CN1007015B - 检测和测量气体的方法和仪器 - Google Patents

检测和测量气体的方法和仪器

Info

Publication number
CN1007015B
CN1007015B CN86101760A CN86101760A CN1007015B CN 1007015 B CN1007015 B CN 1007015B CN 86101760 A CN86101760 A CN 86101760A CN 86101760 A CN86101760 A CN 86101760A CN 1007015 B CN1007015 B CN 1007015B
Authority
CN
China
Prior art keywords
sound
light
crystal
chamber
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN86101760A
Other languages
English (en)
Other versions
CN86101760A (zh
Inventor
弗里德里克·默克·里安
多纳尔德·威廉姆·费尔德曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of CN86101760A publication Critical patent/CN86101760A/zh
Publication of CN1007015B publication Critical patent/CN1007015B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/1256Generating the spectrum; Monochromators using acousto-optic tunable filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1704Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in gases

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

检测气体样品中所选定的一种物质的仪器,包括一个光——声检测器,它与带有声——光可调滤光器的红外线辐射源相连接,该可调滤光器设置在红外辐射源与光——声检测器之间。该仪器用于测量受控气体的浓度,其浓度在百万分率的范围内,测量可在几秒钟内完成。

Description

本发明是关于气体检测的装置,具体地说,是指检测和测定低浓度气体的仪器和方法。
用于分析工业过程的各种不同反应产物的分析设备存在一个巨大的和日益增长的需求量。当应用于检测有毒气体时,必需测定那些感兴趣的物质的很低的浓度,一般可低到百万分率。气体浓度的通常测定方法是将周围空气的样品送入光导管,并在特定的红外线波长测量感兴趣的特定分子的吸收量。由于该分子的浓度可能相当低,故所要测定的红外线的吸收量也很低。为了增大吸收量,一般都使用很长的长程光导管,采用镜间多次反射法,有效光程长度可长到20米。该法的缺点是多程光导管昂贵、体积大和沉重。因此它不适合于应用此类设备所希望的轻便可携的要求,以期符合美国职业安全及卫生管理局(OSHA)关于车间内气体允许浓度规定中的要求。
用于气体测定的这种光导管只有这一种在市场上可以买到。用这种光导管必需首先注满经过滤的空气,以制定“基准”吸收,然后抽空,再注入周围的空气,对吸收进行二次测定,并把两次测定的吸收值进行比较以确定感兴趣的气体的吸收。这种程序显然是很费时间的,在多次测定之间由于电子的漂移很容易产生误差。如果要测定的气体浓度很低,两次测定之间理论上的差别也是很小的。为了产生一个小的差值信号必须把两个大的光辐射值相减,任何大的红外线辐射值中的漂移将掩盖真实的吸收值。
应用目前市售仪器的方法中另一个缺点是要用干涉滤色盘将红外线光源调谐至用于吸收测量的适当波长,尽管干涉滤色盘能达到这种 测定所需的红外的高能量通过量,但在红外特定波长上取得的分辨力极低,这就导致了各种气体的干涉吸收,进而引起了测量误差。
根据本发明用于检测一个气体样品中某一选定物质的仪器包括:一个光-声检测器,该检测器包括用于限定密封室的器壁,密封室带有阀门,它与器壁相连,以使气体样品进入和排出该室,用于检测所述室内声激波的装置,密封室的相对侧面上开有窗口,可使红外射线通过;一个与光-声检测器相连的红外线辐射源,在红外辐射源内有一束窄频带的脉冲红外辐射线直接通过该室,与室内的气体样品相互作用,当存在所选定的气体时便在密封室内产生一个脉冲声激波;一个声-光可调滤光器,置于光-声检测器及红外线辐射源装置之间,它包括光调节的声-光晶体,红外射线从其中通过,与可变频能源及声-光晶体相连的声传感器,在晶体内发射声波,以便与红外线辐射所选定的窄频带部分相互作用,使这一部分与其余的红外辐射线相互区分,该窄频带部分是射频能量和发射到上述晶体的声波频率的函数。
本发明的一个目的是为检测和测量极低浓度气态物质而提供一种改进的仪器,并为检测和测量气态物质提供一种方法。
本发明的另一个目的是提供一种紧凑的、便携式的气体检测和测量设备,以符合美国职业安全及卫生管理局关于有毒物质测量的规定。
