(GenBank#AF013577)
gatattcaattgcaacaatctggtccaggtttggttaagccatctcaatctttgtctttgacttgttctgttactggttactctattact
actaactacaactggaactggattagacaatttccaggtaacaagttggaatggatgggttacattagatacgatggtacttct
gaatacaccccatcttttgaagaacagagtttctattactagagatacttctatgaaccaattcttcttgagattgacttctgttactc
cagaagatactgctacttactactgtgctagattggattactggggtcaaggtacttctgttactgtttcttctgcttctactaagg
gtccatctgtttttccacttgctccatcttctaagtctacttctggtggtactgctgctttgggttgtttggttaaggattactttccag
aaccagttactgtttcttggaactctggtgctttgacttctggtgttcatacttttccagctgttttgcaatcttctggtttgtactcttt
gtcttctgttgttactgttccatcttcttctttgggtactcaaacttacatttgtaacgttaaccataagccatctaacactaaggttg
ataagagagttgaaccaaaatcttgtgataaaactcatacatgtccaccatgtccagctcctgaacttctgggtggaccatca
gttttcttgttcccaccaaaaccaaaggatacccttatgatttctagaactcctgaagtcacatgtgttgttgttgatgtttctcatg
aagatcctgaagtcaagttcaactggtacgttgatggtgttgaagttcataatgctaagacaaagccaagagaagaacaata
caactctacttacagagttgtctctgttcttactgttctgcatcaagattggctgaatggtaaggaatacaagtgttaaggtctcca
acaaagctcttccagctccaattgagaaaaccatttccaaagctaaaggtcaaccaagagaaccacaagtttacaccttgcc
accatccagagatgaactgactaagaaccaagtctctctgacttgtctggttaaaggtttctatccatctgatattgctgttgaat
gggagtctaatggtcaaccagaaaacaactacaagactactcctcctgttctggattctgatggttccttcttcctttactctaag
cttactgttgataagtccagatggcaacaaggtaacgtcttctcatgttccgttatgcatgaagctttgcataaccattacactca
gaagtctctttccctgtctccaggtaaataa
SEQ ID NO:52 mh285L-1 cggaattc-
gatgctgttatgactcaaaacccattgtctttgcctgtttctcttggtga
tgaagcttctatttcttgtag
SEQ ID NO:53 mh285L-2
agaaccagttcaagaaagtgttaccgttagagttttccaaagattgagaggatctacaagaaatagaagcttcat
SEQ ID NO:54 mh285L-3
actttcttgaactggttctttcagaagccaggtcaatctccacaattgttgatttacagagtttctaacagattt
SEQ ID NO:55 mh285L-4
caaagtgaaatcagtaccagaaccagaaccagaaaatctatctggaacaccagaaaatctgttagaaactctgta
SEQ ID NO:56 mh285L-5
tctggtactgatttcactttgaagatttctagagttgaagctgaagatttgggtgtttacttctgtttgcaagttac
SEQ ID NO:57 mh285L-6
caacagttctcttaatttccaaagtagtaccaccaccaaaagtgtatggaacatgagtaacttgcaaacagaagtaa
SEQ ID NO:58 mh285L-7
tggaaattaagagaactgttgctgctccatctgtcttcatctttccaccatctgatgaacaattgaagtctggta
SEQ ID NO:59 mh285L-8
tgaaccttagcttctcttgggtagaagttgttaagaagacaaacaacagaagcagtaccagacttcaattgttcat
SEQ ID NO:60 mh285L-9
cccaagagaagctaaggttcagtggaaggttgataacgctttgcaatctggtaactctcaagaatctgttactgaa
SEQ ID NO:61 mh285L-10
ccttagacaaagtcaaagtagaagacaaagagtaagtagaatccttagaatcttgttcagtaacagattcttgaga
SEQ ID NO:62 mh285L-11
ctactttgactttgtctaaggctgattacgaaaagcataaggtttacgcttgtgaagttactcatcaaggtttgtc
SEQ ID NO:63 mh285L-12
ggggtaccctaacattcacctctgttaaaggacttagtaactggagaagacaaaccttgatgagtaac
SEQ ID NO:64 mh285H-1
cggaattc-gatattcaattgcaacaatctggtccaggtttggttaagccatctcaatctttgtctttgacttgttctg
SEQ ID NO:65 mh285H-2
ggaaattgtctaatccagttccagttgtagttagtagtaatagagtaaccagtaacagaacaagtcaaagacaaag
SEQ ID NO:66 mh285H-3
aactggattagacaatttccaggtaacaagttggaatggatgggttacattagatacgatggtacttctgaatac
SEQ ID NO:67 mh285H-4
attggttcatagaagtatctctagtaatagaaactctgttcttcaaagatggggtgtattcagaagtaccatcgta
SEQ ID NO:68 mh285H-5
gagatacttctatgaaccaattcttcttgagattgacttctgttactccagaagatactgctacttactactgtgc
SEQ ID NO:69 mh285H-6
agtagaagcagaagaaacagtaacagaagtaccttgaccccagtaatccaatctagcacagtagtaagtagcagta
SEQ ID NO:70 mh285H-7
ctgtttcttctgcttctactaagggtccatctgtttttccacttgctccatcttctaagtctacttctggtggta
SEQ ID NO:71 mh285H-8
