CN100547594C - A Digital Earth Prototype System - Google Patents

A Digital Earth Prototype System Download PDF

Info

Publication number
CN100547594C
CN100547594C CNB2007101180124A CN200710118012A CN100547594C CN 100547594 C CN100547594 C CN 100547594C CN B2007101180124 A CNB2007101180124 A CN B2007101180124A CN 200710118012 A CN200710118012 A CN 200710118012A CN 100547594 C CN100547594 C CN 100547594C
Authority
CN
China
Prior art keywords
data
subsystem
image
module
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007101180124A
Other languages
Chinese (zh)
Other versions
CN101110079A (en
Inventor
郭华东
范湘涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Remote Sensing and Digital Earth of CAS
Original Assignee
Institute of Remote Sensing and Digital Earth of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Remote Sensing and Digital Earth of CAS filed Critical Institute of Remote Sensing and Digital Earth of CAS
Priority to CNB2007101180124A priority Critical patent/CN100547594C/en
Publication of CN101110079A publication Critical patent/CN101110079A/en
Application granted granted Critical
Publication of CN100547594C publication Critical patent/CN100547594C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及数字地球技术领域,公开了一种数字地球原型系统,该系统包括:数据接收与快速处理子系统、元数据服务子系统、模型库子系统、空间信息数据库子系统、网格计算子系统、地图应用服务子系统和虚拟现实子系统。利用本发明,构建了数字地球原型系统的数据资源共享平台、知识共享平台、计算资源共享平台和协同工作平台,并通过原型系统的建立,解决了空间数据应用的科学服务平台建设的相关关键技术,形成了地球科学空间信息应用的服务体系。

Figure 200710118012

The invention relates to the technical field of digital earth, and discloses a digital earth prototype system, which includes: a data receiving and fast processing subsystem, a metadata service subsystem, a model library subsystem, a spatial information database subsystem, and a grid calculation subsystem system, map application service subsystem and virtual reality subsystem. Utilizing the present invention, the data resource sharing platform, the knowledge sharing platform, the computing resource sharing platform and the collaborative work platform of the digital earth prototype system are constructed, and through the establishment of the prototype system, the key technologies related to the construction of the scientific service platform for spatial data applications are solved , forming a service system for geoscience spatial information applications.

Figure 200710118012

Description

一种数字地球原型系统 A Digital Earth Prototype System

技术领域 technical field

本发明涉及数字地球技术领域,尤其涉及一种将各种历史数据、模型算法与技术进行优化整合提高,在全球背景下建立多尺度要素综合动态模型,实现学科新跨越,利用数字地球元数据管理、多维时空尺度结构框架对地球的可持续发展问题,进行多层次、多变量关联分析和演化规律的历史重建,对未来发展做出预测和预现的数字地球原型系统。The invention relates to the technical field of digital earth, in particular to a method of optimizing and integrating various historical data, model algorithms and technologies, establishing a comprehensive dynamic model of multi-scale elements in a global context, realizing a new leap in disciplines, and utilizing digital earth metadata management , The multi-dimensional space-time scale structure framework is a digital earth prototype system that performs multi-level, multi-variable correlation analysis and historical reconstruction of evolution laws for the sustainable development of the earth, and makes predictions and predictions for future development.

背景技术 Background technique

数字地球是美国前副总统戈尔于1998年1月31日在“数字地球——认识21世纪我们这颗星球”的报告中提出的概念,它勾绘出了信息时代人类在地球上生产、科研、学习和生活的时代特征。Digital Earth is a concept proposed by former US Vice President Al Gore in the report "Digital Earth - Understanding Our Planet in the 21st Century" on January 31, 1998. The characteristics of the era of scientific research, study and life.

数字地球是目前学术界研究的热点,属于科学前沿问题。数字地球是由海量、多分辨率、多时相、多类型空间对地观测数据和社会经济数据及其分析算法和模型构建而成的虚拟地球。Digital Earth is a hotspot in the current academic research and belongs to the frontier issue of science. The digital earth is a virtual earth constructed by massive, multi-resolution, multi-temporal, multi-type space earth observation data and socio-economic data and its analysis algorithms and models.

目前,在国内外虽然相关研究比较多,但大部分都仅仅停留在相关理论的探索阶段,而将理论落实为实践的为数不多。具有代表性的研究主要有美国宇航局(NASA)的数字地球演示系统和亚历山大数字地球原型。At present, although there are many relevant researches at home and abroad, most of them are only in the exploration stage of relevant theories, and few of them have put theories into practice. The representative research mainly includes NASA's digital earth demonstration system and the Alexandria digital earth prototype.

NASA的数字地球演示系统主要应用于地图服务功能,应用领域相对较窄。如图1所示,图1示出了NASA数字地球演示系统的体系结构示意图。NASA's digital earth demonstration system is mainly used in map service functions, and the application field is relatively narrow. As shown in Fig. 1, Fig. 1 shows a schematic diagram of the architecture of the NASA digital earth demonstration system.

亚历山大数字地球原型(ADEPT)的目标是建立一个分布式数字图书馆(DDL),其支持地理空间相关信息的个性化收集的创建和使用服务,与数字地球的研究目的有很大不同。如图2所示,图2示出了亚历山大数字地球原型的体系结构示意图。The goal of the Alexander Digital Earth Prototype (ADEPT) is to build a Distributed Digital Library (DDL) that supports the creation and use of services for personalized collections of geospatial related information, which is quite different from the research purpose of Digital Earth. As shown in Figure 2, Figure 2 shows a schematic diagram of the architecture of the Alexandria Digital Earth prototype.

此外,国内外一些软件厂商虽然已经开发出一些数字地球原型系统,不过他们的目标和服务价值主要体现在地图搜索和其他的辅助商业服务。同时,目前国内也还没有非常规范化的数字地球原型计划,也没有网络服务商提供类似的信息服务。In addition, although some software manufacturers at home and abroad have developed some digital earth prototype systems, their goals and service value are mainly reflected in map search and other auxiliary business services. At the same time, there is no very standardized digital earth prototype plan in China at present, and no network service provider provides similar information services.

发明内容 Contents of the invention

(一)要解决的技术问题(1) Technical problems to be solved

有鉴于此,本发明的主要目的在于提供一种数字地球原型系统,以建立一个数字地球原型系统的科学服务平台,在此基础上进行数字地球理论分析,建立数字地球框架与模型,研究发展关键技术与方法,演示在不同领域的应用能力,为数字地球战略提供理论与技术支持,并逐步形成数据资源共享平台、知识共享平台、计算资源共享平台和协同工作平台,解决空间数据应用的科学服务平台建设的相关关键技术,形成地球科学空间信息应用的服务体系。In view of this, the main purpose of the present invention is to provide a digital earth prototype system to establish a scientific service platform for the digital earth prototype system, on this basis to carry out theoretical analysis of digital earth, establish a framework and model of digital earth, the key to research and development Technologies and methods, demonstrating application capabilities in different fields, providing theoretical and technical support for the digital earth strategy, and gradually forming data resource sharing platforms, knowledge sharing platforms, computing resource sharing platforms and collaborative work platforms to solve scientific services for spatial data applications The key technologies related to platform construction form a service system for geoscience spatial information applications.

(二)技术方案(2) Technical solution

为达到上述目的,本发明提供了一种数字地球原型系统,该数字地球原型系统包括:In order to achieve the above purpose, the present invention provides a digital earth prototype system, the digital earth prototype system includes:

数据接收与快速处理子系统,用于接收与处理星载中分辨率成像光谱仪MODIS发射的数据,并快速处理入库,提供数字地球原型系统中其它子系统试验和应用的基础数据源;The data receiving and rapid processing subsystem is used to receive and process the data emitted by the spaceborne medium-resolution imaging spectrometer MODIS, and quickly process and store it, providing the basic data source for the experiment and application of other subsystems in the digital earth prototype system;