极方便的是,密封室壁包括检测室内声激波的装置,在密闭室的相对侧面开有窗口,红外线可从中通过。红外辐射源与光-声检测器相连,提供通过该室的红外射线。声-光可调滤光器(AOTF)置于光-声检测器和红外辐射源之间。声-光可调滤光器包括一个光调节的声-光晶体,红外射线以相对于晶体光轴成一预定的角度通过该晶体。声传感器与可变频能量源及声-光晶体相连,以便向 晶体内发射声波,使之与一个选定的红外线窄频带部分相互作用。声波与红外射线的相互作用可使选定的窄频带部分与其它的红外射线相互区分。窄的频带部分是射率能量的频率和声波的函数。所选定的红外射线窄频带部分直接通过密封室的窗口,与该室内的气体样品相互作用,在密封室内有这种预定的气体时这种相互作用便产生了声激波。
以下用实例叙述本项发明,可参见气体检测器的一个实施方案的简要示意图。
本发明的气体检测仪器包括一个声-光可调的滤光器(AOTF),一个光-声(PA)检测管。声-光可调的滤光器是由适当的材料制成的,如砷硒化铊,其功能是高分辨力的红外选择过滤的高通量源。美国专利4052121的说明中揭示了声-光可调滤光器内的一种非共线构造。美国专利申请序号345123的说明中叙述了一种系统,其中的一个窄频带通可调声-光滤光器可用预先确定的射频信号选择性地调谐,以使有选择地发送我们感兴趣的对应于特定种类分子的窄频带,以便于鉴别和分析。所叙述的这种系统包括一台有存储功能的微型计算机,以测量和比较来自红外检测器的检测信号,该检测器已将滤过的红外信号转换成电信号。存储器提供用于计算机和用于控制加给调谐滤光器射频能量的顺序和频率的控制信号。用这种方法,靠近中部范围的红外线可用于分析对应于预定种类分子的吸收频带,并且产生的反馈信号可控制燃烧过程等。在本发明中,采用的声-光可调滤光器可使滤光器快速地进行电子调谐,借助于同通过晶体的红外射线的声-光相互作用,调谐到选择的红外线通频带。
光-声(PA)检测器是一种测量痕量气体吸收的较新设备。它们应用在红外区光能可以被分子振荡的激励所吸收的事实,把光能快速 地转换成热,以后转换成介质中的压力波。因此,如果把红外源调制在既定的频率上,压力波就会形成该频率的声波,并可以用声传感器如传声器检测。所产生的信号与所吸收的能量成正比例。如果吸收介质是气体,吸收的物质浓度很低,所产生的声能将与吸收的物质浓度及入射的红外线光强度成正比例。申请者申明,利用声-光可调滤光器调谐光源时,物质种类可用其特征的红外线吸收波长来识别。因此,可把光-声检测器以及红外线可调光源用于鉴别和测量在一种背景气体(例如空气)中任意多种不同气体的浓度。
光-声检测器可有多种,对于气体检测可把介质装在有窗口的密封室内,窗口是为红外线入射开的,器壁上有一些声检测器,可检测吸收的能量。
为了增加灵敏度,密封室应在红外线源调制频率上能产生声音共呜。West等人所著题为“光-声光谱学”的文章中对光-声光谱学进行了很好的讨论,载于《科学检测设备》,1983年7月,54卷(第7期)。其内容这里作为参考文献的形式进行了全面的阐述。采用光-声检测与许多常用的吸收法检测相比具有一些明显的优点。检测部件是一个传声器,因此不需要昂贵的红外检测器。所产生的信号与物质的浓度成比例。因此,不需要检测大的信号中的小变化,就像在本文的背景部分中阐述的通常的光吸收技术那样。光-声检测器装置紧凑、重量轻,因此适于便携式仪器。
声-光可调滤光器及光-声检测器同宽频带红外线辐射源结合在一起使用。最好的红外线辐射源为能斯脱(Nernst)发光体,它提供该系统中所用的宽频带红外辐射,或者是碳化硅炽热棒。红外区声-光可调滤光器的高能量通量及波长分辨力在文献中已进行了叙述,可在Steinbuegge等人所著的“自动声-光可调滤光器 红外分析仪”一文中见到,该文载于SPIE,1981年第268卷第160页上。其内容作为参考文献的形式在此引用。
现在谈及这张图,用参考符号1来表示根据本发明的与光-声检测器结合在一起的声-光可调滤光器。该系统的主要部件包括红外线辐射源3、声-光可调滤光器5、光-声检测取样器7及数据整理和控制装置9。如上所述,红外线辐射源3最好是一个宽频带红外线辐射源,如能斯脱发光体。声-光可调滤光器,它是在红外线辐射源3和光-声检测器7之间进行光学照准的,它包括一个光学输入屏11,一个光学输出屏13和一个传感器15。传感器置于声-光滤光器的一侧,构成一个非线性滤光器。传感器15连接一个可变频辐射源,它包括在数据整理和控制设备9中。
光-声检测器7包括器壁17,限定出带有阀门21和23的密封室19,此两阀门与器壁17结合在一起,使气体样品能从阀门导入室19,并能从室19排出。密封室壁17包括在密封室19内的用于检测声激波的装置25,和置于室19相对两侧的窗口装置27和29,红外线可从此通过。检测设备25与数据整理和控制设备9保持电讯联系以进行数据处理。
如前所述,声-光可调滤光器与光-声检测器结合在一起,它的设立和工作是作为痕量气体检测装置。红外线光源为一个细的缠绕的镍铬电热丝,工作温度为1200℃,带有一个抛物面镜,它可聚焦红外线进入声-光可调滤光器,声-光可调滤光器的有用波长调谐范围是1.5-1.6微米。来自滤光器的窄频带光通过红外线可以透过的窗口进入光-声管。装置传声器以消除外部振动,并减少背景噪声。在此实施方案的光-声室在4KHZ时产生共呜,声-光可调滤光器在此相同的频率上产生脉冲。控制系统可以是一个扫描 波长范围的装置,以便获得一个完整的吸收,也可以为一个跃迁到选择波长的装置,以测量预先确定的那种气体浓度。对该系统曾用甲烷和苯进行了性能试验,其结果与理论上的性能是一致的。这里简述和图示的装置能够测量美国职业安全及卫生管理局规定的浓度为百万分率范围的气体浓度。这些测量可在几秒钟内完成,与之相比较,使用传统的吸收痕量气体分析仪则要费时5至10分钟。
上述的仪器是以下装置的组合体:宽频带红外线光源、能选择地使一定波长的红外线通过的声-光滤光器及光-声检测器,它们结合形成了一种新颖的检测和测定低浓度气体的仪器。

