CN100553249C - 用于wcdma直放站系统的在频域实现的干扰抵消方法 - Google Patents

用于wcdma直放站系统的在频域实现的干扰抵消方法 Download PDF

Info

Publication number
CN100553249C
CN100553249C CNB2007101190713A CN200710119071A CN100553249C CN 100553249 C CN100553249 C CN 100553249C CN B2007101190713 A CNB2007101190713 A CN B2007101190713A CN 200710119071 A CN200710119071 A CN 200710119071A CN 100553249 C CN100553249 C CN 100553249C
Authority
CN
China
Prior art keywords
signal
frequency domain
sef
domain
adapting filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007101190713A
Other languages
English (en)
Other versions
CN101076007A (zh
Inventor
林家儒
牛凯
贺志强
林雪红
徐文波
田耘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CNB2007101190713A priority Critical patent/CN100553249C/zh
Publication of CN101076007A publication Critical patent/CN101076007A/zh
Application granted granted Critical
Publication of CN100553249C publication Critical patent/CN100553249C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15585Relay station antennae loop interference reduction by interference cancellation

Abstract

一种用于WCDMA直放站系统的在频域实现的干扰抵消方法,是基于时域中的数据块最小均方误差Block LMS计算方法和该块LMS算法中存在线性相关和线性卷积的过程,通过1/2重叠保留法的快速傅立叶变换FFT,在频域以直接相乘的计算方式实现快速相关和快速卷积,利用自适应滤波器在频域实现LMS算法;该方法主要包括四个循环执行的操作步骤。本发明方法在WCDMA系统中高码片速率的背景下,不仅能够有效提取出有用信号,保证算法的收敛性,并且大大降低了计算的工作量和复杂度。本发明方法效率高,速度快,可以方便地应用于实际通信系统中,具有较好的应用前景。

