CN100575486C - 一种提高水稻对矮缩病毒抗性的方法 - Google Patents

一种提高水稻对矮缩病毒抗性的方法 Download PDF

Info

Publication number
CN100575486C
CN100575486C CN200510114386A CN200510114386A CN100575486C CN 100575486 C CN100575486 C CN 100575486C CN 200510114386 A CN200510114386 A CN 200510114386A CN 200510114386 A CN200510114386 A CN 200510114386A CN 100575486 C CN100575486 C CN 100575486C
Authority
CN
China
Prior art keywords
rdv
gene
plant
rice
paddy rice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200510114386A
Other languages
English (en)
Other versions
CN1955287A (zh
Inventor
李毅
朱士锋
魏春红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN200510114386A priority Critical patent/CN100575486C/zh
Publication of CN1955287A publication Critical patent/CN1955287A/zh
Application granted granted Critical
Publication of CN100575486C publication Critical patent/CN100575486C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种提高水稻对矮缩病毒抗性的方法。该方法是将水稻矮缩病毒的S2基因(RDV-S2)的干扰RNA的编码基因导入水稻细胞或组织,得到对矮缩病毒抗性提高的水稻。本发明利用RNA干扰技术抑制RDV感染水稻植株中RDV-S2基因的表达,使得内根-贝壳杉烯氧化酶赤霉素能够发挥正常功能,赤霉素水平恢复正常,从而使得RDV感染植株的矮化等症状消失,恢复正常生长。本发明在RDV的防治领域具有广阔的应用前景,同时对研究植物呼肠孤病毒属其它成员的致病机制也具有借鉴作用。