Claims (2)

1、一种用于检测气体样品中一种选定物质的仪器,它包括:检测器装置,该检测器装置包括用于限定一个密封室的器壁,密封室设有与器壁很好结合的阀门,该阀门可使气体样品进出该室,在该室内用于检测声激波的装置,密封室的相对两侧面的窗口可以使红外线通过,所述密封室在4KHZ产生共鸣;红外线辐射源装置,与所述光--声检测器装置很好地联结,在光--声检测器中,红外线的一个窄频带部分直接通过所述室,与所述室内的气体样品相互作用,在该室内存在选择的气态物质时产生一个声激波;以及一个声--光可调滤光器,它置于所述光--声检测器和红外线辐射源之间,该滤光器包含一个光学照准的声--光晶体,红外线通过该晶体,一个声传感器同4KHZ脉冲调制的可变频能源和声--光晶体相连接,用于将所述声--光可调滤光器对准到选择的频率,产生4KHZ脉冲,该声传感器向晶体内发射声波,以便与红外线中选定的窄带部分相互作用,使上述部分与其余的红外线部分相互区分,窄带部分是射频能量的频率和发射到该晶体的声波的函数,其中在所述密封室中的声激波是4KHZ的脉冲激波。
2、从周围环境中取出的气体样品里的选定物质的检测方法包括的步骤有:将气体样品注入光-声检测器装置,该检测器装置包括有限定密封室的器壁,密封室带有与器壁结合的阀门,该阀门可使气体样品进入和排出该室,有检测该室内声激波的装置,在该室相对的两侧面开有窗口,用于通过红外线辐射,所述密封室在4KHz产生共鸣;把提供的红外线辐射源与所述的光-声检测器连接,在该检测器中,红外线的一个窄带部分直接通过该室,与所述室中的气体样品相互作用,当气体样品中存在所选的那种物质时,在该室内便产生声激波;将声-光可调滤光器置于所述光-声检测器和红外线辐射源之间,所述声-光可调滤光器包含有一个光学照准的声-光晶体,红外线从该晶体通过,一个声传感器与4KHz可变频脉冲能量源和在其内发射声波的声-光晶体相连;用于将所述声-光可调滤光器对准到选择的频率,产生4KHz脉冲,该声传感器向晶体内发射声波,以便与所选的红外线的窄带部分相互作用,使这一部分与红外线的其余部分相互区分,该窄带部分是射频能量的频率和发射到所述晶体内声波的函数,其中在所述密封室中的声激波是4KHz的脉冲激波。
CN86101760A 1985-03-21 1986-03-19 检测和测量气体的方法和仪器 Expired CN1007015B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US714582 1985-03-21
US714,582 1985-03-21
US06/714,582 US4622845A (en) 1985-03-21 1985-03-21 Method and apparatus for the detection and measurement of gases