Description

用于WCDMA直放站系统的在频域实现的干扰抵消方法
技术领域
本发明涉及一种用于WCDMA直放站系统的在频域实现的干扰抵消方法,确切地说,涉及一种用于WCDMA直放站系统的自适应抵消输入信号中的干扰而获取有用信号的在频域实现的干扰抵消方法,属于无线通信的自适应滤波技术领域。
背景技术
在通信系统中,经常会遇到强干扰信号背景下如何检测和获取有用信号的问题,因此干扰抵消AIC(adaptive interference cancellation)是通信系统中的重要组成部分。自从1967年美国Bell实验室首先提出了自适应回声抵消后,自适应干扰抵消技术得到了较快的发展。目前,已经有多种自适应算法应用于干扰抵消滤波器,如基于最小均方误差LMS(least mean square)算法(参见《ModifiedLMS Algorithms for Speech Processing with an Adaptive Noise Canceller》,刊于IEEE Transactions on Speech and Audio Processing,vol.6,Jul.1998,pp.338-351)和最小二乘LS(least squares)算法(参见《Multichannel Recursive-Least-SquaresAlgorithms and Fast-Transversal-Filter Algorithms for Active Noise Control andSound Reproduction Systems》,刊于IEEE Transactions On Speech And AudioProcessing,vol.8,2000,pp.606-618.)等,这些算法已应用于多个领域。
在众多的改进LMS算法中,对时域信号进行操作的自适应块最小均方误差Block LMS算法,其滤波器的自适应过程是基于信号数据块进行的,这与传统的基于符号的LMS算法不同。其具体方法是:将输入的时域信号数据流u(n)经过串并变换后从L条支路中输出,其中每条支路的信号数据都以滤波器的抽头个数M作为块长组成一个数据块,则第k个时域信号数据块为AT(k),且AT(k)=[u(kL),u(kL+1),…,u(kL+L-1)],式中,u(kL+i)为第k个输入信号数据块在第i+1个支路的矢量表示,支路序列号i的取值范围是:[0,L-1],则有u(kL+i)=[u(kL+i),u(kL+i-1),…,u(kL+i-M+1)]T
再将上述输入信号数据块通过滤波器后,得到的输出信号为: y ( kL + i ) = w ^ T ( k ) u ( kL + i ) = Σ j = 0 M - 1 w ^ j ( k ) u ( kL + i - j ) , 式中,
Figure C20071011907100072
是第k个信号数据块所对应的滤波器抽头系数
Figure C20071011907100073
的转置,而 w ^ ( k ) = [ w ^ 0 ( k ) , w ^ 1 ( k ) , . . . , w ^ M - 1 ( k ) ] T . 因为人们通常是将误差信号e(kL+i)(在本发明的技术方案中,该误差信号被称之为有用信号)定义为期望信号r(kL+i)(在本发明的技术方案中,该期望信号被称之为被干扰信号)和滤波器输出信号y(kL+i)(在本发明的技术方案中,该输出信号被称之为干扰的估计值)的差,即误差信号e(kL+i)=r(kL+i)-y(kL+i)。根据LMS算法,为使误差信号的均方误差最小,则块LMS算法中的抽头系数更新为: w ^ ( k + 1 ) = w ^ ( k ) + μ Σ i = 0 L - 1 u ( kL + i ) e ( kL + i ) , 其中μ为迭代步长。
在干扰抵消系统中,人们可以利用上述所提到的各种自适应算法进行干扰抵消。但是当干扰延时很大时,自适应滤波器的抽头个数必须相当多,才能够足以抵消该干扰。尤其在WCDMA系统中,由于每个信号数据比特扩频为128个码片,而且,在数字通信系统中每个码片又被采样为多个样值,因此,在几微秒内干扰的记忆长度就可能跨越数百个样值,如此长的记忆长度必须使用抽头数量非常多的滤波器才能够抵消干扰。在这种情况下,如果在时域进行LMS算法,势必造成极其复杂的计算难度。虽然由于时间平均的作用,块LMS算法相对于传统的基于符号的LMS算法,可以获得更精确的梯度向量估计;但是,如果块LMS算法仍然在时域实现,在滤波器抽头个数相当多的情况下,海量计算将是不可避免的,这就势必影响信号的实时处理和实现。因此,如何对此方法进行改进就成为业内科技人员的一项研究热点。