Description

一种提高水稻对矮缩病毒抗性的方法
技术领域
本发明涉及一种提高水稻对矮缩病毒抗性的方法。
背景技术
水稻矮缩病毒(Rice dwarf virus,RDV)属呼肠孤病毒科(Reoviridae)植物呼肠孤病毒属(Phytoreovirus)。RDV病毒粒子为直径约70纳米的二十面体,其基因组由十二条双链RNA组成,研究人员将它们依照dsRNA在聚丙烯酰胺凝胶电泳中的迁移率,由慢到快,依次命名为S1到S12。RDV编码至少七种结构蛋白和五种非结构蛋白。七种结构蛋白包括P1,P2,P3,P5,P7,P8,P9,分别由S1,S2,S3,S5,S7,S8,S9编码。五种非结构蛋白包括P4,P6,P10,P11,P12,由S4,S6,S10,S11,S12编码。其中P2,P8组成病毒粒子外壳,是RDV的外壳蛋白。RDV可以在它的宿主植物水稻和介体昆虫(两点黑尾叶蝉和电光叶蝉)中繁殖,并由介体传播到宿主植物上。RDV可以系统地侵染水稻,是造成东亚(包括中国和日本)水稻病毒病的主要病毒之一。感染RDV的水稻植株矮缩僵硬,色泽浓绿,分蘖增多,叶片出现白斑,不能抽穗或出现包茎穗、半包穗、穗小瘪谷多等症状,常造成水稻大面积减产。因此研究RDV的致病机理具有重要的理论和实践意义。
RDV-S2在RDV昆虫媒介叶蝉中的功能已经有较多的研究,研究表明RDV-P2蛋白在RDV侵染昆虫细胞时参与RDV粒子对细胞的吸附,失去P2蛋白,RDV粒子则不能进入昆虫细胞进行复制,从而不能传播到水稻上(Yan et al.,P2 protein encoded by genomesegment S2 of rice dwarf phytoreovirus is essential for virus infection,Virology,224:539-541,1996;Tomaru et al.,The loss of outer capsid proteinP2 results in nontransmissibility by the insect vector of rice dwarfphytoreovirus,Journal of Virology,71:8019-8023,1997;Omura et al.,TheP2 protein of rice dwarf phytoreovirus is required for adsorption of the virusto cells of the insect vector,Journal of Virology,72:9370-9373,1998)。一般认为,病毒的外壳蛋白通常会有多种功能(Cailaway et al.,The multifunctionalcapsid proteins of plant RNA viruses,Annu Rev Phytopathol,39:419-460,2001),然而关于RDV-P2在水稻中的功能研究较少。由于RDV感染水稻中P2蛋白大量存在(Suzuki et al.,Immunodetection of rice dwarf phytoreoviral proteins inboth insect and plant hosts,Virology,202:41-48,1994),因此P2蛋白在水稻中可能存在其它功能。
RDV传播缺陷株(transmission-defective,TD)因基因突变而没有P2蛋白表达,致使它不能感染昆虫介体,它所感染的水稻植株中病毒粒子的浓度明显低于RDV野生型(transmission-competent,TC)所感染水稻植株中病毒粒子的浓度(Tomaru et al.,The loss of outer capsid protein P2 results in nontransmissibility by theinsect vector of rice dwarf phytoreovirus,Journal of Virology,71:8019-8023,1997)。另外,RDV(TD)感染水稻植株的高度明显高于RDV(TC)感染水稻植株(Tomaruet al.,The loss of outer capsid protein P2 results in nontransmissibilityby the insect vector of rice dwarf phytoreovirus,Journal of Virology,71:8019-8023,1997;Dr.T.Omura,personal communication)。上述研究结果表明,P2蛋白在水稻中的功能可能与RDV感染后水稻的矮化有关,但是其中的分子机制还未研究。
酵母双杂交技术是研究蛋白与蛋白之间相互作用的非常有效的工具,蛋白间相互作用的研究对于认识某一蛋白的功能具有重要意义(Chien et al.,The two-hybridsystem:a method to identify and clone genes for proteins that interact witha protein of interest,Proc Natl Acad Sci USA,88:9578-9582,1991;Luban andGoff,The yeast two-hybrid system for studying protein-protein interactions,Curr.Opin Biotechnol,6:59-64,1995;Causier and Davies,Analysingprotein-protein interactions with the yeast two-hybrid system,Plant Mol Biol,50:855-870,2002)。
虽然酵母双杂交技术容易操作、灵敏度高,但会出现假阳性,因此在检测蛋白质相互作用时,酵母双杂交的阳性结果一般都要用其它方法加以验证(Causier andDavies,Analysing protein-protein interactions with the yeast two-hybridsystem,Plant Mol Biol,50:855-870,2002)。免疫共沉淀实验是检测蛋白之间相互作用的另一种非常有效的方法,它是将真核细胞的表达和免疫反应相结合进行的一种检测方法,免疫共沉淀操作虽然比较复杂,但反应特异高。
RNA干扰技术(RNA interference,简称RNAi)是在双链RNA(ds RNA)分子的介导下特异性降解靶基因的生物技术,能使基因表达沉默,达到拮抗靶基因和实现生物(基因)治疗目的。将双链RNA降解成长度为21-25nt的小干扰RNA片段(siRNA,smallinterfering RNA),这些小片段会进一步介导与其同源的单链RNA降解。
赤霉素(gibberellins,Gas)是一类四环二萜羧酸。至2000年底,在植物和真菌中已有127种不同结构的赤霉素得以鉴定)(Silverstone and Sun,Gibberellinsand green revolution.,Trends in Plant Science,5:1-2,2000)。其中只有少数赤霉素具有生物活性,能作用于高等植物的整个生命周期,影响种子的萌发、茎的伸长、花的诱导和种子的形成。植物也可通过调节内源性赤霉素生物合成而介导其自身对环境因子的应答(Hooley,″Gibberellin:perception,transduction andresponses.″Plant Mol Biol,26:1529-1555,1994;García-Martínez and Hedden,Gibberellins in fruit development.In:FA Tomás-Barberán,RJ Robins,eds,Phytochemistry of fruits and vegetables,Clarendon Press,Oxford,pp 263-285,1997;Ross et al.,″Gibberellin mutants.″Physiol.Plantarum,100:550-560,1997)。因此,赤霉素生物合成的调控对植物的发育及其对环境的适应有着极为重要的作用(Hedden and Kamiya,Gibberellin biosynthesis:enzymes,genes and theirregulation,Anuu.Rev.Plant Physiol.Plant Mol Biol,48:431-460,1997)。赤霉素最初是在感染恶苗病的水稻叶片中发现的,其对水稻叶片、叶鞘和节间的伸长有明显的促进作用。对水稻的矮化突变体中赤霉素含量的分析结果表明,在水稻营养组织中起主要作用的赤霉素是GA1(Kobayashi et al.,Quantitative analysis ofendogenous gibberellins in normal and dwarf cultivars of rice,Plant CellPhysiol,30:963-969,1989)。赤霉酸(gibberellic acid,GA3)现已作为最常用的外源激素诱导水稻节间的伸长,它具有很强的生理活性,虽然在许多高等植物如玉米、大麦等中被发现,但是在水稻中尚未发现它的存在(Kobayashi et al.,Themetabolism of gibberellin A20 to gibberellin A1 by tall and dwarf mutants ofOryza sativa and Arabidopsis thaliana,Plant Physiol.,106:1367-1372,1994)。
免疫测定是利用抗原、抗体特异性反应而建立的,根据可视化方法的不同可分为:酶联免疫、放射免疫、荧光免疫、化学发光免疫测定、生物发光免疫测定、浊度免疫测定法等。由于酶联免疫吸附分析法(Enzyme-linked Immunosorbent Assays,简称ELISA)具有灵敏性、特异性高,且方便、快速、安全、成本低廉的特点,日益被广泛应用于植物激素测定。目前,几大类植物激素IAA,ABA,GA3、GA4、iPA、ZR、DHZR等都建立了相应的ELISA检测方法并有试剂盒出售。植物激素的酶联免疫检测方法有两种形式,一种是在固相载体上直接包被抗体(直接法,先包被二抗,再加一抗),另一种是包被抗原(间接法)。直接法利用游离抗原和酶标抗原与吸附的抗体进行竞争,而间接法则是利用游离抗原和吸附抗原与游离抗体进行竞争。
发明内容
本发明的目的是提供一种提高水稻对矮缩病毒抗性的方法。
本发明所提供的提高水稻对矮缩病毒抗性的方法,是将水稻矮缩病毒的S2基因(RDV-S2)的干扰RNA的编码基因导入受矮缩病毒感染的水稻细胞或组织,得到对矮缩病毒抗性提高的水稻。
水稻矮缩病毒的S2基因的干扰RNA,是正义链具有序列表中SEQ ID №:5的核苷酸序列,反义链具有序列表中SEQ ID №:6的双链RNA序列。
将上述双链RNA序列命名为RDV-S2 iRNA,其反义链与RDV-S2 mRNA的15-548位置序列互补。序列表中SEQ ID №:5由534个碱基组成,序列的方向从左至右为5′端→3′端;序列表中SEQ ID №:6由534个碱基组成,序列的方向从左至右为5′端→3′端。
上述水稻矮缩病毒的S2基因的干扰RNA的编码基因也属于本发明的保护范围。它可具有下述双链核苷酸序列:正义链(不做模板的DNA链)具有序列表SEQ ID №:7的核苷酸序列或在高严谨条件下可与序列表中SEQ ID №:7限定的DNA序列杂交的核苷酸序列;反义链(做模板的DNA链)具有序列表中SEQ ID №:8的核苷酸序列或在高严谨条件下可与序列表中SEQ ID №:8限定的DNA序列杂交的核苷酸序列。
所述高严谨条件为在0.1×SSPE(或0.1×SSC)、0.1%SDS的溶液中,65℃条件下杂交并洗膜。
序列表中SEQ ID №:7由3510个碱基组成,序列的方向从左至右为5′端→3′端;序列表中SEQ ID №:8由3510个碱基组成,序列的方向从左至右为3′端→5′端。
所述RDV-S2的干扰RNA的编码基因可通过含有所述RDV-S2的干扰RNA的编码基因的RNAi植物表达载体导入水稻细胞或组织;用于构建所述RNAi植物表达载体的出发载体可为任意一种可在水稻中表达外源基因的植物表达载体,如pFGC1008、pCAMBIA1300、pCAMBIA1301、pCAMBIA3301、pBI121或pBin19等,其中pFGC1008为优选的出发载体。
以pFGC1008为出发载体,构建的RNAi植物表达载体为pFGC1008-S2RNAi。
携带有RDV-S2的干扰RNA的编码基因的植物表达载体可通过使用农杆菌介导法、基因枪法、电击法、花粉管导入法、脂质体融合法等方法转化水稻的组织或细胞,并将转化的水稻细胞或组织培育成植株。
为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因(GUS基因、萤光素酶基因等)、具有抗性的抗生素标记物(庆大霉素标记物、卡那霉素标记物等)或是抗化学试剂标记基因(如抗除莠剂基因)等。从转基因植物的安全性考虑,可不加任何选择性标记基因,直接以逆境筛选转化植株。
所述水稻的品种可以是多种多样的,如中花8号、中花11号、秀水11或爱知旭等。
酵母双杂交和免疫共沉淀实验证实水稻矮缩病毒(RDV)的外壳蛋白P2与水稻的内根-贝壳杉烯氧化酶之间存在相互作用。内根-贝壳杉烯氧化酶是赤霉素合成途径中的一个关键酶,通过酶联免疫吸附技术测定了RDV感染水稻以及同时期的健康水稻中赤霉素GA1(对水稻营养生长起主要作用)的含量,结果前者较后者明显偏低。上述实验结果表明RDV-P2蛋白可以与赤霉素合成途径中的内根-贝壳杉烯氧化酶相互作用,从而导致植物中赤霉素的合成受阻,含量降低,使得被RDV感染的水稻植株呈现矮化等典型的赤霉素缺乏症状。本发明利用RNA干扰技术抑制RDV感染水稻植株中RDV-S2基因的表达,使得内根-贝壳杉烯氧化酶赤霉素能够发挥正常功能,赤霉素水平恢复正常,从而使得RDV感染植株的矮化等症状消失,恢复正常生长。本发明在RDV的防治领域具有广阔的应用前景,同时对研究植物呼肠孤病毒属其它成员的致病机制也具有借鉴作用。
下面结合具体实施例对本发明作进一步说明。
附图说明
图1为酵母双杂交法验证OsKOS1与RDV-P2相互作用的实验结果
图2为免疫共沉淀实验验证OsKOS1与RDV-P2相互作用的实验结果
图3为根据AK071743、AK066285和AK100964PCR扩增的三个基因的1.0%琼脂糖凝胶电泳检测结果
图4为酵母双杂交法验证OsKOS2、OsKOS3及OsKOS4与RDV-P2相互作用的实验结果
具体实施方式
下述实施例中所用方法如无特别说明均为常规方法,所用引物由上海英骏公司合成。
实施例1、酵母双杂交法检测水稻中与RDV-P2互作的细胞因子
以RDV-P2为诱饵蛋白,用酵母双杂交法检测水稻中与RDV-P2互作的细胞因子,本实施例采用MATCHMAKER系统。在MATCHMAKER系统中,诱饵蛋白(Bait protein)与酵母GAL4的DNA结合域(DNA-BD)融合,同时cDNA文库与GAL4的激活域(AD)融合。当诱饵蛋白与文库蛋白在酵母报告基因体系中发生相互作用时,DNA-BD与AD相互靠近形成重组的转录因子从而激活4个报告基因的表达。用Clontech公司的MatchMaker GAL4 Two-Hybrid System 3试剂盒并参照试剂盒说明书进行操作(本实例所用的载体、菌株如无特别说明均由该试剂盒提供),具体过程包括以下步骤:
1、健康水稻cDNA文库的构建
采用上述试剂盒(MatchMaker GAL4 Two-Hybrid System 3试剂盒)提供的RT-PCR方法合成健康水稻品种“秀水11”的cDNA,所合成的cDNA两端含有与经限制性内切酶Sma I线性化的质粒载体pGADT7-Rec(该载体带有GAL4的转录激活区(AA768-881)的编码序列)的同源序列。
2、MATCHMAKER酵母双杂交文库构建和筛选
1)含有RDV-S2的重组载体pGBK-S2的构建
RDV病毒RNA的提取:取RDV(云南株)病毒粒子粗提液,加入1/10体积的10X蛋白酶K缓冲液,再加入适量的蛋白酶K溶液,56℃保温1小时,然后用等体积的水饱和酚∶氯仿(1∶1)抽提一次,再用无水乙醇沉淀后,吹干溶于适量的ddH2O中。
RT-PCR:取4μl提取的RDV dsRNA,加入2μl DMSO,0.5μl基因上游引物(62.5μM),0.5μl基因下游引物(62.5mM),94℃加热3min,立即放置冰上约2min,进行cDNA-链合成(5x缓冲液4μl,RNasin 0.5μl,10mM dNTP 1ul,ddH2O 4.5μl,superscriptase 1μl,DTT 2μl),反应于45℃下进行90min.。反应结束后,加入20μl ddH2O,再加入等体积的PEG(13%PEG8000+1.6M NaCl)于-20℃沉淀15min,13000rpm离心10min,70%乙醇洗涤一次,吹干,溶于30μl ddH2O中。PCR扩增条件如下:模板为1.5ul cDNA产物,6.25μM基因上游引物(5’-GAAGATCTGGCAAAACCTCGCCATGGCT-3’)2μl,6.25μM基因下游引物(5’-CGGAATTCATCATTTTAACTCAGAAGTA-3’)2μl,10xTaq酶缓冲液2.5μl,2.5mMdNTP 1.5μl,Taq+Pfu(4∶1)0.4μl,加ddH2O补足至25μl。结果经PCR扩增得到了一条特异的大小为3.5kb的条带,回收PCR片段并将其克隆到pGEM-T Easy(Promega)中,转化大肠杆菌DH5α感受态细胞,筛选阳性克隆进行测序,测序结果表明所克隆的RDV-S2在核苷酸组成上与日本株RDV-S2有94%的相似性,与福建株RDV-S2有96.4%的相似性,表明克隆到了序列正确的RDV-S2。