Publications (2)

Publication Number Publication Date
CN86101760A CN86101760A (zh) 1986-10-01
CN1007015B true CN1007015B (zh) 1990-02-28

Family

ID=24870626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN86101760A Expired CN1007015B (zh) 1985-03-21 1986-03-19 检测和测量气体的方法和仪器

Country Status (5)

Country Link
US (1) US4622845A (zh)
EP (1) EP0195685A3 (zh)
JP (1) JPS61258147A (zh)
CN (1) CN1007015B (zh)
CA (1) CA1254281A (zh)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO880891L (no) * 1987-03-03 1988-09-05 Elizabeth May Dowling Fremgangsmaate og apparat for maaling eller deteksjon av konsentrasjonen av en substans.
US4866681A (en) * 1988-03-09 1989-09-12 Mine Safety Appliances Company Photo-acoustic detector
US4940316A (en) * 1988-05-13 1990-07-10 Westinghouse Electric Corp. Apparatus and method for increasing the efficiency of an acousto optic diffractive device
DK160590C (da) * 1988-09-12 1991-09-16 Fls Airloq As Fremgangsmaade til detektering af en gasart ved hjaelp af fotoakustisk spektroskopi
US5129255A (en) * 1989-10-06 1992-07-14 The Aerospace Corporation Photoacoustic detection and tracking apparatus
US5069551A (en) * 1989-11-24 1991-12-03 Iowa State University Research Foundation, Inc. Method and apparatus of measuring unburned carbon in fly ash
US5167149A (en) * 1990-08-28 1992-12-01 Schlumberger Technology Corporation Apparatus and method for detecting the presence of gas in a borehole flow stream
US5201220A (en) * 1990-08-28 1993-04-13 Schlumberger Technology Corp. Apparatus and method for detecting the presence of gas in a borehole flow stream
DE4119461A1 (de) * 1991-06-13 1992-12-17 Hartmann & Braun Ag Abstimmbares optisches filter
US5216484A (en) * 1991-12-09 1993-06-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Real-time imaging spectrometer
US5541413A (en) * 1992-04-24 1996-07-30 Thiokol Corporation Acousto-optic tunable filter-based surface scanning system and process
US5406082A (en) * 1992-04-24 1995-04-11 Thiokol Corporation Surface inspection and characterization system and process
GB2271181A (en) * 1992-09-30 1994-04-06 Marconi Gec Ltd Photoacoustic Gas Analyser.
US5576480A (en) * 1992-11-06 1996-11-19 Pall Corporation System and method for testing the integrity of porous elements
US5373160A (en) * 1993-05-04 1994-12-13 Westinghouse Electric Corporation Remote hazardous air pullutants monitor
EP0640822B1 (en) * 1993-08-30 1998-04-22 Millipore Investment Holdings Limited Integrity test for porous structures using acoustic emission
DE69431873T2 (de) * 1994-06-04 2003-11-13 Orbisphere Lab Photoakustisches Analysegerät
US5596146A (en) * 1994-06-06 1997-01-21 Iowa State University Research Foundation, Inc. Photoacoustic measurement of unburned carbon in fly-ash
US5444528A (en) * 1994-07-27 1995-08-22 The Titan Corporation Tunable spectrometer with acousto-optical tunable filter
US5483088A (en) * 1994-08-12 1996-01-09 S.R.I. International Compounds and infrared devices including In1-x Tlx Q, where Q is As1-y Py and 0≦y≦1
NO300078B1 (no) * 1995-02-10 1997-04-01 Sinvent As Fotoakustisk gassdetektor
US5900533A (en) * 1995-08-03 1999-05-04 Trw Inc. System and method for isotope ratio analysis and gas detection by photoacoustics
US5780724A (en) * 1997-03-27 1998-07-14 United Technologies Corp Photo-acoustic leak detector with improved signal-to-noise response
US5869749A (en) * 1997-04-30 1999-02-09 Honeywell Inc. Micromachined integrated opto-flow gas/liquid sensor
US6089076A (en) * 1998-09-18 2000-07-18 United Technologies Corporation System to control the power of a beam
US6154307A (en) 1998-09-18 2000-11-28 United Technologies Corporation Method and apparatus to diffract multiple beams