发明内容
有鉴于此,本发明的目的是提供一种WCDMA直放站系统的在频域实现的干扰抵消方法,也就是提供一种采用自适应滤波器而抵消输入信号的干扰、并获取有用信号的频域干扰抵消的实现方法。该方法不仅有效地提取出有用信号,并且大大降低了计算的工作量和复杂度。
为了达到上述目的,本发明提供了一种用于WCDMA直放站系统的自适应抵消输入信号中的干扰而获取有用信号的频域干扰抵消的实现方法,其特征在于:该方法基于时域中的数据块最小均方误差(Block LMS,block least meansquare)计算方法和该数据块LMS算法中存在线性相关和线性卷积的过程,通过1/2重叠保留法的快速傅立叶变换FFT(fast fourier transforms)在频域以直接相乘的计算方式实现快速相关和快速卷积,利用自适应滤波器在频域实现LMS算法;包括以下循环执行的操作步骤:
(1)对自适应滤波器的频域抽头系数作初始化设置,该自适应滤波器的时域输入信号u(n)是与被干扰信号中的干扰信号相关,而与有用信号不相关;所述干扰信号是功放输出并经过信道传播后的信号,选取功放输出的反馈信号作为该自适应滤波器的时域输入信号u(n),并对该时域输入信号u(n)做N点离散快速傅立叶变换FFT处理而转换为频域信号,用作该自适应滤波器的输入信号;以便实现该干扰被抵消的效果;其中N是该自适应滤波器的时域抽头系数的个数M的2倍;
(2)将输入的频域信号通过该自适应滤波器进行自适应滤波处理,并对该自适应滤波器的输出信号进行快速傅立叶逆变换IFFT(inverse fast fouriertransforms)处理,使其转换为时域信号,作为干扰的估计值;
(3)计算被干扰信号和该自适应滤波器输出的时域信号之间的差值,作为有用信号;再产生有用信号的频域值;
(4)利用步骤(1)和步骤(3)中分别获得的频域信号进行最小均方误差LMS计算,即根据自适应滤波器输入信号的频域值和有用信号的频域值对该自适应滤波器的频域抽头系数进行更新,以便在返回执行上述步骤(2)时,使用该更新后的频域抽头系数对来自步骤(1)新的频域输入信号周而复始地继续执行相关的自适应滤波处理。
所述步骤(1)进一步包括下列操作内容:
(11)初始化自适应滤波器的频域抽头系数:设置干扰抵消自适应滤波器的时域抽头系数为M个,该M数值要大于干扰信号和功放输出的反馈信号u(n)两者之间到达滤波器时刻的延时时间;因为采用1/2重叠保留法的FFT,对该自适应滤波器的M个时域抽头系数在初始化处理时应该在其后补上M个0,以构成N=2M的时域信号初始值,然后对该N点作FFT计算,得到频域信号的初始抽头系数为 W ^ ( k ) = FFT w ^ ( k ) 0 , 式中,
Figure C20071011907100092
是时域信号的初始抽头系数,
Figure C20071011907100093
是频域信号的初始抽头系数;
(12)将功放输出的反馈信号u(n)作为自适应滤波器的时域输入信号,并以M个信号作为数据块的单位,组成连续的数据块,再将两个连续的数据块级联,然后对该级联的两个数据块做N点FFT,得到频域信号U(k),则有:
Figure C20071011907100094
其中,M为自适应滤波器的时域抽头系数的个数,N=2M,diag{a1,a2,…,an}表示以a1,a2,…,an作为主对角线上元素的对角矩阵。
所述步骤(11)的操作必须在该方法开始输入信号以前事先完成,且只进行一次;第二次及其后的每次频域抽头系数的值都由随后的自适应滤波更新过程获得;由步骤(4)返回步骤(2)时,所述自适应滤波器新的频域输入数据已经存在,且直接由步骤(12)提供。
所述步骤(2)进一步包括下列操作内容:
(21)将频域的输入信号U(k)和频域的滤波器抽头系数
Figure C20071011907100095
直接相乘,得到自适应滤波器的频域输出信号 Y ( k ) = U ( k ) W ^ ( k ) , 以替代时域信号的卷积处理;
(22)对频域输出信号Y(k)做快速傅立叶逆变换IFFT处理;
(23)根据1/2重叠保留法的规定,对上述步骤(22)的IFFT处理结果只保留其后M个有用时域数据,得到yT(k),即
y T ( k ) = [ y ( kM ) , . . . , y ( kM + M - 1 ) ] = IFFT [ U ( k ) W ^ ( k ) ] 的后M个数据;然后对yT(k)进行矩阵转置得到自适应滤波器的时域输出信号y(k),该数据块y(k)即是对被干扰信号的第k个数据块r(k)中干扰信号的估计值。
所述步骤(3)进一步包括下列操作内容:
(31)以M个信号为块单位,将被干扰信号r(n)组成各个数据块,则被干扰信号中的第k个数据块r(k)为:r(k)=[r(kM),r(kM+1),…,r(kM+M-1)]T
(32)计算被干扰信号中的第k个数据块r(k)与上述步骤(23)中所对应数据块的干扰信号估计值y(k)的两者之差,得到干扰抵消后的第k个有用信号数据块d(k)=[d(kM),…,d(kM+M-1)]T=r(k)-y(k);并将该第k个有用信号数据块d(k)作为已去除干扰的有用信号,输出给功放;
(33)由于上述步骤(23)在得到y(k)时丢弃了前M个数据值,为保持一致性,在有用信号数据块d(k)前添加M个0,然后进行FFT,计算得到频域的有用信号数据块 D ( k ) = FFT 0 d ( k ) .
所述步骤(4)进一步包括下列操作内容:
(41)利用频域LMS算法,将步骤(12)得到的第k个数据块频域输入信号U(k)的矩阵共轭转置UH(k)与步骤(33)得到的频域有用信号数据块D(k)相乘,得到两者的乘积T(k)=UH(k)D(k);然后,根据1/2重叠保留法,通过IFFT处理获得时域信号Φ(k):Φ(k)=IFFT[UH(k)D(k)]的前M个数据;
(42)为了与频域信号的初始抽头系数 W ^ ( k ) = FFT w ^ ( k ) 0 后面补M个0的形式相对应,在Φ(k)后面补上M个0后,进行FFT处理,即 FFT Φ ( k ) 0 ;
(43)在频域更新自适应滤波器的频域抽头系数,得到更新后的自适应滤波器的频域抽头系数
Figure C20071011907100105
以便用于步骤(21)中与功放输出的反馈信号经过FFT变换得到的频域信号中的第k+1个频域数据块U(k+1)相乘,且 W ^ ( k + 1 ) = W ^ ( k ) + μFFT Φ ( k ) 0 , 式中,为本次滤波与第k个频域数据块相乘所使用的频域抽头系数,为下一次滤波与第k+1个频域数据块相乘所使用的频域抽头系数;μ为迭代
Figure C20071011907100114
过程中的迭代步长,用于决定有用信号的均方值E[|d(k)|2]收敛到最佳均方值的速度和收敛值的准确性。
所述迭代步长μ的数值是在实际操作过程中通过调整其数值进行测试而折中选取的,其规律是μ的数值越大,频域抽头系数的值收敛到接近最优值的速度越快,但收敛值越不准确,反之亦然。
本发明是一种用于WCDMA直放站系统的获取有用信号的在频域实现的干扰抵消方法,该方法利用频域快速傅立叶变换的思路,将时域的自适应滤波过程转换到频域中来实现,从而自适应抵消输入信号中的干扰。本发明不仅有效地提取出有用信号,保证了算法的收敛性,并且与时域的干扰抵消方法相比较,大大降低了算法复杂度。总之,本发明方法的效率高、速度快,而且,可以明显改善系统的功率谱密度和星座图性能,在大大降低算法复杂度的条件下,能够保证算法的有效性,具有较好的工程应用价值和应用前景。
附图说明
图1是WCDMA直放站系统的信号传输过程的示意图。
图2是本发明用于WCDMA直放站系统的自适应抵消输入信号的干扰而获取有用信号的频域干扰抵消方法流程方框图。
图3是本发明方法用于WCDMA直放站系统的四载波信号在信干比为-10dB条件下,干扰抵消改善功放输出功率谱密度(PSD)的性能比较示意图。
图4是本发明方法用于WCDMA直放站系统的四载波信号在信干比为0dB条件下,干扰抵消改善功放输出功率谱密度性能(PSD)的性能比较示意图。
图5是本发明方法用于WCDMA直放站系统的四载波信号在信干比为5dB条件下,干扰抵消改善功放输出功率谱密度性能(PSD)的性能比较示意图。
图6(A)、(B)分别是没有采用本发明方法和采用本发明方法对于WCDMA直放站系统的四载波信号在信干比为-10dB条件下,功放输出的两个星座图性能比较示意图。
图7(A)、(B)分别是没有采用本发明方法和采用本发明方法对于WCDMA直放站系统的四载波信号在信干比为0dB条件下,功放输出的两个星座图性能比较示意图。
图8(A)、(B)分别是没有采用本发明方法和采用本发明方法对于WCDMA直放站系统的四载波信号在信干比为5dB条件下,功放输出的两个星座图性能比较示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步的详细描述。