然后将克隆的3510bp的RDV-S2基因用限制性内切酶NcoI和EcoRI酶切后,与经相同酶双酶切的载体pGBK-T7(该载体带有酵母转录因子GAL4的DNA结合区(AA1-147)的编码序列)连接,得到含有RDV-S2的重组载体,命名为pGBK-S2。
2)酵母双杂交文库构建和筛选
用限制性内切酶Sma I使质粒载体pGADT7-Rec线性化,再将步骤1获得的健康水稻cDNA、线性化的pGADT7-Rec与pGBK-S2共同转化酵母细胞AH109[MATa,trp1-901,leu2-3,112,ura3-52,his3-200,gal4Δ,gal80,LYS2::GAL1-HIS3,GAL2-ADE2,URA3::MEL1-LacZ](该菌株含HIS3、ADE2、LacZ和MEL1四种报告基因)。在转化酵母细胞中,健康水稻cDNA与线性化的pGADT7-Rec通过同源重组使cDNA插入到质粒pGADT7-Rec中GAL4转录激活区编码序列的下游,形成具有功能的GAL4AD/cDNA表达载体。然后将酵母转化子先接种于SD/-Trp-Leu-His营养缺陷培养基(MatchMaker GAL4 Two-Hybrid System 3试剂盒提供),30℃倒置培养2-5天。将生长的菌落划线到固体培养基平板上,阳性生长菌落可先进行PCR检测以确定可能的cDNA插入片段的大小,感兴趣的菌落再划线到SD/-Trp-Leu-His-Ade营养缺陷培养基(MatchMaker GAL4 Two-Hybrid System 3试剂盒提供)上进行筛选,结果筛选到7个可在上述营养缺陷培养基上生长良好的阳性克隆,提质粒进行测序(测序引物采用T7启动子通用引物),测序结果表明这7个阳性克隆质粒所含的目的cDNA片段均编码一个水稻的细胞色素P450C端长度为66个氨基酸残基的多肽,证明该多肽可与RDV-P2相互作用。对P450进行氨基酸残基序列的相似性分析,结果该蛋白与豌豆、西葫芦、拟南芥等植物中的内根-贝壳杉烯氧化酶相似性非常高,相似性分别达到60%(豌豆)、58%(西葫芦)、53%(拟南芥),是一个水稻的内根-贝壳杉烯氧化酶相似蛋白。将这7个阳性克隆所代表的相同基因命名为OsKOS1,将该基因的编码蛋白命名为OsKOS1。
实施例2、OsKOS1全长序列的克隆及用酵母双杂交的方法进一步验证OsKOS1与RDV-P2的相互作用
一、OsKOS1全长序列的克隆
1、设计用于克隆OsKOS1的5’端引物
将实施例1所筛到的OsKOS1的cDNA片段的核苷酸序列在NCBI网站上进行blast(Basic Local Alignment Search Tool)分析,结果它与水稻的一个cDNA片段(GenBankNo.AF088220)的相似性达95%,此片段是一个水稻细胞色素P450的相似序列。将检索到的cDNA片段所编码的氨基酸残基序列与水稻细胞色素P450库中的氨基酸残基序列进行比对,结果该序列与水稻细胞色素P450库中的CYP701A8(japonicacultivar-group)的C-端的氨基酸残基序列完全一致。再在水稻基因组数据库中搜索,得到了与CYP701A8相对应的基因Scaffold4604,将它所编码的氨基酸残基序列与CYP701A8进行序列比对,获得了CYP701A8的N端的氨基酸残基序列和编码该蛋白的基因的可能的起始密码子。分析该起始密码子上游长度为1500bp的核苷酸序列,结果该区域GC含量为31.87%,AT含量为68.13%,在起始密码子上游47到55位碱基处存在一个可能的TATA框,而且还含有水稻的一些顺式作用元件,这些特征符合启动子的特征。基于上述分析,设计了用于克隆OsKOS1的引物,引物序列为:OsKOS1-5:5’-CACCCCATGGAGTCGATGCTCGTAGC-3’和OsKOS1-3:5’-AGTCGACTCACATCCTTC CTCTGGGCTTG-3’。
2、OsKOS1全长序列的克隆
提取水稻粳稻“秀水11”种子的总RNA,逆转录合成其cDNA,25μL反应体系为:2μg RNA,引物(OsKOS1-3)25pmol以及2μL DMSO,75℃变性10min后迅速冰浴,冰上加入1μL 10mM dNTPs、200U M-MLV逆转录酶(Promega公司)、5μL 5×M-MLV逆转录酶反应缓冲液和25U RNasin(Promega公司),混匀,42℃逆转录1.5h,然后70℃处理15分钟使酶失活。取3μL逆转录产物为模板,在引物OsKOS1-5与OsKOS1-3的引导下,PCR扩增OsKOS1的全长序列,扩增用的聚合酶采用LA Taq DNA聚合酶(Takara公司)。反应结束后,将1533bp的PCR产物克隆入载体pGEM-T Easy(Promega)中,转化大肠杆菌DH5α感受态细胞,筛选阳性克隆进行测序,测序结果表明OsKOS1具有序列表中序列1的核苷酸序列。
二、用酵母双杂交的方法进一步验证OsKOS1与RDV-P2的相互作用
用与实施例1相同的酵母双杂交方法进一步验证水稻的内根-贝壳杉烯氧化酶相似蛋白OsKOS1与RDV-P2是否具有相互作用,具体方法为:将步骤一克隆的OsKOS1的全长序列用限制性内切酶NcoI酶切后,与经NcoI和XhoI(与SalI是同尾酶)双酶切的载体pGADT7连接,得到OsKOS1的酵母双杂交载体,命名为pGAD-OsKOS1。将pGAD-OsKOS1与实施例1构建的含有RDV-S2的重组载体pGBK-S2共转化酵母AH109。将转化的酵母细胞先接种在SD/-Trp-Leu-培养基上培养,以保证两种质粒都转化进酵母细胞中,然后将筛选出的酵母细胞划线到SD/-Trp-Leu-His培养基上培养,最后将在SD/Trp-Leu-His培养基上筛选出的酵母转化子划线到SD/-Trp-Leu-His-Ade培养基上培养,另外设立几种共转化对照:pGBKT7与pGADT7,pGBKT7与pGAD-OsKOS1,pGBK-S8(用与实施例1相同的方法将RDV的另一个外壳蛋白P8的编码基因S8克隆入载体pGBKT7中得到的重组载体)与pGADT7,pGBK-S8与pGAD-OsKOS1,pGBK-S2与pGADT7。结果pGAD-OsKOS1与pGBK-S2共转化的酵母菌落能在SD/-Trp-Leu-His-Ade四缺培养基上生长,而对照的酵母菌落都不生长,如图1所示(A:pGBKT7 and pGADT7;B:pGBKS2 and pGADT7;C:pGBKT7 and pGAD-OsKOS1;D:pGBKS2 and pGAD-OsKOS1;E:pGBKS8 and pGADT7;F:pGBKS8 and pGAD-OsKOS1),此外在培养基中加入X-α-gal后,酵母菌落显示为蓝色,证明OsKOS1与RDV-P2在酵母细胞中确实存在相互作用。
实施例3、用免疫共沉淀实验验证OsKOS1与RDV-P2的相互作用
利用哺乳细胞表达系统对RDV-P2与内根-贝壳杉烯氧化酶相似蛋白OsKOS1间的相互作用免疫共沉淀实验进行验证。参照Han et al.和Huang et al.的实验方法(Han etal.,Mechanisms of the TRIF-induced interferon-stimulated response elementand NF-κB activation and apoptosis pathways,J Biol Chem,279:15652-15661,2004;Huang et al.,ZNF216 is an A20-like and IκB kinase γ-interactinginhibitor of NFκB activation,J Biol Chem,279:16847-16853,2004),具体过程包括以下步骤:
1)RDV-S2与OsKOS1的真核表达载体的构建
将RDV-S2克隆到哺乳细胞表达载体pRK-7-HA-Neo(Han et al.,Mechanisms of theTRIF-induced interferon-stimulated response element and NF-κB activation andapoptosis pathways,J Biol Chem,279:15652-15661,2004;Huang et al.,ZNF216is an A20-like and IκB kinase γ-interacting inhibitor of NFκB activation,J Biol Chem,279:16847-16853,2004)中,得到RDV-S2的真核表达载体,命名为pRK-7-HA-Neo-S2。将OsKOS1克隆到哺乳细胞表达载体pRK-7-FLAG-Neo(Han et al.,Mechanisms of the TRIF-induced interferon-stimulated response element andNF-κB activation and apoptosis pathways,J Biol Chem,279:15652-15661,2004;Huang et al.,ZNF216 is an A20-like and IκB kinase γ-interactinginhibitor of NFκB activation,J Biol Chem,279:16847-16853,2004)中,得到OsKOS1的真核表达载体,命名为pRK-7-FLAG-Neo-OsKOS1。
2)细胞培养和传染
将人胚肾293细胞置于含10%胎牛血清的高糖DMEM培养基中,在37℃,5%二氧化碳培养箱中培养。将293细胞按1×106个的接种量接种于10cm培养皿中,培养20小时后参照《分子克隆实验指南》(J.萨姆布鲁克等,2002)将步骤1)构建的pRK-7-HA-Neo-S2、pRK-7-FLAG-Neo-OsKOS1用磷酸钙介导法进行共转染。
3)免疫共沉淀及Western blot Assay
将分别转染有pRK-7-HA-Neo-S2、pRK-7-FLAG-Neo-OsKOS1的293细胞培养20小时后分别用1mL细胞裂解液(20mM Tris pH 7.5,150mM NaCl,1%Triton,1mM EDTA,10μg/mL aprotinin,10μg/mL leupeptin,1mM phenylmethylsulfonyl fluoride)裂解细胞,各取0.4mL含细胞的细胞裂解液中加入0.5μg HA的单克隆抗体(Sigma),再加入25μl protein G耦连的Sepharose(Amersham Biosciences),4℃旋转混合4小时以上。将磁珠用含50mM NaCl的细胞裂解液清洗三次后,加入2×SDS聚丙烯酰氨凝胶电泳样品缓冲液20μl,沸水浴5分钟后,进行8%聚丙烯酰氨凝胶电泳,然后在电转移缓冲液(39mmol/L甘氨酸,48mmol/L Tris,0.037%SDS,20%甲醇)中把蛋白质电转移硝酸纤维素膜上(200mA,1-2h)。将电转移后的硝酸纤维素膜用5%脱脂奶粉-TBST(150mM NaCl,25Mm Tris,0.05%Tween-20,pH7.5)封闭液室温温浴1小时以上,加入0.5μg/mL HA的单克隆抗体,室温温浴2小时,TBST洗涤三次后,加入与碱性磷酸酶相耦连的羊抗鼠IgG(Promega)(1∶10,000稀释),室温温浴1小时,TBST洗涤三次。在7.5mL碱性磷酸酶缓冲液(100mmol/L Tris·Cl pH9.5,100mmol/LNaCl,5mmol/L MgCl2)中加入33μl NBT(氮兰四唑)溶液和25μl BCIP(5-溴-4-氯-3-吲哚磷酸)溶液,混匀,把膜放入上述显色混合液中,室温避光显色至出现清晰条带,用大量蒸馏水冲洗终止反应。结果如图2所示(细胞裂解物(L)用HA抗体(αHA)、FLAG抗体(αF)或对照小鼠IgG(C)进行免疫沉淀后的Western blot分析;左边的标示为分子量标准),RDV-P2可以将OsKOS1从裂解液中沉淀下来,反之,OsKOS1可以将RDV-P2从裂解液中沉淀下来,而负对照则呈阴性,表明RDV-P2与OsKOS1在体外有相互作用。
实施例4、RDV-P2与水稻内根-贝壳杉烯氧化酶及内根-贝壳杉烯氧化酶相似蛋白相互作用的验证实验
实施例2的酵母双杂交实验及实施例3的免疫共沉淀实验证明RDV-P2与水稻的一个内根-贝壳杉烯氧化酶相似蛋白(OsKOS1)存在相互作用,这种相互作用很可能使水稻中植保素的合成受到抑制,使RDV可以更有效地在水稻中复制。与拟南芥不同,水稻中存在多拷贝的基因编码内根-贝壳杉烯氧化酶或内根-贝壳杉烯氧化酶相似蛋白(Kikuchi et al.,Collection,mapping,and annotation of over 28,000 cDNAclones from japonica rice,Science,301:376-379,2003),而且这些蛋白的氨基酸相似性非常高,所以存在RDV-P2蛋白与水稻的其它内根-贝壳杉烯氧化酶或内根-贝壳杉烯氧化酶相似蛋白相互作用的可能性。另外,水稻被RDV感染后,会出现明显的植株矮化、叶色浓绿等症状,这与赤霉素缺失突变体的症状非常相似。因此推测RDV-P2蛋白可能与水稻的内根-贝壳杉烯氧化酶也有相互作用,这种相互作用可能影响到该酶的活性,从而使得水稻细胞中的赤霉素的合成减少,从而导致水稻生长受阻,出现矮化症状。现用酵母双杂交实验和免疫共沉淀实验鉴定RDV-P2与水稻其它内根-贝壳杉烯氧化酶及内根-贝壳杉烯氧化酶相似蛋白是否具有相互作用,具体实验方法如下:
一、酵母双杂交实验实验鉴定RDV-P2与水稻其它内根-贝壳杉烯氧化酶及内根-贝壳杉烯氧化酶相似蛋白是否具有相互作用
1、OsKOS1相似基因的克隆
将OsKOS1的核苷酸序列在NCBI进行blast(Basic Local Alignment Search Tool)分析,结果获得了三个与OsKOS1相似性较高的水稻cDNA序列(GenBank登陆号分别为AK071743、AK066285和AK100964,均包含完整的读码框),在核苷酸水平上,它们与OsKOS1的相似性为AK071743(89%相似性)、AK066285(82%相似性)、AK100964(82%相似性),OsKOS1的氨基酸残基序列与上述三个基因编码蛋白的氨基酸残基序列的相似性依次为:AK071743编码蛋白(82%相似性)、AK066285编码蛋白(72%相似性)、AK100964编码蛋白(72%相似性)(Kikuchi et al.,Collection,mapping,and annotation of over 28,000 cDNA clones from japonica rice,Science,301:376-379,2003)。此外,OsKOS1与来自于拟南芥、西葫芦、豌豆等植物的内根-贝壳杉烯氧化酶的氨基酸残基序列的相似性依次为OsKOS1与AtKO1(GenBank号:AAC39507,52%相似性)、OsKOS1与CmKO1(GenBank号:AAG41776,51%相似性)、OsKOS1与PsKO1(GenBank号:AAP69988,50%相似性)。
基于上述分析,得知水稻中存在至少四个相似基因编码内根-贝壳杉烯氧化酶或内根-贝壳杉烯氧化酶相似蛋白。根据AK071743,AK066285和AK100964的核苷酸序列设计三对引物克隆水稻的除OsKOS1外的其它三个内根-贝壳杉烯氧化酶基因或内根-贝壳杉烯氧化酶相似蛋白基因,引物序列如下:
根据AK071743设计的引物
AK071743F(正向引物):5’-CACCATGGAGTCGCTGCTCGCAGC-3’
AK071743R(反向引物):5’-AGTCGACCTAGCTTCCTCTGGGCTTGAGGTG-3’;
根据AK066285设计的引物
AK066285F(正向引物):5’-CACCAGATCTTGTCCATGGAGGCGTTCGTGCCG-3’
AK066285R(反向引物):5’-GCGAATTCACATCCTTCCTCTGCGCGTGAG-3’;
根据AK100964设计的引物
AK100964F(正向引物):5’-GCGAATTCTATGGTTCACATCCTTCCTCTG-3’
AK100964R(反向引物):5’-GCGAATTCTAATGGTTCACATCCTTCCTCTG-3’。
提取水稻叶片总RNA,分别用AK071743、AK066285和AK100964的3’特异引物进行反转录合成其cDNA并以此为模板,分别在上述三对引物的引导下,进行PCR扩增,对PCR扩增产物进行1%琼脂糖凝胶电泳检测,检测结果如图3所示(泳道M:DNAMarker(λ/EcoR I+HindIII),结果分别扩增出1512bp、1518bp和1515bp的特异条带,与预期结果相符。回收三个基因的特异片段并分别克隆到载体pENTR/D-
Figure C20051011438600131