US6227036B1 (en) 1998-10-28 2001-05-08 The Regents Of The University Of Michigan Multiple microphone photoacoustic leak detection and localization system and method
JP2000241782A (ja) * 1999-02-19 2000-09-08 Fujitsu Ltd 可変波長選択フィルタおよび分岐・挿入装置
US7034943B1 (en) * 2000-03-03 2006-04-25 Aritron Intrumente AG Gas sensors
WO2002066966A1 (en) * 2001-01-08 2002-08-29 California Analytical Instruments, Inc. Method and apparatus for the determination of total sulfur in a gas
DE10112579C2 (de) * 2001-03-15 2003-02-13 Siemens Ag Infrarot-Gasanalysator
US6565352B2 (en) 2001-04-09 2003-05-20 Ken E. Nielsen Smoke density monitor
KR100419094B1 (ko) * 2001-06-28 2004-02-19 (주)나노믹스 기체 식별기
US6975402B2 (en) * 2002-11-19 2005-12-13 Sandia National Laboratories Tunable light source for use in photoacoustic spectrometers
FR2852155B1 (fr) * 2003-03-03 2006-08-25 Fastlite Procede et dispositif pour le controle de l'amplitude du spectre en longueurs d'ondes des impulsions lumineuses ultra breves emises par les amplificateurs laser a passages multiples
WO2005001409A2 (en) * 2003-06-11 2005-01-06 Furry Brothers, Llc Infrared imaging of chemical leaks
US7151787B2 (en) * 2003-09-10 2006-12-19 Sandia National Laboratories Backscatter absorption gas imaging systems and light sources therefore
EP1517184A1 (en) * 2003-09-18 2005-03-23 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7375814B2 (en) * 2005-03-11 2008-05-20 Sandia Corporation Natural gas leak mapper
US9274949B2 (en) * 2007-08-27 2016-03-01 International Business Machines Corporation Tracking data updates during memory migration
GB2471048B (en) * 2008-04-09 2012-05-30 Halliburton Energy Serv Inc Apparatus and method for analysis of a fluid sample
WO2011078835A1 (en) 2009-12-22 2011-06-30 Ima Life North America Inc. Monitoring freeze drying with gas measurement on vaccum pump exhaust
US8695402B2 (en) * 2010-06-03 2014-04-15 Honeywell International Inc. Integrated IR source and acoustic detector for photoacoustic gas sensor
EP2633278A4 (en) * 2010-10-28 2014-05-28 Empire Technology Dev Llc PHOTO-ACOUSTIC SENSOR
US8848191B2 (en) 2012-03-14 2014-09-30 Honeywell International Inc. Photoacoustic sensor with mirror
EP2770319B2 (de) 2013-02-25 2022-01-26 Sick Ag Gasmessgerät
CN104101578B (zh) * 2014-06-23 2016-07-27 中国电子科技集团公司第四十八研究所 一种用于气液两相流测量装置的红外检测电路
DE102015106373B4 (de) * 2015-04-24 2023-03-02 Infineon Technologies Ag Photoakustisches gassensormodul mit lichtemittereinheit und einer detektoreinheit
US10352910B2 (en) * 2016-08-31 2019-07-16 Infineon Technologies Ag Gas analyzer
US10466174B2 (en) * 2016-12-13 2019-11-05 Infineon Technologies Ag Gas analyzer including a radiation source comprising a black-body radiator with at least one through-hole and a collimator
CN107328716B (zh) * 2017-06-09 2020-02-07 青岛大学附属医院 一种医用气体探测器的非线性修正方法
EP3508836B1 (en) 2018-01-05 2020-07-29 Infineon Technologies AG Photoacoustic system and method for estimating a gas concentration
CN110763339B (zh) * 2018-07-25 2020-09-29 中国科学院西安光学精密机械研究所 一种双滤波能量反馈型高光谱成像偏振探测装置
CN109211825B (zh) * 2018-10-10 2021-07-23 吉林大学 一种采用声光效应准直光路的水中溶解气红外检测装置及方法
US11624704B2 (en) 2020-05-27 2023-04-11 Utah State University Filter incidence narrow-band infrared spectrometer
JP7467317B2 (ja) 2020-11-12 2024-04-15 株式会社東芝 音響検査装置及び音響検査方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948345A (en) * 1973-06-15 1976-04-06 Allan Rosencwaig Methods and means for analyzing substances
JPS5764145A (en) * 1980-10-07 1982-04-19 Toyo Soda Mfg Co Ltd Flow type optoacoustic detector
DE3279158D1 (de) * 1981-02-25 1988-12-01 Oskar Oehler Gas analyser, particularly audiovisual gas detector
US4490845A (en) * 1982-02-02 1984-12-25 Westinghouse Electric Corp. Automated acousto-optic infrared analyzer system