元数据服务子系统,用于管理整个系统的数据库中元数据信息,为系统合理快速利用数据库中元数据信息提供服务;The metadata service subsystem is used to manage the metadata information in the database of the entire system, and provide services for the system to use the metadata information in the database reasonably and quickly;

模型库子系统,用于为数字地球原型系统的空间数据处理与分析提供算法和应用程序的通用模型;The model library subsystem is used to provide general models of algorithms and applications for the spatial data processing and analysis of the digital earth prototype system;

空间信息数据库子系统,用于管理数字地球原型系统中的空间数据,对客观模拟和反映现实世界的空间数据进行标准化处理、提取和分析,形成适宜多领域规模化应用的数据库;The spatial information database subsystem is used to manage the spatial data in the digital earth prototype system, standardize the processing, extraction and analysis of objectively simulated and reflected real-world spatial data, and form a database suitable for large-scale applications in multiple fields;

网格计算子系统,用于根据用户需求从远程数据服务器或本地获得数据,触发服务并监控其运行状态,将一个任务分割成若干个子任务,然后把子任务分配给网格计算池中的计算机执行,回收及整合执行结果,将结果返回给用户;The grid computing subsystem is used to obtain data from remote data servers or locally according to user needs, trigger services and monitor their running status, divide a task into several subtasks, and then assign subtasks to computers in the grid computing pool Execute, recycle and integrate the execution results, and return the results to the user;

地图应用服务子系统,用于在因特网环境下实现全球信息的可视化;The map application service subsystem is used to realize the visualization of global information in the Internet environment;

虚拟现实子系统,用于根据所建立的领域知识库和数据库运用人工智能、模式识别技术进行建模、学习、规划和计算,实现视觉、触觉、听觉以及动感的虚拟现实模拟。The virtual reality subsystem is used to use artificial intelligence and pattern recognition technology to model, learn, plan and calculate according to the established domain knowledge base and database, and realize visual, tactile, auditory and dynamic virtual reality simulations.

上述方案中,所述数据接收与快速处理子系统包括:In the above scheme, the data receiving and fast processing subsystem includes:

地面站控制系统模块,用于控制和监测地面站各个部分的运行状况,以直接命令的方式或者预先制定程序的方式运行;The ground station control system module is used to control and monitor the operating conditions of various parts of the ground station, and operates in the form of direct commands or pre-established procedures;

卫星捕获与跟踪模块,用于实现卫星轨道报计算、轨道参数显示和轨道选取;Satellite acquisition and tracking module, used to realize satellite orbit report calculation, orbit parameter display and orbit selection;

数据接收与快视模块,用于实现数据接收与数据快视;Data receiving and quick view module, used to realize data receiving and data quick view;

数据处理模块,用于对接收并经预处理的原始数据进行解包规整、地理定位和定标订正处理,生成0级、1A级、1B级标准的MODIS格式数据;The data processing module is used to unpack and regularize the received and preprocessed raw data, perform geographic positioning and calibration correction processing, and generate MODIS format data of 0-level, 1A-level, and 1B-level standards;

数据生产模块,用于生成0级、1A级、1B级MODIS标准数据产品,其中1B级产品格式为标准的地球观测系统/分层数据格式EOS/HDF,并提供面向陆地、海洋和大气遥感应用的高级数据产品;The data production module is used to generate level 0, level 1A, and level 1B MODIS standard data products, of which the format of level 1B products is the standard Earth Observation System/layered data format EOS/HDF, and provides remote sensing applications for land, ocean and atmosphere advanced data products;

数据回放与编辑模块,用于对生成的数据产品进行回放显示和编辑处理;The data playback and editing module is used to playback, display and edit the generated data products;

数据分发与备份模块,用于对系统接收和处理的各级数据进行智能存档、分发、管理和备份;The data distribution and backup module is used for intelligent archiving, distribution, management and backup of all levels of data received and processed by the system;

应用软件模块,用于提供MODIS数据几何精确纠正、MODIS数据全国镶嵌图及行政界线叠加、火灾监测、水灾监测、旱灾监测、地表温度反演、植被指数计算、云检测、海洋水色和积雪监测信息。Application software modules for geometrically accurate correction of MODIS data, national mosaic map of MODIS data and overlay of administrative boundaries, fire monitoring, flood monitoring, drought monitoring, surface temperature inversion, vegetation index calculation, cloud detection, ocean water color and snow cover monitoring information.