本发明方法是基于时域中的数据块最小均方误差Block LMS计算方法和该块LMS算法中存在线性相关和线性卷积的过程,通过1/2重叠保留法的FFT,在频域以直接相乘的计算方式实现快速相关和快速卷积,利用自适应滤波器在频域实现LMS算法。
参见图1和图2,下面分别具体介绍本发明用于WCDMA直放站系统干扰抵消自适应滤波器的方法及其循环执行的四个操作步骤(图2中用细实线构出的(1)、(2)、(3)、(4)四个方框分别对应相应的操作步骤):
(1)对自适应滤波器的频域抽头系数作初始化设置,并对该滤波器的时域输入信号做N点离散快速傅立叶变换FFT处理,使其转换为频域信号,用作自适应滤波器的输入信号;其中N是该滤波器的抽头个数M的2倍。
该步骤的具体操作内容是:
(11)初始化自适应滤波器的频域抽头系数:设置干扰抵消自适应滤波器的抽头个数为M,该M数值要大于干扰信号和功放输出的反馈信号两者之间到达滤波器时刻的延时时间;因为采用1/2重叠保留法的FFT(由FFT将时域信号变为频域信号),对该滤波器的M个时域抽头系数在初始化处理时应该在其后补上M个0,以构成N=2M的时域信号初始值,然后对该N点作FFT计算,得到频域信号的初始抽头系数为 W ^ ( k ) = FFT w ^ ( k ) 0 , 式中,
Figure C20071011907100132
是时域信号的初始抽头系数,
Figure C20071011907100133
是频域信号的初始抽头系数;而且,该初始化步骤(11)只在该方法开始输入第一个数据块之前进行,且只进行一次;第二次及其后的每次抽头系数则都由随后的自适应滤波更新过程获得;即由步骤(4)返回步骤(2)时,自适应滤波器新的频域输入数据已经存在,且直接由操作步骤(12)提供。
(12)将功放反馈信号u(n)作为滤波器的时域输入信号,并以M个信号作为数据块的单位,组成连续的数据块,再将两个连续的数据块级联,然后对该级联的两个数据块做N点FFT,得到频域信号U(k),则有:
其中,M为自适应滤波器的抽头个数,N=2M,diag{a1,a2,…,an}表示以a1,a2,…,an作为主对角线上元素的对角矩阵。
为了实现干扰抵消的效果,滤波器的输入信号u(n)应该与被干扰信号中的干扰信号相关,而与有用信号不相关。由于干扰为功放输出经过信道传播的信号(参见图1),因此,本发明方法中选取功放的输出作为滤波器的输入信号u(n)。
(2)将输入的频域信号通过自适应滤波器进行自适应滤波处理,并对该滤波器的输出信号进行快速傅立叶逆变换IFFT(inverse fast fourier transforms)处理,使其转换为时域信号,作为干扰的估计值。
该步骤的具体操作内容是:
(21)在传统的时域上,输入的时域信号应该与滤波器的时域抽头系数相卷积。由于本发明将输入信号和滤波器抽头系数都转换到了频域,因此在频域上就可以用频域的输入信号U(k)和频域的滤波器抽头系数
Figure C20071011907100135
直接相乘,得到频域的滤波器输出信号 Y ( k ) = U ( k ) W ^ ( k ) , 从而实现以频域的乘积来代替时域信号的卷积,大大简化计算工作量。
(22)对频域输出信号Y(k)做逆快速傅立叶变换IFFT处理,即将滤波器输出的频域信号变换为时域信号。
(23)根据1/2重叠保留法只保留其后M个有用时域数据的规定,对上述步骤(22)的IFFT处理结果只保留其后M个有用时域数据,得到第k个时域数据块 y T ( k ) = [ y ( kM ) , . . . , y ( kM + M - 1 ) ] = IFFT [ U ( k ) W ^ ( k ) ] 的后M个数据;然后对yT(k)进行矩阵转置得到滤波器的时域输出信号y(k),该数据块y(k)即是对被干扰信号的第k个数据块r(k)中干扰信号的估计值。
(3)计算被干扰信号和滤波器输出的时域信号之间的差值,作为有用信号;再产生有用信号的频域值。
该步骤的具体操作内容是:
(31)将被干扰信号r(n)以M个信号为块单位组成各个数据块,则被干扰信号中的第k个数据块r(k)为:r(k)=[r(kM),r(kM+1),…,r(kM+M-1)]T
(32)计算被干扰信号中的第k个数据块r(k)与上述步骤(23)中所对应数据块的干扰信号估计值y(k)的两者之差,即为干扰抵消后的第k个有用信号数据块d(k)=[d(kM),…,d(kM+M-1)]T=r(k)-y(k);并将该第k个有用信号数据块d(k)作为已去除干扰的有用信号,输出给功放。
(33)由于本发明在上述步骤(23)中得到y(k)时丢弃了前M个数据值,为保持一致性,在有用信号数据块d(k)前添加M个0,然后进行FFT,计算频域的有用信号数据块 D ( k ) = FFT 0 d ( k ) .