gaaacagtaactggttctggaaagtaatccttaaccaaacaacccaaagcagcagtaccaccagaagtagactta
SEQ ID NO:72 mh285H-9
tccagaaccagttactgtttcttggaactctggtgctttgacttctggtgttcatacttttccagctgttttgcaa
SEQ ID NO:73 mh285H-10
ccaaagaagaagatggaacagtaacaacagaagacaaagagtacaaaccagaagattgcaaaacagctggaaaagt
SEQ ID NO:74 mh285H-11
ctgttccatcttcttctttgggtactcaaacttacatttgtaacgttaaccataagccatctaacactaaggttga
SEQ ID NO:75 mh285H-12
tgtatgagttttatcacaagattttggttcaactctcttatcaaccttagtgttagatgg
SEQ ID NO:76 Fc-1
5’gctgaaccaaaatcttgtgataaaactcatacatgtccaccatgtccagctcctgaacttctgggtggaccatcagtttt 3’
SEQ ID NO:77 Fc-2
5’atgtgacttcaggagttctagaaatcataagggtatcctttggttttggtgggaacaagaaaactgatggtccacccaga
3’
SEQ ID NO:78 Fc-3
5’ctagaacccctgaagtcacatgtgttgttgttgatgtttctcatgaagatcctgaagtcaagttcaactggtacgttgat 3’
SEQ ID NO:79 Fc-4
5’taagtagagttgtattgttcttctcttggctttgtcttagcattatgaacttcaacaccatcaacgtaccagttgaactt 3’
SEQ ID NO:80 Fc-5
5’agaacaatacaactctacttacagagttgtctctgttcttactgttctgcatcaagattggctgaatggtaaggaataca 3’
SEQ ID NO:81 Fc-6
5’agctttggaaatggttttctcaattggagctggaagagctttgttggagaccttacacttgtattccttaccattcagcc 3’
SEQ ID NO:82 Fc-7
5’gagaaaaccatttccaaagctaaaggtcaaccaagagaaccacaagtttacaccttgccaccatccagagatgaactga
c3’
SEQ ID NO:83 Fc-8
5’cagcaatatcagatggatagaaacctttaaccagacaagtcagagagacttggttcttagtcagttcatctctggatggt
SEQ ID NO:84 Fc-9
5’tctatccatctgatattgctgttgaatgggagtctaatggtcaaccagaaaacaactacaagactactcctcctgttctg 3’
SEQ ID NO:85 Fc-10
5’tgccatctggacttatcaacagtaagcttagagtaaaggaagaaggaaccatcagaatccagaacaggaggagtagtct
t3’
SEQ ID NO:86 Fc-11
5’tgttgataagtccagatggcaacaaggtaacgtcttctcatgttccgttatgcatgaagctttgcataaccattacactc 3’
SEQ ID NO:87 Fc-12
5’ttatttacctggagacagggaaagagacttctgagtgtaatggttatgcaaag 3’
SEQ ID NO:88 Fc/LP5
5’ggggtaccttatttacctggagacagggaaagagacttct 3’
SEQ ID NO:89(人血清白蛋白,HSA)
atgaagtgggtaacctttatttcccttctttttctctttagctcggcttattccaggggtgtgtttcgtcgagatgcacacaagagt
gaggttgctcatcggtttaaagatttgggagaagaaaatttcaaagccttggtgttgattgcctttgctcagtatcttcagcagt
gtccatttgaagatcatgtaaaattagtgaatgaagtaactgaatttgcaaaaacatgtgttgctgatgagtcagctgaaaattg
tgacaaatcacttcataccctttttggagacaaattatgcacagttgcaactcttcgtgaaacctatggtgaaatggctgactgc
tgtgcaaaacaagaacctgagagaaatgaatgcttcttgcaacacaaagatgacaacccaaacctcccccgattggtgaga
ccagaggttgatgtgatgtgcactgcttttcatgacaatgaagagacatttttgaaaaaatacttatatgaaattgccagaagac
atccttacttttatgccccggaactccttttctttgctaaaaggtataaagctgcttttacagaatgttgccaagctgctgataaag
ctgcctgcctgttgccaaagctcgatgaacttcgggatgaagggaaggcttcgtctgccaaacagagactcaagtgtgcca
gtctccaaaaatttggagaaagagctttcaaagcatgggcagtagctcgcctgagccagagatttcccaaagctgagtttgc
agaagtttccaagttagtgacagatcttaccaaagtccacacggaatgctgccatggagatctgcttgaatgtgctgatgaca
gggcggaccttgccaagtatatctgtgaaaatcaagattcgatctccagtaaactgaaggaatgctgtgaaaaacctctgttg
gaaaaatcccactgcattgccgaagtggaaaatgatgagatgcctgctgacttgccttcattagctgctgattttgttgaaagt
aaggatgtttgcaaaaactatgctgaggcaaaggatgtcttcctgggcatgtttttgtatgaatatgcaagaaggcatcctgat
tactctgtcgtgctgctgctgagacttgccaagacatatgaaaccactctagagaagtgctgtgccgctgcagatcctcatga
atgctatgccaaagtgttcgatgaatttaaacctcttgtggaagagcctcagaatttaatcaaacaaaattgtgagctttttgag
cagcttggagagtacaaattccagaatgcgctattagttcgttacaccaagaaagtaccccaagtgtcaactccaactcttgt
agaggtctcaagaaacctaggaaaagtgggcagcaaatgttgtaaacatcctgaagcaaaaagaatgccctgtgcagaag
SEQ ID NO:90(凝血酶位点)
ctcgagcccggcggcggcggcggccgcctggttcctcgtggcttcggtacc