上述方案中,对于预先制定程序的方式,所述地面站控制系统模块提供图形界面的用户菜单,用于实现多颗卫星多条轨道接收任务设定、任务时间表及执行状态显示、接收过程中各种状态参数的实时显示、事件信息记录文件和浏览、子系统状态配置运行和磁盘文件管理。In the above scheme, for the way of pre-establishing the program, the ground station control system module provides a user menu of the graphical interface, which is used to realize the setting of the receiving task of multiple satellites and multiple orbits, the display of the task schedule and execution status, and the receiving process. Real-time display of various state parameters, event information record file and browsing, subsystem state configuration and operation, and disk file management.

上述方案中,所述卫星捕获与跟踪模块在实现卫星轨道报计算时,通过获取两行参数来进行卫星轨道报的计算;在实现轨道参数显示时,以文字方式显示过境卫星的所有轨道参数;在实现轨道选取时,用户根据需要任意选择想要接收的卫星轨道及其相应参数。In the above scheme, the satellite capture and tracking module calculates the satellite orbit report by obtaining two lines of parameters when realizing the satellite orbit report calculation; when realizing the orbit parameter display, displays all the orbit parameters of the transit satellite in text mode; When implementing orbit selection, the user can arbitrarily select the desired satellite orbit and its corresponding parameters according to the needs.

上述方案中,所述数据接收与快视模块在实现数据接收时,根据选定的过境卫星轨道参数,按卫星轨道时间表自动接收卫星信号,并对接收的信号进行至少包括放大、变频、解调、输出和存储的预处理,获取原始数据RAW DATA;In the above scheme, when the data receiving and quick viewing module realizes data receiving, according to the selected transit satellite orbit parameters, it automatically receives satellite signals according to the satellite orbit schedule, and performs at least amplification, frequency conversion, and resolution on the received signals. Preprocessing of adjustment, output and storage to obtain raw data RAW DATA;

所述数据接收与快视模块在实现数据快速视时,显示过境卫星轨道、当前正在接收的轨道及其进度,并将接收的数据以彩色图像的形式实时显示。The data receiving and quick view module displays the transit satellite orbit, the currently receiving orbit and its progress when realizing the data quick view, and displays the received data in the form of a color image in real time.

上述方案中,所述数据回放与编辑模块对生成的数据产品进行编辑处理包括:In the above solution, the data playback and editing module editing the generated data products includes:

图像合成,用于将任意波段数据进行多通道合成显示,制作彩色图像;Image synthesis, used for multi-channel synthesis display of arbitrary band data to produce color images;

图像增强,用于对显示图像进行增强处理;Image enhancement, used to enhance the display image;

数据投影变换,用于对图像进行至少包括兰勃托、极射赤面、麦卡托、等经纬度、高斯-克吕格的投影变换,并实时显示变换图像;Data projection transformation, which is used to perform projection transformation on the image including at least Lambert, polar eclipse, Mercator, equilongation, and Gauss-Krüger, and display the transformed image in real time;

图层叠加,用于在图像上叠加至少包括经纬网格、行政区划、地理标志的地理信息图层;Layer overlay, used to overlay geographic information layers including at least latitude and longitude grids, administrative divisions, and geographical indications on the image;

地理信息添加,用于在图像上添加常用图形符号和注记字符,并对添加的图形符号和注记字符进行编辑;Geographical information addition, used to add common graphic symbols and annotation characters on the image, and edit the added graphic symbols and annotation characters;