(Invitrogen公司)中,转化大肠杆菌DH5α感受态细胞,筛选阳性克隆进行测序,测序结果表明根据AK071743克隆的基因的读码框长度为1512bp,编码一个由503个氨基酸残基组成的蛋白质,将该基因命名为OsKOS2,其GenBank号为AY660664,将该基因的编码蛋白命名为OsKOS2,OsKOS2的核苷酸序列见序列2;根据AK066285克隆的基因的读码框长度为1518bp,编码一个由505个氨基酸残基组成的蛋白质,将该基因命名为OsKOS3,其GenBank号为AY660665,将该基因的编码蛋白命名为OsKOS3,OsKOS3的核苷酸序列见序列3;根据AK100964克隆的基因的读码框长度为1515bp,编码一个由504个氨基酸残基组成的蛋白质,将该基因命名为OsKOS4,其GenBank号为AY660666,将该基因的编码蛋白命名为OsKOS4,OsKOS4的核苷酸序列见序列4。
2、酵母双杂交实验鉴定RDV-P2与OsKOS2、OsKOS3及OsKOS4是否具有相互作用
用酵母双杂交实验实验鉴定RDV-P2与其它三个内根-贝壳杉烯氧化酶或内根-贝壳杉烯氧化酶相似蛋白OsKOS2、OsKOS3及OsKOS4是否具有相互作用,具体方法如下:
1)OsKOS2、OsKOS3及OsKOS4的酵母双杂交载体的构建
将步骤1克隆的三个内根-贝壳杉烯氧化酶基因或内根-贝壳杉烯氧化酶相似蛋白基因OsKOS2用限制性内切酶NcoI和SalI酶切后,与经NcoI和XhoI(与SalI是同尾酶)双酶切的载体pGADT7连接,得到OsKOS2的酵母双杂交载体,命名为pGAD-OsKOS2,并用相同方法得到OsKOS3的酵母双杂交载体pGAD-OsKOS3及OsKOS4的酵母双杂交载体pGAD-OsKOS4。
2)酵母转化及筛选
将pGAD-OsKOS2、pGAD-OsKOS3、pGAD-OsKOS4分别与实施例1构建的含有RDV-S2的重组载体pGBK-S2共转化酵母AH109。将转化的酵母细胞先接种在SD/Trp-Leu培养基上培养,以保证两种质粒都转化进酵母细胞中,然后将筛选出的酵母细胞划线到培养基上培养,最后将在SD/Trp-Leu-His培养基上筛选出的酵母转化子划线到SD/Trp-Leu-His-Ade培养基上培养,另外设立几种共转化对照:pGBKT7与pGADT7,pGBK-S2与pGADT7,pGBKT7与pGAD-OsKOS2,pGBKT7与pGAD-OsKOS3,pGBKT7与pGAD-OsKOS4。结果pGAD-OsKOS2、pGAD-OsKOS3、pGAD-OsKOS4分别与pGBK-S2共转化的酵母菌落能在SD/-Trp-Leu-His-Ade四缺培养基上生长,而对照的酵母菌落都不生长,如图4所示(A:pGBKT7与pGADT7;B:pGBKS2与pGADT7;C:pGBKT7与pGAD-OsKOS2;D:pGBKS2与pGAD-OsKOS2,E:pGBKT7与pGAD-OsKOS3;F:pGBKS2与pGAD-OsKOS3;G:pGBKT7与pGAD-OsKOS4;H:pGBKS2与pGAD-OsKOS4),此外在培养基中加入X-α-gal后,酵母菌落显示为蓝色,证明OsKOS2、OsKOS3、OsKOS4与RDV-P2在酵母细胞中确实存在相互作用。
二、免疫共沉淀实验鉴定RDV-P2与OsKOS2,OsKOS3以及OsKOS4的相互作用
上述酵母双杂交验证结果表明RDV-P2与OsKOS2、OsKOS3以及OsKOS4均有相互作用,现用免疫共沉淀实验做进一步验证,实验方法及步骤与实施例3相同,结果OsKOS2、OsKOS3以及OsKOS4均可以将RDV-P2从细胞裂解液中沉淀下来,而负对照呈阴性,表明RDV-P2确实与OsKOS2、OsKOS3以及OsKOS4存在相互作用。
实施例5、用酶联免疫吸附法(ELISA)检测RDV感染水稻和健康水稻的GA1含量
Itoh et al(2004)研究了水稻的内根-贝壳杉烯氧化酶或内根-贝壳杉烯氧化酶相似蛋白的基因,结果发现水稻编码两个内根-贝壳杉烯氧化酶(OsKO1与OsKO2,参与赤霉素合成)和两个内根-贝壳杉烯氧化酶相似蛋白(OsKOL4与OsKOL5,可能参与植保素合成)。将克隆的OsKOS1、OsKOS2、OsKOS3、OsKOS4与OsKO1、OsKO2、OsKOL4、OsKOL5的氨基酸序列进行比较分析,分析结果表明OsKOS1与OsKOL4、OsKOS2与OsKOL5、OsKOS3与OsKO2、OsKOS4与OsKO1分别是相同的基因。
内根-贝壳杉烯氧化酶是赤霉素合成的过程中的一个关键酶,它与RDV-P2的相互作用可能会影响到该酶的活性,再加上RDV感染水稻的表型是植株矮缩,叶色浓绿,这与水稻赤霉素缺陷突变体非常相似(Ross et al.,″Gibberellin mutants.″Physiol.Plantarum,100:550-560,1997),故推测RDV感染水稻中的赤霉素含量会有所降低。水稻中对营养生长起主要作用的赤霉素是GA1,现采用酶联免疫吸附法对健康水稻和RDV感染水稻中的GA1含量进行测定。选取RDV感染水稻(抽穗前)及相同时期的健康水稻用于GA1含量测定,具体测定方法参照文献(Weiler,Plant hormone immunoassaybased on monoclonal and polyclonal antibodies.In:HF Linskens,JF Jackson,eds,Immunology in plant sciences.Springer-Verlag,New York,pp 1-17,1986;He,A Laboratory Guide to Chemical Control Technology on Field Crop.Beijing Agricultural University Press,Beijing,China.pp 60-68,1993;Yang et al.,Effects of plant growth regulators on secondary wall thickeningof cotton fibres,Plant Growth Regul,35:233-237,2001。),结果RDV感染水稻中GA1的含量为73.1ng/g fw,健康水稻中GA1的含量为261.7ng/g fw,前者仅为后者的27.9%,表明水稻在被RDV感染后,体内赤霉素含量确实明显降低,证明RDV感染的水稻,内根-贝壳杉烯氧化酶与RDV-P2相互作用影响到该酶的活性,导致赤霉素合成受阻,从而出现植株矮缩,分蘖增多等赤霉素缺陷突变体的典型症状。
实施例6、RDV感染水稻植株的RDV-S2基因的RNA干扰实验
一、构建RDV-S2的RNAi植物表达载体
根据RDV-S2的核苷酸序列设计两对引物用于构建RNAi植物表达载体,其中一对引物序列为:S2RNAi-1:5’-CTAGGCGCGCCATGGCTTATCCTAATGACGTCAGA-3’与S2RNAi-2:5’-AGTGTCCTCAGTGATGGTTGACAC-3’;另一对引物序列为:S2RNAi-3:5’-CTAGACTAGTATGGCTTATCCTAATGACGTCAGA-3’和S2RNAi-4:5’-GTGTCAACCATCACTGAGGACACTGGATCCTGC-3’。以RDV-S2的核苷酸序列为模板,将以S2RNAi-1和S2RNAi-2为引物PCR扩增出的片段用T1 plolymerase(Promega)补平后用AscI酶切,回收后插入到经SwaI和AscI酶切的pFGC1008载体(Arobidopsis biological resourcecenter,http://WWW.arabidopsis.org)中,筛选鉴定出阳性克隆;以S2RNAi-3与S2RNAi-4为引物PCR扩增出的片段用Spe I和BamH I酶切后与经相同酶双酶切的上述鉴定出的阳性克隆质粒连接,得到RDV-S2的RNAi植物表达载体,命名为pFGC1008-S2RNAi。
二、转基因水稻的获得
由水稻的成熟胚诱导愈伤组织:取水稻成熟种子,剥去种皮,70%乙醇浸泡2分钟,转入2.5%的次氯酸钠溶液中(有效氯)表面消毒3次,每次持续10分钟,期间不断摇晃,无菌水洗涤3次,置于滤纸上吸去多余液体,最后将种子置于愈伤组织诱导培养基上黑暗培养(30℃),10天后,在胚的部位长出胚性愈伤组织,14-21天后,愈伤组织3-5mm大小,淡黄色,质地致密,呈颗粒状。
用共培养法转化水稻,具体过程包括以下步骤:
1)将RNAi植物表达载体pFGC1008-S2RNAi转化入农杆菌,挑取阳性的农杆菌单菌落,在含相应抗生素(卡那霉素Kan+Chl)的YEB培养基中,28℃培养12-24小时,至菌处于对数生长期。
2)取500μL上述菌液涂布于农杆菌诱导培养基上(AB+100μM AS+50mg/L Kan),28℃培养2天;
3)将培养好的农杆菌刮下来收集到含有100μmol/L AS和50mg/L Chl的AAM培养基中,使农杆菌的浓度为OD600=0.8-1;
5)将处于生长旺盛状态的水稻愈伤组织在上述菌液中浸泡30min后,取出用无菌滤纸吸干,在2N6-AS培养基上共培养2-3天;
6)将共培养后的水稻愈伤组织在无菌水中洗涤3-5次,然后在滤纸上吸去多余的水,将水稻愈伤组织转入含有50mg/L潮霉素、500mg/L头孢霉素的N6D2的筛选培养基上培养,30℃黑暗培养4-6周;
7)将得到的抗性愈伤组织在新鲜的筛选培养基上继代培养,约3周后,将抗性愈伤置于含有50mg/L潮霉素,1.0mg/L 6-BA,2.0mg/L NAA,5.0mg/L ABA,500mg/L头孢霉素的预分化培养基上培养;
8)3周后,将愈伤组织转到含有2.0mg/L 6-BA,1.0mg/L NAA,1.0mg/L IAA,1.0mg/L KT,50mg/L潮霉素,500mg/L头孢霉素的分化培养基上;
9)3-4周后,愈伤组织上会有小苗长出,待小苗有2cm高左右,将小苗转入生根培养基中。两周后,小苗生出根系。待再生苗长至6-10cm后移入装有蛭石的盆钵中进行炼苗,待苗成活后移入温室泥土中。
再通过Southern-Blot技术对转基因水稻进行鉴定。已经鉴定为阳性的转基因植株与同时期生长的野生型水稻用携带RDV病毒的叶蝉进行传毒。待有病毒症状出现后,通过Northern-Blot技术对感染RDV的转基因水稻和野生型水稻中的S2的转录水平进行分析,结果发现,感病的转基因植株中未检测到S2的转录,而感病的野生型水稻中S2正常表达。同时,通过对比感病水稻表型发现,感染RDV的转基因植株与同时期生长及感染RDV的野生型水稻相比,并无明显的矮化症状,并且水稻叶片感病症状也要明显轻微许多。激素测定结果表明,感染RDV的转基因植株中赤霉素含量明显高于没有转基因的感病水稻中赤霉素的含量,其水平接近于健康植株中赤霉素的水平,表明RDV感染S2RNAi转基因水稻后,其S2基因的表达水平被显著抑制,并且染病植株体内赤霉素合成恢复正常,植株得以正常生长,从而水稻产量受到较小影响。
序列表
<160>8
<210>1
<211>1533
<212>DNA
<213>稻属水稻(Oryza sativa L.ssp.japonica)
<400>1
atggagtcga tgctcgtagc cggagcgggc gcggcggcgg tggcggccgt cgggggcctc    60
gtcgcggcgg ccgcgctcgc cgacaagctc gtcgcggcgc cgccgccgcg caagaaccgc   120
gccaacccgc ctccagctgt tcctggttta cccattattg gaaatctgca tcaattgaaa   180
gaaaagaagc ctcatcagac gtttgcaaaa tggtctgaaa cttatggacc aatctacact   240
ataaagaccg gagcttctcc agtggttgtg ctcaattcaa ctgaagtagc caaggaggcg   300
atgattgaca aattctcatc catatctact cgaaagctac caaaagcaat gtctgtgcta   360
actcgtgaaa gtatggtcgc aatcagcgac tacggtgact accaaaagat ggcgaagcgt   420
aatattatga ttggcatgtt aggttttaat gcacagaaac agtttcgcgg tacaagagag   480
aggatgatca gtaacgtgtt aagcactttg cataagttgg tttctcttga cccacattcc   540
cctctgaact tcagggatgt ttacattaat gagctgttca gcttgtcctt gattcagagt   600
ttaggtgagg atgtgagttc agtttatgtg gaagagtttg ggagggagat acccaaggac   660
gaaatctttg atgtccttgt gcatgagatg atgatgtgtg cagttgaggc tgactggagg   720
gactacttcc cctacctcag ctggcttcca aacaagagct tcgacacaat tgtgtccact   780
acagaattca gacgagatgc tatcatgaat gcattgatca agaagcagaa ggagaggatt   840
gcacgcggag aggcaagggc atcctacatt gacttcttgc tggaagctga gaggagtgca   900
cagctgacag atgaccaact gatgctgctg ctgtcggagt ccatcctggc tgcagctgat   960
actgtcctgg tgaccaccga atggaccatg tatgagattg ccaagaaccc tgacaaacag  1020
gagctactct accaagagat ccgagaggcg tgcggcggcg aggcggtgac cgaggacgac  1080
ttgccgcggc tgccgtacct caacgccgtg ttccacgaga cgctgcggct gcactccccg  1140
gtgccggtgc tgcccccgag gttcgtccac gacgacacca cgctcgccgg ctacgacatc  1200
gcggcgggca cccagatgat gatcaacgtg tacgcgtgcc acatggacga gaaggtgtgg  1260
gagtcgccgg gggagtggtc gccggagagg ttcctcggcg aggggttcga ggtggcggac  1320
aggtacaaga cgatggcgtt cggcgccggg aggaggacct gcgcggggag cctgcaggcg    1380
atgaacatcg cgtgcgtcgc cgtggcgcgc ctcgtgcagg agctcgagtg gaggctgagg    1440
gagggcgacg gggacaagga ggacaccatg cagttcaccg ccttgaagct tgacccgctg    1500
catgtccacc tcaagcccag aggaaggatg tga                                 1533
<210>2
<211>1512
<212>DNA
<213>稻属水稻(Oryza sativa L.ssp.japonica)
<400>2
atggagtcgc tgctcgcagc cggtgcggga gggatcggcg tggctgcggc ggccgccgtc      60
gtggcggcga ccctcgccgt ggtgccgccc aaggaccgcg gcaacaaccc gcctccagct     120
gatcctggtt tacccgttat tggaaatatg catcaattga aagaaaagaa gcctcatcat     180
acctttacaa aatggtctaa aacttatggg ccaatctaca ctataaagac cggggcttct     240
tcagtagttg tgctcaattc aacggaagta gccaaggagg cgatgattga aaaattctca     300
tcaatatcaa ctaaaaagct accaaaagca ttgtctgtga taagccgtaa aaacatggtt     360
tccatcagcg actatggtga cttctataag atggcgaagc gtaatattat gctcgcaatt     420
ttaggtttta atgcgcagaa acgcttctgc gatacaagag aaaggatggt cagtaacgtg     480
ttaagcagtt tgcataaatt ggttgctgtt gacccacatt cccctctgaa cttcagagaa     540
gtttacacta ctgagctatt cggattgtcc ttgatccaga atttaggtga ggatgtgtgt     600
tcagtttatg tggaagagtt tgggagggag atatccaagg aagagatctt ccatgtcctt     660
gtgcatgaga tattgtcgtg tgtcgtggag cctgattgga gggactactt cccctacctc     720
agctggcttc caaacaagag cttcgaaaca atagtgtcta gtacagaatt tagacgagat     780