Claims (24)

1.一种含有多个免疫球蛋白的组合物,每个免疫球蛋白含有至少一个与之相连的N-聚糖,其中所述组合物因而含有多个N-聚糖,其中主要的N-聚糖基本由Man5GlcNAc2组成。
2.权利要求1的组合物,其中超过50摩尔百分比的所述多个N-聚糖基本由Man5GlcNAc2组成。
3.权利要求1的组合物,其中超过75摩尔百分比的所述多个N-聚糖基本由Man5GlcNAc2组成。
4.权利要求1的组合物,其中超过90摩尔百分比的所述多个N-聚糖基本由Man5GlcNAc2组成。
5.权利要求1的组合物,其中所述Man5GlcNAc2N-聚糖以超过所述多个N-聚糖的次最主要的N-聚糖结构大约5摩尔百分比到大约50摩尔百分比的水平存在。
6.权利要求1的组合物,其中所述免疫球蛋白显示出减少的与FcγRIIb受体的结合亲和性。
7.权利要求1的组合物,其中所述免疫球蛋白显示出增加的与FcγRIII受体的结合亲和性。
8.权利要求7的组合物,其中所述FcγRIII受体是FcγRIIIa受体。
9.权利要求7的组合物,其中所述FcγRIII受体是FcγRIIIb受体。
10.权利要求1的组合物,其中所述免疫球蛋白显示出增加的抗体依赖的细胞的细胞毒性(ADCC)活性。
11.权利要求1的组合物,其中所述免疫球蛋白基本不含岩藻糖。
12.权利要求1的组合物,其中所述免疫球蛋白缺少岩藻糖。
13.权利要求1的组合物,其中所述免疫球蛋白与选自下组的抗原结合:生长因子,FGFR,EGFR,VEGF,白细胞抗原,CD20,CD33,细胞因子,TNF-α和TNF-β。
14.权利要求1的组合物,其中所述免疫球蛋白含有选自下组的Fc区域:IgG1,IgG2,IgG3和IgG4区域。
15.含有权利要求1-14任一项的组合物和药学可接受载体的药物组合物。
16.权利要求15的药物组合物,其中所述免疫球蛋白基本不含岩藻糖。
17.权利要求15的组合物,其中所述免疫球蛋白缺少岩藻糖。
18.权利要求15的药物组合物,其中所述免疫球蛋白含有与选自下组的抗原结合的抗体:生长因子,FGFR,EGFR,VEGF,白细胞抗原,CD20,CD33,细胞因子,TNF-α和TNF-β。
19.权利要求15的药物组合物,其中所述免疫球蛋白含有选自下组的Fc区域:IgG1,IgG2,IgG3和IgG4区域。
20.含有权利要求1的组合物的试剂盒。
21.含有编码免疫球蛋白或其片段的外源基因的真核宿主细胞,所述真核宿主细胞被工程化或被选择以表达所述免疫球蛋白或其片段,由此产生含有多个免疫球蛋白的组合物,每个免疫球蛋白含有至少一个与之相连的N-聚糖,其中所述组合物因而含有多个N-聚糖,其中主要的N-聚糖基本由Man5GlcNAc2组成。
22.权利要求21的宿主细胞,其中所述宿主细胞是低等真核宿主细胞。
23.在真核宿主中产生含有多个免疫球蛋白的组合物的方法,每个免疫球蛋白含有至少一个与之相连的N-聚糖,其中所述组合物因而含有多个N-聚糖,其中主要的N-聚糖基本由Man5GlcNAc2组成。
24.权利要求23的方法,其中所述宿主细胞是低等真核宿主细胞。
CN 200580024712 2004-07-21 2005-07-19 主要包含man5glcnac2糖形的免疫球蛋白 Pending CN101001875A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US58992604P 2004-07-21 2004-07-21
US60/589,979 2004-07-21
US60/589,926 2004-07-21