(4)利用频域信号进行最小均方误差LMS计算,即根据有用信号和滤波器输入信号的频域值对滤波器抽头系数进行更新,以便在返回执行上述步骤(2)时,使用该更新后的抽头系数对来自步骤(1)新的频域输入信号周而复始地继续执行相关的自适应滤波处理。
该步骤的具体操作内容是:
(41)利用频域LMS算法,将步骤(12)得到的第k个数据块频域输入信号U(k)的矩阵共轭转置UH(k)与步骤(33)得到的频域有用数据信息D(k)相乘,得到两者的乘积T(k)=UH(k)D(k);然后,根据1/2重叠保留法,通过IFFT处理获得时域信号Φ(k):Φ(k)=IFFT[UH(k)D(k)]的前M个数据;
(42)为了与初始值 W ^ ( k ) = FFT w ^ ( k ) 0 后面补M个0的形式相对应,在Φ(k)后面补上M个0后,进行FFT处理,即 FFT Φ ( k ) 0 ;
(43)在频域更新滤波器抽头系数,得到更新后的滤波器抽头系数
Figure C20071011907100153
以便用于步骤(2)中与功放输出反馈的第k+1个频域数据块相乘,且 W ^ ( k + 1 ) = W ^ ( k ) + μFFT Φ ( k ) 0 , 式中,
Figure C20071011907100155
为本次滤波与第k个频域数据块相乘所使用的抽头系数,
Figure C20071011907100156
为下一次滤波与第k+1个频域数据块相乘所使用的抽头系数;μ为迭代
Figure C20071011907100157
过程中的迭代步长,用于决定有用信号的均方值E[|d(k)|2]收敛到最佳均方值的速度和收敛值的准确性。该迭代步长μ的数值是在实际操作过程中通过调整其数值进行测试而折中选取的,其规律是μ的数值越大,抽头系数收敛到接近最优值的速度越快,但收敛值越不准确,反之亦然。
参见图3~图8,介绍本发明方法的一个试验实施例,并将采用本发明方法在频域实现干扰抵消的系统与没有干扰抵消的系统性能进行比较。假设一个20MHz带宽的四载波WCDMA系统中,两个天线间信号传播时延为6微秒,且假设该两个天线之间的信道为两径衰落信道,迭代步长μ=0.0001。四载波信号采样率为16,自适应滤波器抽头长度为512,FFT长度为1024。功率放大器PA(power amplifier)为维纳模型,信干比定义为接收天线端码片信号功率与干扰功率的比值。以功率谱密度PSD(power spectral density)的阻带下降dB值和星座图的误差向量幅度EVM(error vector magnitude)作为性能指标进行对比。图3~图5中的粗虚线表示信源的功率谱密度,细虚线表示有干扰信号直接经过PA的功率谱密度,实线表示有干扰信号经过本发明AIC和PA处理后的功率谱密度,点划线表示没有干扰的信号经过PA的功率谱密度。
下面两个表格同时列出当直放站系统输入为其他载波数时,应用本发明方法AIC(adaptive interference cancellation)的性能指标比较情况。
表1是本发明用于WCDMA直放站系统,各个载波信号在不同信噪比条件下使用频域干扰抵消的功率谱密度性能比较列表:
Figure C20071011907100161
参见图3~图5和表1,可以得到这样的结论:采用本发明频域干扰抵消方法可以在低信干比情况下,明显改善PSD性能。
表2是本发明用于WCDMA直放站系统,各个载波信号在不同信噪比条件下使用频域干扰抵消的星座图性能比较列表:
Figure C20071011907100162
Figure C20071011907100171
参见图6~图8和表2,可以得到这样的结论:采用本发明频域干扰抵消方法可以在任何信干比情况下,明显改善星座图性能。
下面对本发明中采用的频域干扰抵消方法和传统的时域干扰抵消方法的算法复杂度进行比较。采用硬件实现时,计算复杂度往往决定于乘法运算的次数,因此可以比较上述两种方法的乘法个数。对于有M个滤波器抽头的时域干扰抵消方法,由于每个数据块有M个数据,则总共需要2M2次乘法运算;而对于有M个滤波器抽头的频域干扰抵消方法,总的乘法次数为10M log2M+26M。那么频域干扰抵消方法和时域干扰抵消方法的算法复杂度比值约为(5log2M+13)/M。因此,在滤波器抽头系数很大时,频域干扰抵消方法的计算复杂度要远远低于时域干扰抵消方法。总之,本发明的频域干扰抵消方法可以明显改善系统的功率谱密度和星座图性能,因此在大大降低算法复杂度的条件下保证了算法的有效性,具有较好的工程应用价值。

Claims (7)

1、一种用于WCDMA直放站系统的自适应抵消输入信号中的干扰而获取有用信号的在频域实现的干扰抵消方法,其特征在于:该方法基于时域中的数据块最小均方误差Block LMS计算方法和该数据块LMS算法中存在线性相关和线性卷积的过程,通过1/2重叠保留法的快速傅立叶变换FFT,在频域以直接相乘的计算方式实现快速相关和快速卷积,利用自适应滤波器在频域实现LMS算法;包括以下循环执行的操作步骤:
(1)对自适应滤波器的频域抽头系数作初始化设置,该自适应滤波器的时域输入信号u(n)是与被干扰信号中的干扰信号相关,而与有用信号不相关;所述干扰信号是功放输出并经过信道传播后的信号,选取功放输出的反馈信号作为该自适应滤波器的时域输入信号u(n),并对该时域输入信号u(n)做N点离散快速傅立叶变换FFT处理而转换为频域信号,用作该自适应滤波器的输入信号,以便实现该干扰被抵消的效果;其中N是该自适应滤波器的时域抽头系数的个数M的2倍;
(2)将输入的频域信号通过该自适应滤波器进行自适应滤波处理,并对该自适应滤波器的输出信号进行快速傅立叶逆变换IFFT处理,使其转换为时域信号,作为干扰的估计值;
(3)计算被干扰信号和该自适应滤波器输出的时域信号之间的差值,作为有用信号;再产生有用信号的频域值;
(4)利用步骤(1)和步骤(3)中分别获得的频域信号进行最小均方误差LMS计算,即根据自适应滤波器输入信号的频域值和有用信号的频域值对该自适应滤波器的频域抽头系数进行更新,以便在返回执行上述步骤(2)时,使用该更新后的频域抽头系数对来自步骤(1)新的频域输入信号周而复始地继续执行相关的自适应滤波处理。
2、根据权利要求1所述的在频域实现的干扰抵消方法,其特征在于,所述步骤(1)进一步包括下列操作内容:
(11)初始化自适应滤波器的频域抽头系数:设置干扰抵消自适应滤波器的时域抽头系数为M个,该M数值要大于干扰信号和功放输出的反馈信号u(n)两者之间到达滤波器时刻的延时时间;因为采用1/2重叠保留法的FFT,对该自适应滤波器的M个时域抽头系数在初始化处理时应该在其后补上M个0,以构成N=2M的时域信号初始值,然后对该N点作FFT计算,得到频域信号的初始抽头系数为 W ^ ( k ) = FFT w ^ ( k ) 0 , 式中,
Figure C2007101190710003C2
是时域信号的初始抽头系数,
Figure C2007101190710003C3
是频域信号的初始抽头系数;
(12)将功放输出的反馈信号u(n)作为自适应滤波器的时域输入信号,并以M个信号作为数据块的单位,组成连续的数据块,再将两个连续的数据块级联,然后对该级联的两个数据块做N点FFT,得到频域信号U(k),则有:
Figure C2007101190710003C4
其中,M为自适应滤波器的时域抽头系数的个数,N=2M,diag{a1,a2,…,an}表示以a1,a2,…,an作为主对角线上元素的对角矩阵。
3、根据权利要求2所述的在频域实现的干扰抵消方法,其特征在于:所述步骤(11)的操作必须在该方法开始输入信号以前事先完成,且只进行一次;第二次及其后的每次频域抽头系数的值都由随后的自适应滤波更新过程获得;由步骤(4)返回步骤(2)时,所述自适应滤波器新的频域输入数据已经存在,且直接由步骤(12)提供。
4、根据权利要求2所述的在频域实现的干扰抵消方法,其特征在于,所述步骤(2)进一步包括下列操作内容:
(21)将频域的输入信号U(k)和频域的滤波器抽头系数
Figure C2007101190710003C5
直接相乘,得到自适应滤波器的频域输出信号 Y ( k ) = U ( k ) W ^ ( k ) , 以替代时域信号的卷积处理;
(22)对频域输出信号Y(k)做快速傅立叶逆变换IFFT处理;
(23)根据1/2重叠保留法的规定,对上述步骤(22)的IFFT处理结果只保留其后M个有用时域数据,得到yT(k),即
y T ( k ) = [ y ( kM ) , · · · , y ( kM + M - 1 ) ] = IFFT [ U ( k ) W ^ ( k ) ] 的后M个数据;然后对yT(k)进行矩阵转置得到自适应滤波器的时域输出信号y(k),该数据块y(k)即是对被干扰信号的第k个数据块r(k)中干扰信号的估计值。
5、根据权利要求4所述的在频域实现的干扰抵消方法,其特征在于,所述步骤(3)进一步包括下列操作内容:
(31)以M个信号为块单位,将被干扰信号r(n)组成各个数据块,则被干扰信号中的第k个数据块r(k)为:r(k)=[r(kM),r(kM+1),…,r(kM+M-1)]T
(32)计算被干扰信号中的第k个数据块r(k)与上述步骤(23)中所对应数据块的干扰信号估计值y(k)的两者之差,得到干扰抵消后的第k个有用信号数据块d(k)=[d(kM),…,d(kM+M-1)]T=r(k)-y(k);并将该第k个有用信号数据块d(k)作为已去除干扰的有用信号,输出给功放;
(33)由于上述步骤(23)在得到y(k)时丢弃了前M个数据值,为保持一致性,在有用信号数据块d(k)前添加M个0,然后进行FFT,计算得到频域的有用信号数据块 D ( k ) = FFT 0 d ( k ) .
6、根据权利要求5所述的在频域实现的干扰抵消方法,其特征在于,所述步骤(4)进一步包括下列操作内容:
(41)利用频域LMS算法,将步骤(12)得到的第k个数据块频域输入信号U(k)的矩阵共轭转置UH(k)与步骤(33)得到的频域有用信号数据块D(k)相乘,得到两者的乘积T(k)=UH(k)D(k);然后,根据1/2重叠保留法,通过IFFT处理获得时域信号Φ(k):Φ(k)=IFFT[UH(k)D(k)]的前M个数据;
(42)为了与频域信号的初始抽头系数 W ^ ( k ) = FFT w ^ ( k ) 0 后面补M个0的形式相对应,在Φ(k)后面补上M个0后,进行FFT处理,即 FFT Φ ( k ) 0 ;
(43)在频域更新自适应滤波器的频域抽头系数,得到更新后的自适应滤波器的频域抽头系数
Figure C2007101190710005C1
以便用于步骤(21)中与功放输出的反馈信号经过FFT变换得到的频域信号中的第k+1个频域数据块U(k+1)相乘,且 W ^ ( k + 1 ) = W ^ ( k ) + μ FFT Φ ( k ) 0 , 式中,
Figure C2007101190710005C3
为本次滤波与第k个频域数据块相乘所使用的频域抽头系数,
Figure C2007101190710005C4
为下一次滤波与第k+1个频域数据块相乘所使用的频域抽头系数;μ为迭代
Figure C2007101190710005C5
过程中的迭代步长,用于决定有用信号的均方值E[|d(k)|2]收敛到最佳均方值的速度和收敛值的准确性。
7、根据权利要求6所述的在频域实现的干扰抵消方法,其特征在于:所述迭代步长μ的数值是在实际操作过程中通过调整其数值进行测试而折中选取的,其规律是μ的数值越大,频域抽头系数的值收敛到接近最优值的速度越快,但收敛值越不准确,反之亦然。
CNB2007101190713A 2007-06-19 2007-06-19 用于wcdma直放站系统的在频域实现的干扰抵消方法 Expired - Fee Related CN100553249C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007101190713A CN100553249C (zh) 2007-06-19 2007-06-19 用于wcdma直放站系统的在频域实现的干扰抵消方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007101190713A CN100553249C (zh) 2007-06-19 2007-06-19 用于wcdma直放站系统的在频域实现的干扰抵消方法