gctgtgatga acgcgttgat caagaggcag aaggaaagga ttgcgcgcgg agaggcaagg     840
atatcctata ttgacttctt gctggaagct aagaacagta cacagctgac agatcaccaa     900
ctgatgctgc tgctggcgga gtccatcgct gctgctgtgg atactgtcct ggtaaccact     960
gaatgggcca tgtatgagct tgccaagaac cctgacaaac aggaatggct ttaccgggag    1020
attcgagagg tgtgcggcgg caaggcggtg accgaggagg acctaccaag gctgccgtac    1080
ctcgacgccg tgctccacga gacgctgcgg ctgcactccc cggtgccggt gctccccacg    1140
aggttcgtcc acgacgacac cacgctcgcc ggctacgacg tccccgcggg tacccaggtg    1200
atgatcaacg tgttcgggtg ccacatggac gaggaggcct gggagtcgcc cggagagtgg    1260
tcgccggaga gattcctcgg cgaggggttc aagttggccg acaggtacaa gacgctggcg    1320
ttcggcgccg ggaggaggac ctgcgcgggg agccagcagg cggtgagcat cgcgtgcgtc    1380
gccatcgcgc gcttcgtgca ggagctccag tggacgctga gggagggcga cggtgataag    1440
gaggatacca cgcagtacac tgccttgaag cttcacccgc tgcacgtgca cctcaagccc    1500
agaggaagct ag                                                        1512
<210>3
<211>1518
<212>DNA
<213>稻属水稻(Oryza sativa L.ssp.japonica)
<400>3
atggaggcgt tcgtgccggg cggcgcgggg gtggcggcgg cggcggtcgg agggttcgtc      60
gccgcggccg cgctagccga gagggccggc gtgatcgcgc caaggaaacg ccccaacgcg     120
cccccagctg ttcctggttt acccattatc ggaaatctgc atcaactgaa agaaaagaag     180
cctcatcaga cctttgcaaa atgggctgaa atttacgggc caatctacac tataagaacc     240
ggggcttctt ctgtagttgt gctcaattca actgaagtag ccaaggaggc gatggttgca     300
aaattctcat ccatatctac ccgaaagcta tccaaagcac tgacagtgct tactcgtgat     360
aaatccatgg ttgctaccag cgactattgt gatttccaca aaatggtgaa gcgttatgtc     420
atgtcaagca tgttgggtac ttctgcacag aaacaatttc gtgacataag agatatgatg     480
atccataaca tgttaagcac ttttcataaa ctggtgaaag atgacccaca tgctcctctg     540
atattcagag atgttttcaa ggatgagcta ttccggttgt ccatgatcca gagcttagga     600
gaggatgtga gttcagtcta tgtggatgaa tttgggaggg acatttcgag ggaagaaatc     660
tacaatgcta ctgtgaccga catgatgatg tgcgcaattg aggtcgactg gagagatttc     720
ttcccctacc tcagctgggt tccaaacaag agcttcgaaa caagagtgtt tactacagaa     780
actagacgaa ctgcggtgat gcgcgccttg atcaagcagc agaaggaaag gattgtgcgt     840
ggagaggcaa agacatgcta tctggacttc ttgctggcag agaacacact gacagatgag     900
caactgatga tgctagtgtg ggaggcactc atagaggctg cagatactac cttggtcacc     960
acagaatggg ccatgtatga gcttgccaag aaccctgaca aacaggaacg gctttaccaa    1020
gagatccggg aggtgtgcgg cgacgagacg gtcaccgagg agcacctccc acggctgccg    1080
tacctcaacg ccgtcttcca cgagacgctg cgccgccact cccctgtccc gctcatacct    1140
ccgaggttcg tccacgagga caccaagctc gctggctacg acgtccccgc cggcaccgag    1200
atggtgatca acctgtacgg gtgcaacatg aacaggaagg agtgggagtc gccggaggag    1260
tgggtgccgg agaggttcgc cggcgggagg ctcgaggtgg cggacatgta caagacgatg    1320
gcgttcggcg ccgggaggag ggcctgcgcg gggagcctgc aggcgactca catcgcgtgc    1380
gccgccgtcg cgcgcttcgt gcaggagttc gggtggaggc tgagggaggg tgacgaggag    1440
aaggtggaca ccgtgcagct caccgcctac aagctccacc cgcttcatgt ccacctcacg    1500
cgcagaggaa ggatgtga                                                  1518
<210>4
<211>1515
<212>DNA
<213>稻属水稻(Oryza sativa L.ssp.japonica)
<400>4
atggagtcgc tgctcgcagc cggtgcggga gggatcggtg tggcggcggc ggccgtcggg      60
gggtttatcg cggcggcgac actcgccgtg gcaccgccca agtaccgccg caacccgcct     120
ccagctgttc ctggtttacc cataatcgga aatctgcatc aattgaaaga aaagaagcct     180
catcagacct tcacaagatg ggctgaaatt tatggcccaa tctacactat aaggaccggg     240
gcttcttccg tagttgtgct caattcaact gaagtagcca aggaggcgat ggttgcaaaa     300
ttctcatcca tatctacccg aaagctatcc aaagcactaa cagtgcttag tcatgataaa     360
tccatggttg ctaccagcga cagtggtgat ttccacaaaa tggggaagcg ttatatcatg     420
ttaagcatgc tgggtacttc tgcacagaaa caatttcgtg acacaagaga tatgatcatc     480
aataacatgt taagcacttt ccatcaactg gtgaaagatg acccacatgc tcctctgata     540
ttcagagatg ttttcaagaa tgagctattc cggttgtcca tgatccagag cttaggagag     600
gatgtgagtt cagtctatgt ggatgaattt gggagggaca tttcgaagga agaaatctac     660
aatgctactg tgactgacat gatgatgtgc gcaattgagg tcgactggag agatttcttc     720
ccctacctca gctgggttcc aaacaagagc ttcgaaacaa gagtgtttac tacagaatct     780
agacgaactg cggtgatgcg cgccttgatc aagcagcaga aggaaaggat tgtgcgtgga     840
gaggcaagga catgctatct ggacttcttg ctggcagaga acacactgac agatgagcaa     900
ctaatgatgc tagtgtggga ggcactcata gaggctgcag atactacctt ggtcaccaca     960
gaatgggcca tgtatgagct tgccaagaac cctgacaaac aggaacggct ttaccaagag    1020
atccgggagg tgtgcggcga cgaggcggtc accgaggagc acctgccgtg gctgccgtac    1080
ctcaatgccg tcttccagga gacgctgcgc cgccactccc ctgtcccgct catacctccg    1140
aggttcgtca acgaggacac catgctcgcc ggctacgatg tccccgccgg caccgagatg    1200
gtgatcaacc tgtatgggtg caacatgaac aagaaggagt gggagtcgcc ggaggagtgg    1260
gcgccggaga ggttcgccgg tgggaggttc aaggtggcgg acatgtacaa gacgatggcg    1320
ttcggcgccg ggaggagggt ctgcgcaggg agcctgcagg cgactcacat cgcgtgcgcc    1380
gccatcgcgc gcttcgtgcg ggagtttggg tggaggctga gggagggtga cgaggagaag    1440
gtggacaccg tgcagctcac cgcctacaag ctccacccgc ttcatgtcca cctcacgcgc    1500
agaggaagga tgtga                                                     1515
<210>5
<211>534
<212>RNA
<213>人工序列
<220>
<223>
<400>5
auggcuuauc cuaaugacgu cagaaacguu ugggaugugu acaacguguu ccgggacgug      60
ccaaaccgug aacaucugau ucgagauauc cgcaauggac ugguuacggu ccggaaucuc     120
acaaauaugc uuacuaauau ggagcgcgau gaucaauuga uuauugcuca acuguccaau     180
augaugaaau cguuaucaau ugggguugag aaggcucaaa augaacuuag caaacuaaag     240
acuacggaug ccgaccgugc cgcagucuua gcagcuuauc aaacuucggu ucuuaacaua     300
gagcgaaaua cuauguuauu gacuggguac uucaagcagu uaguuuuaga cuuaacuggu     360
uaugugggug ccagcguaua uccuaucuua ccuuucauga uuacaggaga ucagucuaug     420
augguugacu ccauuaaagu uaacaugaaa aaugucuuug augauaagca ugagcaggag     480
auaguccuac cuauucaucc ugcuugcuuu gugucaacca ucacugagga cacu           534
<210>6
<211>534
<212>RNA
<213>人工序列
<220>
<223>
<400>6
aguguccuca gugaugguug acacaaagca agcaggauga auagguagga cuaucuccug     60
cucaugcuua ucaucaaaga cauuuuucau guuaacuuua auggagucaa ccaucauaga    120
cugaucuccu guaaucauga aagguaagau aggauauacg cuggcaccca cauaaccagu    180
uaagucuaaa acuaacugcu ugaaguaccc agucaauaac auaguauuuc gcucuauguu    240
aagaaccgaa guuugauaag cugcuaagac ugcggcacgg ucggcauccg uagucuuuag    300
uuugcuaagu ucauuuugag ccuucucaac cccaauugau aacgauuuca ucauauugga    360
caguugagca auaaucaauu gaucaucgcg cuccauauua guaagcauau uugugagauu    420
ccggaccgua accaguccau ugcggauauc ucgaaucaga uguucacggu uuggcacguc    480
ccggaacacg uuguacacau cccaaacguu ucugacguca uuaggauaag ccau          534
<210>7
<211>3510
<212>DNA
<213>人工序列
<220>
<223>
<400>7
ggcaaaacct cgccatggct tatcctaatg acgtcagaaa cgtttgggat gtgtacaacg     60
tgttccggga cgtgccaaac cgtgaacatc tgattcgaga tatccgcaat ggactggtta    120
cggtccggaa tctcacaaat atgcttacta atatggagcg cgatgatcaa ttgattattg    180
ctcaactgtc caatatgatg aaatcgttat caattggggt tgagaaggct caaaatgaac    240
ttagcaaact aaagactacg gatgccgacc gtgccgcagt cttagcagct tatcaaactt    300
cggttcttaa catagagcga aatactatgt tattgactgg gtacttcaag cagttagttt    360
tagacttaac tggttatgtg ggtgccagcg tatatcctat cttacctttc atgattacag    420
gagatcagtc tatgatggtt gactccatta aagttaacat gaaaaatgtc tttgatgata    480
agcatgagca ggagatagtc ctacctattc atcctgcttg ctttgtgtca accatcactg    540
aggacacttc ttccgtagta tacgccgacg gagatgaact gtattcagtg catgttagac     600
acgcagacat gactatgtat gtcaatgtgc ttggtgaaac cgtcgagacc aggcagctgt     660
ctatgatagg cgactccatc gttcctgatg atttcgcgcc ttccctgctg atattgagat     720
tcagtcaaga ttcagtcgga gaggttttct atcttagtca tgacaacgtg aaaaagtttc     780
taggctacag tcttgaatat accgacaagt acagtatatt tgacgtagcc agacgcgtgt     840
ccacgacgcg taacaaaata attgatggat tctgctctgt cgatggtgtg ccgtatcttg     900
atggacggtt catctatcaa ccgagcggaa ttagtgcgga tagtaatatc tgtgctatat     960