Publications (1)

Publication Number Publication Date
CN101001875A true CN101001875A (zh) 2007-07-18

Family

ID=38693332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200580024712 Pending CN101001875A (zh) 2004-07-21 2005-07-19 主要包含man5glcnac2糖形的免疫球蛋白

Country Status (1)

Country Link
CN (1) CN101001875A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782168A (zh) * 2011-03-12 2014-05-07 动量制药公司 在糖蛋白产品中包含n-乙酰己糖胺的n-聚醣
US9921210B2 (en) 2010-04-07 2018-03-20 Momenta Pharmaceuticals, Inc. High mannose glycans

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9921210B2 (en) 2010-04-07 2018-03-20 Momenta Pharmaceuticals, Inc. High mannose glycans
CN103782168A (zh) * 2011-03-12 2014-05-07 动量制药公司 在糖蛋白产品中包含n-乙酰己糖胺的n-聚醣
US9170249B2 (en) 2011-03-12 2015-10-27 Momenta Pharmaceuticals, Inc. N-acetylhexosamine-containing N-glycans in glycoprotein products
CN103782168B (zh) * 2011-03-12 2016-03-16 动量制药公司 在糖蛋白产品中包含n-乙酰己糖胺的n-聚醣
US9890410B2 (en) 2011-03-12 2018-02-13 Momenta Pharmaceuticals, Inc. N-acetylhexosamine-containing N-glycans in glycoprotein products

Similar Documents

Publication Publication Date Title
US20060024304A1 (en) Immunoglobulins comprising predominantly a Man5GlcNAc2 glycoform
US20060029604A1 (en) Immunoglobulins comprising predominantly a GlcNAc2Man3GlcNAc2 glycoform
US20090162377A1 (en) Immunoglobulins comprising predominantly a Gal2GlcNAc2Man3GlcNAc2 glycoform
US20060034830A1 (en) Immunoglobulins comprising predominantly a GalGlcNAcMan5GLcNAc2 glycoform
US20100184143A1 (en) Immunoglobulins comprising predominantly a Man3GlcNAc2 glycoform
US20090136525A1 (en) Immunoglobulins Comprising Predominantly a Glcnacman3Glcnac2 Glycoform
US20060034828A1 (en) Immunoglobulins comprising predominantly a GlcNAcMAN5GLCNAC2 glycoform
WO2006014679A1 (en) Immunoglobulins comprising predominantly a glcnac2man3glcnac2 glycoform
JP2008515772A (ja) Gal2GlcNAc2Man3GlcNAc2グリコフォームを支配的に含む免疫グロブリン
JP2008512354A (ja) Man3GlcNAc2グリコフォームを支配的に含む免疫グロブリン
US20090226464A1 (en) Immunoglobulins comprising predominantly a glcnacman3glcnac2 glycoform
WO2006071280A1 (en) Immunoglobulins comprising predominantly a ga1g1cnacman5glcnac2 glycoform
JP2008512355A (ja) GlcNAcMan5Man3GlcNAc2グリコフォームを支配的に含む免疫グロブリン
WO2006014726A2 (en) Immunoglobulins comprising predominantly a man5glcnac2 glycoform
CN101001875A (zh) 主要包含man5glcnac2糖形的免疫球蛋白
CN1989154A (zh) 包含占优势的gal2glcnac2man3glcnac2糖形的免疫球蛋白
CN101001876A (zh) 包含占优势的GlcNacMAN5GLCNAC2糖形的免疫球蛋白
CN101087806A (zh) 主要含有GalGlcNAcMan5GLcNAc2糖形的免疫球蛋白
CN101257922A (zh) 主要包含Man7GlcNAc2、Man8GlcNAc2糖形式的免疫球蛋白

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070718