Publications (2)

Publication Number Publication Date
CN101076007A CN101076007A (zh) 2007-11-21
CN100553249C true CN100553249C (zh) 2009-10-21

Family

ID=38976832

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101190713A Expired - Fee Related CN100553249C (zh) 2007-06-19 2007-06-19 用于wcdma直放站系统的在频域实现的干扰抵消方法

Country Status (1)

Country Link
CN (1) CN100553249C (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110116531A1 (en) * 2009-05-11 2011-05-19 Qualcomm Incorporated Removal of multiplicative errors in frequency domain channel estimation for wireless repeaters
US9049065B2 (en) 2009-05-11 2015-06-02 Qualcomm Incorporated Removal of ICI/ISI errors in frequency domain channel estimation for wireless repeaters
US8611227B2 (en) 2009-05-11 2013-12-17 Qualcomm Incorporated Channel estimate pruning in presence of large signal dynamics in an interference cancellation repeater
CN102439930B (zh) * 2009-07-03 2014-12-24 华为技术有限公司 自适应滤波器
CN101860503B (zh) * 2010-05-06 2012-10-31 三维通信股份有限公司 一种基于盲检测的3g数字直放站回波干扰抵消方法
CN102185668B (zh) * 2011-04-29 2013-04-24 西瑞克斯通信技术股份有限公司 在直放站中自适应测量隔离度的系统
CN103248595B (zh) * 2013-05-08 2016-01-20 桂林电子科技大学 一种自适应同址干扰抵消方法和装置
CN106772254A (zh) * 2016-11-29 2017-05-31 河海大学 改进的基于数字自适应干扰对消的收发隔离方法
CN106936407B (zh) * 2017-01-12 2021-03-02 西南电子技术研究所(中国电子科技集团公司第十研究所) 频域块最小均方自适应滤波方法
CN107301869B (zh) * 2017-08-17 2021-01-29 珠海全志科技股份有限公司 麦克风阵列拾音方法、处理器及其存储介质
CN110146848B (zh) * 2019-05-22 2023-06-23 西安电子科技大学 基于分数阶最小均方的调频连续波雷达自干扰消除方法

Also Published As

Publication number Publication date
CN101076007A (zh) 2007-11-21

Similar Documents

Publication Publication Date Title
CN100553249C (zh) 用于wcdma直放站系统的在频域实现的干扰抵消方法
CN103095639B (zh) Ofdm水声通信并行迭代ici消除方法
CN107682297A (zh) 一种移动水声通信方法
CN108964731B (zh) 基于快速卷积的无循环前缀滤波混合载波连续流传输方法
Yang et al. Channel estimation for practical IRS-assisted OFDM systems
CN101242383A (zh) 一种信道估计方法
CN1937598A (zh) 正交频分复用系统中的信道估计方法以及信道估计器
CN103716262A (zh) 基于时域参数提取的信道估计方法
CN105187339A (zh) 一种双选信道的补偿方法、系统及相关装置
CN113206809B (zh) 一种联合深度学习与基扩展模型的信道预测方法
CN109194594B (zh) 一种基于连续载波聚合的相位噪声抑制方法
CN111313941A (zh) 一种采用低精度模数转换器的多用户大规模多输入多输出-正交频分复用系统传输方法
CN107359906A (zh) 低压电力线通信系统中脉冲噪声的抑制方法
CN112242969A (zh) 一种基于模型驱动的深度学习的新型单比特ofdm接收机
CN111464217B (zh) 一种用于mimo-ofdm的改进的svd预编码算法
CN109951412B (zh) 深度神经网络抑制信号立方度量的方法
CN101656697A (zh) 基于t/2分数间隔的频域盲均衡方法
CN101771643A (zh) 一种信号处理的方法和设备
CN114697178A (zh) 导频位置信道的估计方法、装置、存储介质及电子设备
CN105610748A (zh) 一种频率分段的通道均衡方法
CN111726308B (zh) 基于频响预插值的正交匹配追踪信道估计方法
CN110798416A (zh) OFDM系统中基于局部搜索Capon的CFO估计算法
CN103179058B (zh) 信道脉冲响应长度的估计方法及装置
US7173967B2 (en) Method for determining the filter coefficients of a digital time domain equalizer for a multicarrier frequency signal
CN109217954B (zh) 基于双选择衰落信道的低复杂度osdm块均衡方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091021

Termination date: 20110619