Also Published As

Publication number Publication date
CA1254281A (en) 1989-05-16
EP0195685A2 (en) 1986-09-24
JPS61258147A (ja) 1986-11-15
US4622845A (en) 1986-11-18
EP0195685A3 (en) 1988-04-06
CN86101760A (zh) 1986-10-01

Similar Documents

Publication Publication Date Title
CN1007015B (zh) 检测和测量气体的方法和仪器
US5900533A (en) System and method for isotope ratio analysis and gas detection by photoacoustics
US4736103A (en) Spectrometer test gas chamber
US7170607B2 (en) Gas identification device
JPH0231820B2 (zh)
US3832548A (en) Gas detector unit
US5826214A (en) Hand-held probe for real-time analysis of trace pollutants in atmosphere and on surfaces
WO2017040848A1 (en) Method and apparatus for the spectroscopic detection of low concentrations of hydrogen sulfide gas
US20040206906A1 (en) Compensated infrared absorption sensor for carbon dioxide and other infrared absorbing gases
US4234258A (en) Stark cell optoacoustic detection of constituent gases in sample
CN101539017A (zh) 利用太赫兹辐射的油-水-气分析设备和方法
US3899252A (en) Ndir gas analyzer based on absorption modulation ratios for known and unknown samples
US3781910A (en) Infrared absorption analysis method and apparatus for determining gas concentration
US3953734A (en) Nulling device for detection of trace gases by NDIR absorption
US3091690A (en) Two path infrared gas analyzer having one enclosed path
CN108603844B (zh) 用于量化光学干扰气体杂质的量的方法
CN1016465B (zh) 混合气体中气体的光谱定量分析方法和仪器
US3811778A (en) Isotope-shift zeeman effect spectrometer
US3851176A (en) Plural gas non-dispersive infrared analyzer
US3413482A (en) Atomic absorption spectrophotometry
US3920993A (en) Piggyback optical bench
Xiao et al. Application of computerized differentiation technique to remote-sensing Fourier transform infrared spectrometry for analysis of toxic vapors
Sebacher Airborne nondispersive infrared monitor for atmospheric trace gases
Ageev et al. Laser photoacoustic spectroscopy of biosystems gas exchange with the atmosphere
Buijs et al. Evolution of FTIR technology as applied to chemical detection and quantification

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Address after: California, USA

Applicant after: Rosemont analytical equipment

Address before: Pennsylvania, USA

Applicant before: Westinghouse Electric Corp.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: WESTINGHOUSE ELECTRIC CORPORPORATION TO: ROSEMOUNT ANALYTICAL EQUIPMENT COMPANY

C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee