CN100567884C - 基于移相干涉的二次共焦测量方法与装置 - Google Patents

基于移相干涉的二次共焦测量方法与装置 Download PDF

Info

Publication number
CN100567884C
CN100567884C CNB2008100972101A CN200810097210A CN100567884C CN 100567884 C CN100567884 C CN 100567884C CN B2008100972101 A CNB2008100972101 A CN B2008100972101A CN 200810097210 A CN200810097210 A CN 200810097210A CN 100567884 C CN100567884 C CN 100567884C
Authority
CN
China
Prior art keywords
confocal
spectroscope
phase
light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2008100972101A
Other languages
English (en)
Other versions
CN101275822A (zh
Inventor
谭久彬
刘俭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CNB2008100972101A priority Critical patent/CN100567884C/zh
Publication of CN101275822A publication Critical patent/CN101275822A/zh
Application granted granted Critical
Publication of CN100567884C publication Critical patent/CN100567884C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种基于移相干涉的二次共焦测量方法与装置,在该装置中,激光器发出线偏振光束,经过准直扩束镜组后成为近似理想平面波;经过偏振分光镜和四分之一波片之后成为圆偏振光束;经过分光镜分为两束光,第一束光由分光镜透射,经过反射镜反射,分光镜反射,经收集物镜会聚在由第二针孔和探测器组成的点探测器;第二束光由分光镜反射,经过探测聚焦物镜、分光镜会聚在测量表面上,经过测量表面反射,经过探测聚焦物镜、经收集物镜会聚在点探测器;第一微驱动器用于驱动反射镜改变参考光和测量光的相位差,实现移相干涉;测量点初始位置为第一种共焦状态。本发明还公开了一种基于移相干涉的二次共焦测量方法。

Description

基于移相干涉的二次共焦测量方法与装置
技术领域
本发明属于超精密测量领域,是一种用于微结构光学元件、微结构机械元件、集成电路元件中三维微细结构、微台阶、微沟槽线宽、深度及表面形状测量的超精密非接触快速、大范围扫描测量方法与装置。
背景技术
共焦点扫描测量是微光学、微机械、微电子领域中测量三维微细结构、微台阶、微沟槽线宽、深度及表面形状的重要技术手段之一。其基本思想由M.Minsky于1957年提出,并于1961年获得了美国专利,其基本思想是通过引入针孔探测器抑制杂散光,并产生了轴向层析能力,该技术的不足之处在于,轴向响应信号在测量面准焦区域附近测量灵敏度不高,因此只适用于离焦位移测量。此后,在M.Minsky提出的共焦扫描成像技术基础上衍生出光纤共焦显微测量、差动共焦扫描测量等方法与装置多种类型的共焦测量原理。
光纤共焦显微镜如实用新型专利(专利号99240337.5)等采用光纤作为探测接收器,利用光纤的属于波导元件的特点提高了测量信号的相干性,这类共焦测量方法可以改善由于共焦系统中非理想点探测器尺寸对测量光相干性的影响作用,有利于提高干涉条纹对比度,其位移量输出对应测量光信号强度变化。
差动共焦扫描测量包括具有高空间分辨成像能力的共焦干涉显微镜(公开号CN1614457A)、具有高空间分辨力的整形环形光束式差动共焦传感器(公开号CN1529123A)、三差动共焦显微成像方法与装置(公开号CN1587898A)、三差动共焦显微三维超分辨成像方法(公开号CN1609590A)、三维超分辨共焦阵列扫描显微探测方法及装置(公开号CN1632448A)、整形环形光三差动共焦显微镜(公开号CN1588157A)、具有高空间分辨力的差动共焦扫描检测方法(公开号CN1527026A)等,差动共焦扫描测量技术克服了Minsky提出的共焦方法只能进行相对位置测量的不足,产生了跟踪零点,并扩展了测量线性范围。但是差动共焦扫描测量方法与Minsky提出的共焦测量方法的共同之处在于,二者都是基于位移-强度变化关系的测量方法,这类测量方法存在易受测量光信号强度易受测量表面反射率差异和测量工件倾斜和曲面轮廓变化影响的不足,这种影响直接导致已经标定的信号强度和位移输出关系曲线变化,因此会带来较大的测量误差,这种测量原理缺陷约束了共焦测量技术在表面反射率变化较大和曲面轮廓测量中的应用。另外,共焦和差动共焦测量轴向分辨力与物镜数值孔径大小密切相关,数值孔径越大,轴向分辨力越高。但是,增大物镜数值孔径会使轴向响应范围迅速减小。
共焦点扫描测量方法并不是测量三维微细结构、微台阶、微沟槽线宽、深度及表面形状的唯一方法,基于干涉和移项干涉的测量方法也是微结构超精密测量领域的重要技术途径。干涉测量的本质是将位移变化转换成位相变化实现微结构和微位移测量,这类测量技术很好地解决了测量表面反射率和表面倾斜对测量结果的影响问题,但是由于位相测量值求解具有周期性,因此这类测量方法不能直接用于台阶高度测量,只能获得相对位移变化,也不能直接用于绝对位移测量。
本发明提供一种基于移相干涉的二次共焦测量方法与装置,利用共焦点探测器的轴向层析作用,通过两次移相干涉获得两种共焦状态下的相位信息,从而实现离焦位移的解析求解,本发明目的是克服传统共焦测量技术易受测量表面反射率差异、测量工件倾斜和曲面轮廓变化影响的不足,以及干涉测量存在位相求解周期性,不能直接用于台阶测量的不足。
发明内容
本发明目的在于提供一种适用于三维微细结构、微台阶、微沟槽线宽、深度及表面形状测量的超精密非接触快速、大范围扫描测量方法与装置。
本发明所述装置包括:激光器(1)、准直聚焦物镜(2)、第一针孔(3)、准直扩束物镜(4)、偏振分光镜(5)、四分之一波片(6)、分光镜(7)、探测聚焦物镜(10)、收集物镜(12)、第二针孔(13)、探测器(14);反射镜(8)、第一微驱动器(9)、第二微驱动器(11);其中,所述激光器(1)发出线偏振光束,经过准直聚焦物镜(2)、第一针孔(3)、准直扩束物镜(4)构成的准直扩束镜组后成为近似理想平面波;经过偏振分光镜(5)和四分之一波片(6)之后成为圆偏振光束;经过分光镜(7)分为两束光,第一束光由分光镜(7)透射,经过反射镜(8)反射,分光镜(7)反射,经收集物镜会聚在由第二针孔(13)和探测器(14)组成的点探测器;第二束光由分光镜(7)反射,经过探测聚焦物镜(10)、分光镜(7)会聚在测量表面上,经过测量表面反射,经过探测聚焦物镜(10)、经收集物镜会聚在点探测器;第一微驱动器(9)用于驱动反射镜(8)改变参考光和测量光的相位差,实现移相干涉;测量点初始位置为第一种共焦状态。
进一步的,上述装置具有由第二针孔13和探测器14组成的点探测器,其作用是在测量光束与参考光束干涉中引入轴向层析能力,从而使由轴向离焦产生的相位变化与离焦位移相关;
进一步的,所述装置具有第一、第二微驱动器9和11,第一微驱动器9的作用是产生移相干涉参考光相位变化,第二微驱动器11的作用是产生相对于初始测量共焦状态而言的第二种共焦状态,从而获得离焦量求解的关联方程,实现离焦量求解计算。
本发明还提供了一种基于移相干涉的二次共焦测量方法,该方法包括以下步骤:
在第一种共焦状态下,计算测量光相对于参考光的相位;
在第二共焦状态下,计算测量光相对于参考光的相位;
测量参考面复位;以及
第一共焦状态测量点离焦位移求解。
该方法进一步的是基于移相干涉的二次共焦测量方法对位移变化的测量输出是基于位移和两次移相干涉相位转换原理,而不是位移-强度转换关系,因此克服了传统共焦测量技术易受测量表面反射率差异和测量工件倾斜和曲面轮廓变化影响的不足,所述测量方法可以应用于测量表面反射率差异较大及曲面轮廓的超精密非接触测量,这一技术特征显著区别于现有共焦测量技术;
该方法进一步的是基于移相干涉的二次共焦测量方法利用共焦测量原理的轴向强度层析特性,建立了轴向强度变化与轴向位移相位变化的关联关系,从而获得一个可直接求解离焦位移值的解析方程,获得理论零点,实现了绝对位置测量,这一技术特征显著区别于现有共焦测量技术和干涉扫描测量技术;
该方法进一步的是基于移相干涉的二次共焦测量方法通过离焦位移值的解析方程求解,直接获得离焦位移测量值,这一过程不存在位相测量的周期性问题,因此不需要通过位相展开计算就可以得到大于测量光束半波长的离焦位移,移相共焦测量方法可直接用于台阶轮廓测量,这一技术特征显著区别于现有干涉扫描测量技术。
本发明创新性在于:针对现有传统共焦测量技术易受测量表面反射率差异、测量工件倾斜和曲面轮廓变化影响的不足,以及干涉测量存在位相求解周期性,不能直接用于台阶测量的不足,提出一种基于移相干涉的二次共焦测量方法与装置,利用共焦点探测器的轴向强度层析作用,通过两次移相干涉获得两种离焦状态下的相位,建立轴向离焦位移与相位状态的关联关系,获得理论零点,实现绝对离焦位移的直接求解。
本发明的良好效果在于:
1)克服了传统共焦测量技术易受测量表面反射率差异、测量工件倾斜和曲面轮廓变化影响的不足,基于移相干涉的二次共焦测量方法与装置可以应用于测量表面反射率差异较大及曲面轮廓的超精密非接触测量;
2)获得一个可直接求解离焦位移值的解析方程,获得理论零点,实现了绝对位置测量;
3)直接获得离焦位移测量值,这一过程不存在位相测量的周期性问题,因此不需要通过位相展开计算就可以得到大于测量光束半波长的离焦位移,可直接用于台阶轮廓测量;
4)与共焦、差动共焦测量方法相比,具有更大的量程范围;
5)在焦面附近测量区域内,不存在测量非线性问题。
附图说明
图1为所述基于移相干涉的二次共焦测量装置示意图。
图2为所述基于移相干涉的二次共焦测量方法理论分析坐标定义图。
图3为所述基于移相干涉的二次共焦测量方法探测聚焦物镜移动及复位示意图。
图4为所述基于移相干涉的二次共焦测量方法量程范围说明。
具体实施方式:
如图1所示,本发明的提供基于移相干涉的二次共焦测量装置包括:激光器1;准直聚焦物镜2;第一针孔3;准直扩束物镜4;偏振分光镜5;四分之一波片6;分光镜7;反射镜8;第一微驱动器9;探测聚焦物镜10;第二微驱动器11;收集物镜12;第二针孔13;探测器14。
本发明具体实施步骤:
第一步,在第一种共焦状态下,计算测量光相对于参考光的相位
如图1所示,所述激光器1发出线偏振光束,经过准直聚焦物镜2、第一针孔3、准直扩束物镜4构成的准直扩束镜组后成为近似理想平面波;经过偏振分光镜5和四分之一波片6之后成为圆偏振光束;经过分光镜7分为两束光,第一束光由分光镜7透射,经过反射镜8反射,分光镜7反射,经收集物镜会聚在由第二针孔13和探测器14组成的点探测器上,该光束称为参考光;第二束光由分光镜7反射,经过探测聚焦物镜10、分光镜7会聚在测量表面上,经过测量表面反射,经过探测聚焦物镜10、经收集物镜会聚在点探测器上,该光束称为测量光;第一微驱动器9用于驱动反射镜8改变参考光和测量光的相位差,实现移相干涉;测量点初始位置为第一种共焦状态。
如附图2所示,由光学衍射理论分析可知,在点扫描测量系统中,忽略测量点尺寸和物体厚度影响,将探测聚焦物镜光瞳和收集物镜视为薄透镜,则测量光在第二针孔13和探测器14共同构成的点探测器上振幅响应如下:
U ( r 2 ) = R ( r 1 ) H ( S ( r 1 ) ) × ∫ ∫ - ∞ ∞ P 1 ( r p 1 ) exp ( - iu | r p 1 | 2 / 2 ) d r p 1 - - - ( 1 )
× ∫ ∫ - ∞ ∞ P 2 ( r p 2 ) exp ( - iu | r p 2 | 2 / 2 ) dr p 2
式中, u = kΔz a 2 f 2
a为探测聚焦物镜和收集物镜的通光孔径的半径;
f为探测聚焦物镜和收集物镜焦距;
k=2π/λ为波数,λ为波长;
r1=(x1,y1),为物空间坐标系的位置矢量;
r2=(x2,y2),为像空间(探测器空间)坐标系的位置矢量;
rp1=(xp1,yp1),探测聚焦物镜光瞳坐标系的位置矢量;
rp2=(xp2,yp2),收集物镜光瞳坐标系的位置矢量;
R(r1)表示测量点振幅反射率函数;
H(S(r1))表示测量光反射方向变化引起的探测器14上振幅响应变化函数;
Δz表示测量点相对于探测聚焦物镜焦面的离焦位移,|Δz|为离焦量;
P1(rp1)=1,表示探测聚焦物镜光瞳函数;
P2(rp2)=1,表示收集物镜光瞳函数;
D为探测聚焦物镜光瞳和收集物镜光瞳所在平面的光程距离;
T(r1,Δz),表示公式(1)中省略的光束传播衍射系数。
T(r1,Δz)=A′exp(iφ(r1,Δz))                  (2)
则,
U(r2)=R(r1)H(S(r1))·T(r1,Δz)×sinc2(u/4π)    (3)
定义αi为第一微驱动器9用于驱动反射镜8改变参考光和测量光的相位差,i表示移相状态序号,AR为经过反射镜8和分光镜7反射后,入射到收集物镜的参考光振幅。参考光在像平面上的振幅分布为UR(r2)=ARexp(i·αi)
限定第二针孔13通光尺寸小于10微米,则测量光和参考光在探测器14上的叠加为完全相关叠加。探测器14光强度响应如公式(4)。
I i n ( r 2 , u n ) = A R 2 + sin c 4 ( u n / 4 π ) · R 2 ( r 1 ) H 2 ( S ( r 1 ) ) · A ′ 2 - - - ( 2 )
+ 2 sin c 2 ( u n / 4 π ) · R ( r 1 ) H ( S ( r 1 ) ) · A R A ′ cos ( α i + φ n ( r 1 , Δ z n ) )
n表示扫描测量点序号。φn(r1,Δzn)表示第n个扫描测量点,在第一共焦状态下,测量光相对于参考光的相位。
以四步移相法为例,利用第一微驱动器9驱动反射镜8,分别给出α1=0,α2=π/2,α3=π,α4=3π/2的移相状态。四步移相方法为已知技术。完成四步移相之后,还应移相π/2,实现参考镜相位状态复位。在四种移相状态下,探测器14的光强度响应分别如下
I 1 = I B ( r 1 ) + I A ( r 1 ) sin c 2 ( u n / 4 π ) cos ( φ n ( r 1 , Δ z n ) ) I 2 = I B ( r 1 ) - I A ( r 1 ) sin c 2 ( u n / 4 π ) sin ( φ n ( r 1 , Δ z n ) ) I 3 = I B ( r 1 ) - I A ( r 1 ) sin c 2 ( u n / 4 π ) cos ( φ n ( r 1 , Δ z n ) ) I 4 = I B ( r 1 ) + I A ( r 1 ) sin c 2 ( u n / 4 π ) sin ( φ n ( r 1 , Δ z n ) ) - - - ( 5 )
I1、I2、I3、I4为第一种共焦状态下,与四种移相状态对应的探测器14的强度输出。求解公式(5),得第n个扫描测量点,在第一共焦状态下测量光相对于参考光的相位
φn(r1,Δzn)=tg-1[(I4-I2)/(I1-I3)]            (6)
第二步,在第二共焦状态下,计算测量光相对于参考光的相位
利用第二微驱动器11驱动探测聚焦物镜10,改变测量点相对于测量物镜10焦面的位置关系,产生第二种共焦状态,如图3所示。第二种共焦状态下,第n个扫描测量点测量光相对于参考光的相位φn-de(r1,Δzn±εde),“±”表示操作者对位移方向正方向的定义,取+或-不影响测量结果的值。
重复公式(5)的移相干涉过程,并根据公式(6)得第二共焦状态下,测量光相对于参考光的相位φn-de(r1,Δzn±εde)的计算公式(7)
φn-de(r1,Δzn±εde)=tg-1((I′4-I′2)/I′1-I′3)        (7)
εde表示第二微驱动器11驱动探测聚焦物镜10的位移移动量,限定0≤εde<λ/4;
ϵ de = λ 2 π | φ n - de ( r 1 , Δ z n + ϵ de ) - φ n ( r 1 , Δ z n ) |
I′1,I′2,I′3,I′4为第二种共焦状态下,与四种移相状态对应的探测器14的强度输出。
第三步,测量参考面复位
如图3所示,探测聚焦物镜的焦面是测量参考面,第二微驱动器11驱动探测聚焦物镜10产生测量参考面移动,因此需要将测量参考面复位。复位状态下,第n个扫描测量点测量光相对于参考光的相位
Figure C20081009721000112
重复公式(5)的移相干涉过程,由公式(6)得公式(8)
φ n - re ( r 1 , Δ z n ± ϵ de + ‾ ϵ re ) = tg - 1 ( ( I ′ ′ 4 - I ′ ′ 2 ) / I ′ ′ 1 - I ′ ′ 3 ) - - - ( 8 )
εre表示第二微驱动器11驱动探测聚焦物镜10的复位位移移动量,限定0≤εre<λ/4;
ϵ re = λ 2 π | φ n - re ( r 1 , Δ z n + ϵ de - ϵ re ) - φ n - de ( r 1 , Δ z n + ϵ de ) |
I″1,I″2,I″3,I″4为复位状态下,与四种移相状态对应的探测器14的强度输出;“±”表示操作者对位移方向正方向的定义。参考面复位误差
Δεn=εrede            (9)
第四步,第一共焦状态测量点离焦位移求解
由方程组(6)和公式(7)(8),得
sin c 2 ( u n 4 π ) = K · sin c 2 ( u n ± u de n 4 π ) - - - ( 10 )
其中,
K = sin [ φ n - de ( r 1 , Δ z n ± ϵ de ) ] ( I 4 - I 2 ) sin [ φ n ( r 1 , Δ z n ) ] ( I 4 ′ - I 2 ′ ) , K ∈ [ 0 , + ∞ )
u de n = 2 π λ ϵ de a 2 f 2
通过求解方程(10),得第n个测量点un,继而得离焦位移Δzn。根据sinc函数属性可知,当|un|≤4π,且 | u de n | < < 4 &pi; 时,方程(10)解唯一。由于K∈[0,+∞),则
lim K &RightArrow; + &infin; [ 1 K sin c 2 ( u n 4 &pi; ) ] = 0 = sin c 2 ( u n &PlusMinus; u de n 4 &pi; ) , u n = &PlusMinus; 4 &pi; + &OverBar; u de n - - - ( 11 - 1 )
lim K &RightArrow; 0 [ K &CenterDot; sin c 2 ( u n &PlusMinus; u de n 4 &pi; ) ] = 0 = sin c 2 ( u n 4 &pi; ) , u n = + &OverBar; 4 &pi; - - - ( 11 - 2 )
取(11-1)和(11-2)解集合的交集,得方程(10)中“±”符号取“+”时,解的区间为(-4π,4π-ude n],与图4所示范围1相对应;“±”符号取“-”时,解的区间为[-4π+ude n,4π)与图4所示范围2相对应。解的区间就是本发明所提出的测量方法的轴向响应理论量程范围。以K=8, u de n = &PlusMinus; 0.15 为例,曲线(1)(2)的交点和曲线(1)(3)的交点分别为O+,O-,其横坐标值分别对应方程(10)的解un。解的符号表示离焦方向,与离焦正方向定义有关。
第五步,修正二次共焦引入的复位误差
考虑到第n个测量点和第n+1个测量点参考平面的一致性问题,需要修正探测聚焦物镜10复位引入的复位误差。利用公式(9)修正第四步Δzn求解结果
Δzn=Δzn-Δεn-1                    (12)

Claims (3)

1.一种基于移相干涉的二次共焦测量装置,其特征在于:包括:
激光器(1)、准直聚焦物镜(2)、第一针孔(3)、准直扩束物镜(4)、偏振分光镜(5)、四分之一波片(6)、分光镜(7)、探测聚焦物镜(10)、收集物镜(12)、第二针孔(13)、探测器(14);反射镜(8)、第一微驱动器(9)、第二微驱动器(11);其中,所述激光器(1)发出线偏振光束,经过准直聚焦物镜(2)、第一针孔(3)、准直扩束物镜(4)构成的准直扩束镜组后成为近似理想平面波;经过偏振分光镜(5)和四分之一波片(6)之后成为圆偏振光束;经过分光镜(7)分为两束光,第一束光由分光镜(7)透射,经过反射镜(8)反射,分光镜(7)反射,经收集物镜会聚在由第二针孔(13)和探测器(14)组成的点探测器;第二束光由分光镜(7)反射,经过探测聚焦物镜(10)、分光镜(7)会聚在测量表面上,经过测量表面反射,经过探测聚焦物镜(10)、经收集物镜会聚在点探测器;第一微驱动器(9)用于驱动反射镜(8)改变参考光和测量光的相位差,实现移相干涉;测量点初始位置为第一种共焦状态;
第二针孔(13)和探测器(14)组成的点探测器,用于在测量光束与参考光束干涉中引入轴向层析能力,从而使由轴向离焦产生的相位变化与离焦位移相关;并且,
第一微驱动器(9)用于产生移相干涉参考光相位变化,第二微驱动器(11)用于产生相对于初始测量离焦状态而言的第二种离焦状态,从而获得离焦量求解的关联方程,实现离焦量求解计算。
2.一种基于移相干涉的二次共焦测量方法,该方法包括以下步骤:
在第一种共焦状态下,计算测量光相对于参考光的相位;
在第二共焦状态下,计算测量光相对于参考光的相位;
测量参考面复位;以及
第一共焦状态测量点离焦位移求解;其中,
移相共焦测量方法对位移变化的测量输出是基于位移——两次移相干涉相位转换原理;
移相共焦测量方法利用共焦测量原理的轴向强度层析特性,建立了轴向强度变化与轴向位移相位变化的关联关系。
3.根据权利要求2所述的基于移相干涉的二次共焦测量方法,其特征在于:移相共焦测量方法通过离焦位移值的解析方程求解,直接获得离焦位移测量值。
CNB2008100972101A 2008-05-06 2008-05-06 基于移相干涉的二次共焦测量方法与装置 Expired - Fee Related CN100567884C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2008100972101A CN100567884C (zh) 2008-05-06 2008-05-06 基于移相干涉的二次共焦测量方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2008100972101A CN100567884C (zh) 2008-05-06 2008-05-06 基于移相干涉的二次共焦测量方法与装置

Publications (2)

Publication Number Publication Date
CN101275822A CN101275822A (zh) 2008-10-01
CN100567884C true CN100567884C (zh) 2009-12-09

Family

ID=39995493

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2008100972101A Expired - Fee Related CN100567884C (zh) 2008-05-06 2008-05-06 基于移相干涉的二次共焦测量方法与装置

Country Status (1)

Country Link
CN (1) CN100567884C (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929850B (zh) * 2009-06-26 2014-05-07 财团法人工业技术研究院 利用光学偏振特性的三维显微共焦测量系统与方法
CN101799273B (zh) * 2010-03-29 2011-08-24 华中科技大学 一种纳米级尺寸结构测量方法及装置
DE102011085599B3 (de) * 2011-11-02 2012-12-13 Polytec Gmbh Vorrichtung und Verfahren zur interferometrischen Vermessung eines Objekts
CN102944169B (zh) * 2012-11-26 2015-08-19 中国科学院长春光学精密机械与物理研究所 一种同步偏振相移干涉仪
CN103207532B (zh) * 2013-04-21 2014-10-22 中国科学院光电技术研究所 一种同轴检焦测量系统及其测量方法
CN103411558B (zh) * 2013-08-15 2015-12-09 哈尔滨工业大学 一种角谱扫描照明阵列式共焦微结构测量装置与方法
CN103630087B (zh) * 2013-12-19 2016-02-17 哈尔滨工业大学 基于空间平移变换的数字差动共焦测量装置与方法
JP6027204B1 (ja) * 2015-10-05 2016-11-16 Ckd株式会社 三次元計測装置
CN107560562B (zh) * 2016-06-30 2019-10-25 上海微电子装备(集团)股份有限公司 一种干涉式微观形貌测量系统及方法
CN107218903B (zh) * 2017-05-09 2019-05-17 中国科学院上海光学精密机械研究所 隐性结构光三维成像方法
CN107121069A (zh) * 2017-05-17 2017-09-01 南京理工大学 共聚焦非接触式位置传感器
CN110186388B (zh) * 2019-05-13 2021-04-06 天津大学 基于白光干涉光谱的同步相移测量系统与方法
CN111474734B (zh) * 2020-04-13 2022-11-22 宁波大学 一种大量程高频响光学共焦式测头
CN111474733B (zh) * 2020-04-13 2023-02-10 宁波大学 一种大量程高频响双物镜光学独立共焦式测头
WO2021226765A1 (zh) * 2020-05-09 2021-11-18 深圳中科飞测科技股份有限公司 测量系统和方法

Also Published As

Publication number Publication date
CN101275822A (zh) 2008-10-01

Similar Documents

Publication Publication Date Title
CN100567884C (zh) 基于移相干涉的二次共焦测量方法与装置
CN101469972B (zh) 长焦深超分辨二次共焦测量装置
CN100398980C (zh) 三维超分辨共焦阵列扫描显微探测方法及装置
Downs et al. Optical system for measuring the profiles of super-smooth surfaces
CN101509828B (zh) 差动共焦-低相干干涉组合折射率及厚度测量方法与装置
CN101520306B (zh) 基于空间载波的干涉共焦测量装置与方法
CN100523716C (zh) 复色超分辨差动共焦测量方法与装置
CN104296685B (zh) 基于差动sted测量光滑自由曲面样品的方法
CN102425998B (zh) 光学元件抛光表面质量全参数检测装置和检测方法
US9035235B2 (en) Method for reducing interference and crosstalk in double optical tweezers using a single laser source, and apparatus using the same
CN103105143A (zh) 基于被测表面荧光激发的差动共焦显微测量装置
CN102175426A (zh) 共焦干涉定焦及曲率半径测量方法
CN102818522A (zh) 相位共轭反射双通照明共焦显微装置
CN102759328A (zh) 基于椭球反射双通照明差动共焦测量装置与方法
CN103411941B (zh) 基于高级次轴对称偏振光的并行共焦显微成像方法及装置
CN102636118A (zh) 一种激光三差动共焦theta成像检测方法
CN103090786A (zh) 用于用干涉测量法测量物体的装置和方法
CN109341571A (zh) 一种双波长同步干涉的表面形貌测量装置和方法
CN105674875A (zh) 一种全视场低频外差点衍射干涉仪
CN105571516A (zh) 一种全视场低频外差干涉仪
CN201138196Y (zh) 一种微纳深沟槽结构测量装置
CN1016895B (zh) 表面三维形貌非接触测量仪
Manske et al. Multisensor technology based on a laser focus probe for nanomeasuring applications over large areas
CN100437022C (zh) 三差动共焦显微成像方法
CN101520305A (zh) 瞬间移相干涉二次共焦测量装置与方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091209

Termination date: 20130506