图像数据提取,用于对图像进行分割,按省、市边界或自定义边界挖取图像,提取数据;Image data extraction, used to segment images, mine images according to province, city boundaries or custom boundaries, and extract data;

数据格式转换,用于将HDF数据按照位图图形文件BMP或2进制格式进行图像格式文件输出;Data format conversion, used to output HDF data in image format file according to bitmap graphic file BMP or binary format;

图像拼接,用于进行区域数据集基础上的多轨、多天数据拼接合成和显示。Image stitching, used for multi-track, multi-day data stitching synthesis and display based on regional datasets.

上述方案中,所述应用软件模块以美国宇航局NASA公布的算法和标准为基础,具有图像处理功能,面向遥感应用,采取公开的高级数据产品的设计框架,公开算法、公开标准。In the above solution, the application software module is based on the algorithms and standards announced by NASA, has image processing functions, and is oriented to remote sensing applications. It adopts an open high-level data product design framework, and discloses algorithms and standards.

上述方案中,所述元数据服务子系统包括:In the above solution, the metadata service subsystem includes:

空间元数据网关,用于实现客户端与服务器端的信息交互;The spatial metadata gateway is used to realize the information interaction between the client and the server;

空间元数据服务器,用于接收来自空间元数据网关的信息,经过解析后调用相应的功能模块,如果需要返回结果集,则将结果组织好后以可扩展置标语言XML文档的形式返回给客户端,并负责空间元数据在因特网上的发布;The spatial metadata server is used to receive the information from the spatial metadata gateway, call the corresponding function module after parsing, and if the result set needs to be returned, organize the result and return it to the client in the form of an Extensible Markup Language XML document end, and is responsible for the release of spatial metadata on the Internet;

空间元数据库管理器,用于空间元数据的采集、存储、管理和维护;Spatial metadata database manager, used for the collection, storage, management and maintenance of spatial metadata;

空间元数据查询工具,用于为客户端提供一个界面来管理元数据模式信息、元数据记录以及各种映射关系,包括添加、删除和修改和浏览元数据记录;Spatial metadata query tool, which is used to provide an interface for clients to manage metadata schema information, metadata records and various mapping relationships, including adding, deleting, modifying and browsing metadata records;

空间元数据管理工具,由用户界面模块和协议处理传输模块构成,用户界面模块用于实现与用户交互,输入查询条件和呈现查询结果;协议处理传输模块用于将用户界面模块收集到的查询参数组织成查询语句,通过TCP/IP协议发送给空间元数据服务器,然后查询空间元数据库,将查询结果交用户界面模块显示。The spatial metadata management tool is composed of a user interface module and a protocol processing and transmission module. The user interface module is used to interact with users, input query conditions and present query results; the protocol processing and transmission module is used to collect query parameters collected by the user interface module Organize query statements, send them to the spatial metadata server through TCP/IP protocol, then query the spatial metadata database, and submit the query results to the user interface module for display.

上述方案中,改进的同态滤波去云模型、金字塔结构遥感数据快速压缩与回放模型、多尺度遥感图像小波融合模型、高光谱遥感图像立方体模型、地表温度反演模型、样条多尺度图像表示与配准模型、雷达数据土壤水分的反演模型、植被指数模型生物量模型、净初级生产率模型、微波遥感数据地面参数反演模型和雷达干涉测量INSAR模型。Among the above schemes, the improved homomorphic filtering cloud removal model, the pyramid structure remote sensing data fast compression and playback model, the multi-scale remote sensing image wavelet fusion model, the hyperspectral remote sensing image cube model, the surface temperature inversion model, and the spline multi-scale image representation And registration model, radar data soil moisture inversion model, vegetation index model biomass model, net primary productivity model, microwave remote sensing data ground parameter inversion model and radar interferometry INSAR model.