ataattcata cgttttagac gtgcttagat acattactga gtgtgaggtt gatacgttaa    1020
ggtcggtgta cgaccgaact tcgtcaactg cattctcaaa gaccgatgtc ttgacatcga    1080
gtctgctaac catgcaaagt aacatttcag ccctatctgc cgctaccccc caattggcga    1140
atgatgtgat cacgttcgat tctaccgatc tactttctct tgggacagta ttgaccgtgt    1200
cgaatgagtt tacagctgat gatacaacat tgagtactag tcttgcgggt cactgccaag    1260
ttgactacag cgagggatcg ccccaagaca agagcatgag tatacctgta agttgtgact    1320
cgtcgcagct tgcgtcatct accgtccact cttactcagc tgacatactg ggacatggac    1380
ttaagggtga ccgaaacatg aacttaatga taaatgtacc tggacttatg aacccccaga    1440
aagtaacggt tgattatgtc tattcggatg gctacaaact gaactttgct tcggtggttg    1500
cccctgacgc gcctttctgg attaacgcaa ctctgcaact tagtgtgtcg ccttctgcgc    1560
ataatatgct gagtaagtta acaccattgg ataatgatgc atgtcctggg cttaaagctc    1620
aggcaaatac gcctgtactt gtatccatga ccatcaatct tgatgacgcc actcctgctt    1680
taggaggaga ggtgattcaa aattgtgtgt ttaagataca ccacggcgat gatgtgtata    1740
gctttgtcac cgattttgat gtcataagtt atacctcaac gtccgggact aattgtttga    1800
agcttatatc aagcgtggac atcaccagtc agcttccctc tgatatggtg atctacgtga    1860
tgaatggatc gcctgatgcc gctttcatat ccggtgattc cattaatatg tcatcagtgg    1920
actggcacca gtccaccagc cagaccgtgg gaaattatgt ctataccacg atgaaggcct    1980
attggaatgt aacgtcgtat aatgttgagg ctcgtcctta cgccacgtac gtacctggaa    2040
aaattaactt tacggccgta gatcacgctg atgttttcgt agatgactat aacaccggcg    2100
ttaattcata tgtgatcgta aatagtagaa tatattataa gggaacccct ctatatattg    2160
aggtaccaag cggctcattc atcaaggtga gctacttcac aagccctttg aagaacccta    2220
ctgtggacac gtataacgct gaaatttctc gcaattcagc gtatctaatt aaagcaaatg    2280
cttcattaga ttcagtggcc gcaatgctaa acaatatatc gaatcgaatc gatgcgatgg    2340
aacgtttgat ggagcccaca cgtgcgcagc agattgcagg agtagtctca agcataggtg    2400
gagtcatctc actcggaatg ccattgctcg gagcgatcgt ggtaaccatc ggtaccatta    2460
tctccattgc tgacccagac aaacagggca ttgattacca ttcggtagcc aatgccttta    2520
tgtcctggtg tcagtatgcg gcagtctgta ggtatgaata tggacttctg aagcgtgggg    2580
atgagaaact agatgtgttg tcatttatgc cgaaacgtgt cgtgtcggat ttcaagaaca    2640
aacccgacgt tattagtctc ccagagctag gtgagtcagt actacgtgga tcgagcactg    2700
attatctaga tacggggatt aatatcatat ataatgatat gcaattactc ggacaaggca    2760
aactctccga ctggctcaac aaaactgtga gcaaggtgga gaataacgct gccaacttct    2820
ttgagaggaa tttggttaaa agtctagcga ataaggaggt cctaccaatg catgctcgag    2880
ttgagattac tcaaaccgag aaaattggtg atgtgtatag gaccacaatc ctatatacag    2940
ggataaatga aggatcgtat ttgggtggag atgtctttgc ttcgcggttg ggggacaaaa    3000
acatcttgcg tatgaatgga tttgagagcg gacctggaag gttcaatgct atcgtcgaat    3060
caactactga agtaggcaac tttcgtgtag ttgattggac ggtgtctgga atgtctaggt    3120
acgaaattta tgctgctgcc ggtgaagtat atccgagtaa agatccctct catgctgacg    3180
tacagctgct atacgagagc atagttcggg atttaaccac tcgggatggt agcttcgttt    3240
tgaagcatca tgatgtcctg cttctggctg ggcgacttga cgcttttgag gagctaatca    3300
taaaaaatgc ctctaattac caatatgcat ttattggttc aaactgtcaa aattatgcgc    3360
atgacgtggt tgacatcttg actaagttca aacgaccaca gaggtggatt aaagatgatg    3420
acttcaagtt gtacatccaa tctatctatg atgcattgtg atatgtacca gccagggctc    3480
agatgtatgc gtacttctga gtaaaatgat                                     3510
<210>8
<211>3510
<212>DNA
<213>人工序列
<220>
<223>
<400>8
ccgttttgga gcggtaccga ataggattac tgcagtcttt gcaaacccta cacatgttgc      60
acaaggccct gcacggtttg gcacttgtag actaagctct ataggcgtta cctgaccaat     120
gccaggcctt agagtgttta tacgaatgat tatacctcgc gctactagtt aactaataac     180
gagttgacag gttatactac tttagcaata gttaacccca actcttccga gttttacttg     240
aatcgtttga tttctgatgc ctacggctgg cacggcgtca gaatcgtcga atagtttgaa     300
gccaagaatt gtatctcgct ttatgataca ataactgacc catgaagttc gtcaatcaaa     360
atctgaattg accaatacac ccacggtcgc atataggata gaatggaaag tactaatgtc     420
ctctagtcag atactaccaa ctgaggtaat ttcaattgta ctttttacag aaactactat     480
tcgtactcgt cctctatcag gatggataag taggacgaac gaaacacagt tggtagtgac     540
tcctgtgaag aaggcatcat atgcggctgc ctctacttga cataagtcac gtacaatctg     600
tgcgtctgta ctgatacata cagttacacg aaccactttg gcagctctgg tccgtcgaca     660
gatactatcc gctgaggtag caaggactac taaagcgcgg aagggacgac tataactcta     720
agtcagttct aagtcagcct ctccaaaaga tagaatcagt actgttgcac tttttcaaag     780
atccgatgtc agaacttata tggctgttca tgtcatataa actgcatcgg tctgcgcaca     840
ggtgctgcgc attgttttat taactaccta agacgagaca gctaccacac ggcatagaac     900
tacctgccaa gtagatagtt ggctcgcctt aatcacgcct atcattatag acacgatata     960
tattaagtat gcaaaatctg cacgaatcta tgtaatgact cacactccaa ctatgcaatt    1020
ccagccacat gctggcttga agcagttgac gtaagagttt ctggctacag aactgtagct    1080
cagacgattg gtacgtttca ttgtaaagtc gggatagacg gcgatggggg gttaaccgct    1140
tactacacta gtgcaagcta agatggctag atgaaagaga accctgtcat aactggcaca    1200
gcttactcaa atgtcgacta ctatgttgta actcatgatc agaacgccca gtgacggttc    1260
aactgatgtc gctccctagc ggggttctgt tctcgtactc atatggacat tcaacactga    1320
gcagcgtcga acgcagtaga tggcaggtga gaatgagtcg actgtatgac cctgtacctg    1380
aattcccact ggctttgtac ttgaattact atttacatgg acctgaatac ttgggggtct    1440
ttcattgcca actaatacag ataagcctac cgatgtttga cttgaaacga agccaccaac    1500
ggggactgcg cggaaagacc taattgcgtt gagacgttga atcacacagc ggaagacgcg    1560
tattatacga ctcattcaat tgtggtaacc tattactacg tacaggaccc gaatttcgag    1620
tccgtttatg cggacatgaa cataggtact ggtagttaga actactgcgg tgaggacgaa    1680
atcctcctct ccactaagtt ttaacacaca aattctatgt ggtgccgcta ctacacatat    1740
cgaaacagtg gctaaaacta cagtattcaa tatggagttg caggccctga ttaacaaact    1800
tcgaatatag ttcgcacctg tagtggtcag tcgaagggag actataccac tagatgcact    1860
acttacctag cggactacgg cgaaagtata ggccactaag gtaattatac agtagtcacc    1920
tgaccgtggt caggtggtcg gtctggcacc ctttaataca gatatggtgc tacttccgga    1980
taaccttaca ttgcagcata ttacaactcc gagcaggaat gcggtgcatg catggacctt    2040
tttaattgaa atgccggcat ctagtgcgac tacaaaagca tctactgata ttgtggccgc    2100
aattaagtat acactagcat ttatcatctt atataatatt cccttgggga gatatataac    2160
tccatggttc gccgagtaag tagttccact cgatgaagtg ttcgggaaac ttcttgggat    2220
gacacctgtg catattgcga ctttaaagag cgttaagtcg catagattaa tttcgtttac    2280
gaagtaatct aagtcaccgg cgttacgatt tgttatatag cttagcttag ctacgctacc    2340
ttgcaaacta cctcgggtgt gcacgcgtcg tctaacgtcc tcatcagagt tcgtatccac    2400
ctcagtagag tgagccttac ggtaacgagc ctcgctagca ccattggtag ccatggtaat    2460
agaggtaacg actgggtctg tttgtcccgt aactaatggt aagccatcgg ttacggaaat    2520
acaggaccac agtcatacgc cgtcagacat ccatacttat acctgaagac ttcgcacccc    2580
tactctttga tctacacaac agtaaatacg gctttgcaca gcacagccta aagttcttgt    2640
ttgggctgca ataatcagag ggtctcgatc cactcagtca tgatgcacct agctcgtgac    2700
taatagatct atgcccctaa ttatagtata tattactata cgttaatgag cctgttccgt    2760
ttgagaggct gaccgagttg ttttgacact cgttccacct cttattgcga cggttgaaga    2820
aactctcctt aaaccaattt tcagatcgct tattcctcca ggatggttac gtacgagctc    2880
aactctaatg agtttggctc ttttaaccac tacacatatc ctggtgttag gatatatgtc    2940
cctatttact tcctagcata aacccacctc tacagaaacg aagcgccaac cccctgtttt    3000
tgtagaacgc atacttacct aaactctcgc ctggaccttc caagttacga tagcagctta    3060
gttgatgact tcatccgttg aaagcacatc aactaacctg ccacagacct tacagatcca    3120
tgctttaaat acgacgacgg ccacttcata taggctcatt tctagggaga gtacgactgc    3180
atgtcgacga tatgctctcg tatcaagccc taaattggtg agccctacca tcgaagcaaa    3240
acttcgtagt actacaggac gaagaccgac ccgctgaact gcgaaaactc ctcgattagt    3300
attttttacg gagattaatg gttatacgta aataaccaag tttgacagtt ttaatacgcg    3360
tactgcacca actgtagaac tgattcaagt ttgctggtgt ctccacctaa tttctactac    3420
tgaagttcaa catgtaggtt agatagatac tacgtaacac tatacatggt cggtcccgag    3480
tctacatacg catgaagact cattttacta                                     3510

Claims (6)

1、一种提高水稻对矮缩病毒抗性的方法,是将水稻矮缩病毒的S2基因的干扰RNA的编码基因导入水稻细胞或组织,得到对矮缩病毒抗性提高的水稻;
所述水稻矮缩病毒的S2基因的干扰RNA,是正义链的核苷酸序列如序列表中SEQ IDNo:5所示,反义链的核苷酸序列如序列表中SEQ ID No:6所示的双链RNA。
2、根据权利要求1所述的方法,其特征在于:所述水稻矮缩病毒的S2基因的干扰RNA的编码基因通过含有所述水稻矮缩病毒的S2基因的干扰RNA的编码基因的RNAi植物表达载体导入水稻细胞或组织。
3、根据权利要求2所述的方法,其特征在于:用于构建所述RNAi植物表达载体的出发载体为pFGC1008、pCAMBIA1300、pCAMBIA1301、pCAMBIA3301、pBI121或pBin19。
4、根据权利要求3所述的方法,其特征在于:所述RNAi植物表达载体为pFGC1008-S2RNAi。
5、根据权利要求1-4任一所述的方法,其特征在于:将所述水稻矮缩病毒的S2基因的干扰RNA的编码基因导入水稻细胞或组织为农杆菌介导法、基因枪法、电击法、花粉管导入法或脂质体融合法。
6、根据权利要求1-4任一所述的方法,其特征在于:所述水稻的品种为中花8号、中花11号、秀水11或爱知旭。
CN200510114386A 2005-10-24 2005-10-24 一种提高水稻对矮缩病毒抗性的方法 Expired - Fee Related CN100575486C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200510114386A CN100575486C (zh) 2005-10-24 2005-10-24 一种提高水稻对矮缩病毒抗性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200510114386A CN100575486C (zh) 2005-10-24 2005-10-24 一种提高水稻对矮缩病毒抗性的方法

Publications (2)

Publication Number Publication Date
CN1955287A CN1955287A (zh) 2007-05-02
CN100575486C true CN100575486C (zh) 2009-12-30

Family

ID=38062836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510114386A Expired - Fee Related CN100575486C (zh) 2005-10-24 2005-10-24 一种提高水稻对矮缩病毒抗性的方法

Country Status (1)

Country Link
CN (1) CN100575486C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154353A (zh) * 2010-12-31 2011-08-17 中国农业科学院植物保护研究所 抗小麦矮缩病毒的rna干涉载体、构建方法及其在小麦遗传转化中的应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194431B (zh) * 2013-04-17 2014-07-09 北京大学 Ring1蛋白在提高植物对水稻矮缩病毒抗性中的应用
CN105794561B (zh) * 2016-03-23 2019-01-01 浙江省农业科学院 油菜素唑提高水稻抗水稻黑条矮缩病毒病的应用及方法
CN112390866B (zh) * 2019-08-14 2022-07-15 北京大学 OsARF12基因在提高水稻对水稻矮缩病毒抗性中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Identification of an RNA Silencing Suppressor from a PlantDouble-Stranded RNA Virus. Xuesong Cao等.Journal of Virology,Vol.79 No.20. 2005
Identification of an RNA Silencing Suppressor from a PlantDouble-Stranded RNA Virus. Xuesong Cao等.Journal of Virology,Vol.79 No.20. 2005 *
水稻矮缩病毒基因组及毒粒三维结构的研究进展. 陈茂等.植物保护学报,第32卷第2期. 2005
水稻矮缩病毒基因组及毒粒三维结构的研究进展. 陈茂等.植物保护学报,第32卷第2期. 2005 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154353A (zh) * 2010-12-31 2011-08-17 中国农业科学院植物保护研究所 抗小麦矮缩病毒的rna干涉载体、构建方法及其在小麦遗传转化中的应用

Also Published As

Publication number Publication date
CN1955287A (zh) 2007-05-02

Similar Documents

Publication Publication Date Title
Zhang et al. OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean
Lata et al. Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress
CN102124111B (zh) 参与生物合成的新基因
AU2008291827B2 (en) Plants having increased tolerance to heat stress
CN107164347A (zh) 控制水稻茎秆粗度、分蘖数、穗粒数、千粒重和产量的理想株型基因npt1及其应用
US20100192254A1 (en) Method of increasing resistance against soybean rust in transgenic plants
Undan et al. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.)
Zhang et al. Wheat TabZIP8, 9, 13 participate in ABA biosynthesis in NaCl-stressed roots regulated by TaCDPK9-1
Shekhawat et al. Transgenic banana plants overexpressing MusabZIP53 display severe growth retardation with enhanced sucrose and polyphenol oxidase activity
US20160002648A1 (en) Genes for improving nutrient uptake and abiotic stress tolerance in plants
CN108642067B (zh) 一种水稻胚乳粉质相关的基因OsHsp70cp-2及其编码蛋白质和应用
US20120198587A1 (en) Soybean transcription factors and other genes and methods of their use
CN107759676B (zh) 一种植物直链淀粉合成相关蛋白Du15与其编码基因及应用
CN100575486C (zh) 一种提高水稻对矮缩病毒抗性的方法
WO2020208017A1 (en) Diagnostic kit and method for sweet-based rice blight resistance and resistant breeding lines
Van Hove et al. Transcriptional profiling of the lectin ArathEULS3 from Arabidopsis thaliana toward abiotic stresses
CN106636180B (zh) 一种用于得到对盐胁迫高敏感的植物的质粒载体及方法
EP1641921B1 (en) Nod-factor perception
Xue et al. Cloning and characterization of a novel secretory root-expressed peroxidase gene from common bean (Phaseolus vulgaris L.) infected with Fusarium oxysporum f. sp. phaseoli
CN106191001A (zh) 磷脂酶PLDζ1基因在提高植物耐盐性中的应用
CN110468128A (zh) 一株高抗褐飞虱及耐盐的水稻突变体miR393am及其应用
US20180223300A1 (en) Methods and Materials for Producing Fruit of Altered Size
KR102190603B1 (ko) 고추 녹광 품종 유래 ERF 전사인자 CaDRAT1을 이용한 식물체의 건조 스트레스 증진방법
Lim et al. The pepper AP2 domain-containing transcription factor CaDRAT1 plays a negative role in response to dehydration stress
CN112501184B (zh) 大豆的GmMT1基因和含有GmMT1基因的载体及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091230

Termination date: 20131024