上述方案中,所述空间信息数据库子系统包括:In the above scheme, the spatial information database subsystem includes:

空间数据处理模块,用于实现控制底层数据处理、底层控制框架布设和底层数据精度检验;Spatial data processing module, used to realize control bottom data processing, bottom control framework layout and bottom data accuracy inspection;

遥感数据处理模块,用于实现同名控制点库建立、可测度精处理检验和图像元数据库建立;The remote sensing data processing module is used to realize the establishment of the control point library with the same name, the measurable precision processing inspection and the establishment of the image metadata database;

特征信息处理模块,用于实现色彩的还原和增强、影像镶嵌色彩匹配、非同源数据同化和多尺度数据融合;The feature information processing module is used to restore and enhance colors, image mosaic color matching, non-homologous data assimilation and multi-scale data fusion;

专题信息分析模块,用于实现对遥感数据成果进行基于标准遥感数据平台的各种遥感应用分析。Thematic information analysis module is used to realize various remote sensing application analysis based on standard remote sensing data platform for remote sensing data results.

上述方案中,所述网格计算子系统包括:In the above solution, the grid computing subsystem includes:

流程控制模块,用于采用工作流技术以应用为单位对流程进行控制;The process control module is used to control the process by using workflow technology as a unit;

网格中间件,用于集中管理和调度底层硬件计算资源,将上层递交的任务按一定策略分发到可用计算机上进行计算,并回收结果;Grid middleware, which is used to centrally manage and schedule underlying hardware computing resources, distribute tasks submitted by the upper layer to available computers for calculation according to a certain strategy, and recycle the results;

初始化模块,用于为专项处理进行准备,包括数据获取,日志文件的创建,获取远程数据,解压,子任务分割和封装,数据格式转换和接口转换;The initialization module is used to prepare for special processing, including data acquisition, log file creation, remote data acquisition, decompression, subtask segmentation and packaging, data format conversion and interface conversion;

专题处理模块,用于为节点提供地表温度反演、气溶胶光学厚度反演、归一化植被指数、增强型植被指数、土壤调节植被指数、土地覆盖信息分类、云检测、几何校正、图像剪切、图像拼接和图像匹配;Thematic processing module, used to provide nodes with surface temperature inversion, aerosol optical depth inversion, normalized difference vegetation index, enhanced vegetation index, soil adjusted vegetation index, land cover information classification, cloud detection, geometric correction, image clipping cutting, image stitching and image matching;

后处理模块,用于将子任务的计算结果合并,生成HDF文件,并压缩,放入结果数据库。The post-processing module is used to combine the calculation results of subtasks to generate HDF files, compress them, and put them into the result database.

上述方案中,在专题处理模块中,In the above scheme, in the thematic processing module,

所述地表温度反演包括:通过移动分窗自适应分裂窗方法,使用MODIS的热红外数据,实现地表温度的反演;The inversion of the surface temperature includes: realizing the inversion of the surface temperature by using the thermal infrared data of MODIS through the adaptive split window method of moving the window;

所述气溶胶光学厚度反演包括:利用暗象元法提取MODIS影像的气溶胶光学厚度参数,实现气溶胶光学厚度的反演;The inversion of the aerosol optical depth includes: using the dark pixel method to extract the aerosol optical depth parameter of the MODIS image, so as to realize the inversion of the aerosol optical depth;

所述归一化植被指数包括:先对MODIS数据进行几何校正,再通过单幅数据生成NDVI,实现归一化植被指数;Described normalized vegetation index comprises: first carry out geometric correction to MODIS data, then generate NDVI by single data, realize normalized vegetation index;

所述增强型植被指数包括:先对MODIS数据进行几何校正,再通过单幅数据生成EVI,实现增强型植被指数;The enhanced vegetation index includes: first geometrically correcting the MODIS data, and then generating EVI through a single piece of data to realize the enhanced vegetation index;

所述土壤调节植被指数包括:先对MODIS数据进行几何校正,再通过单幅数据生成SAVI,实现土壤调节植被指数;The soil-adjusted vegetation index includes: first geometrically correcting the MODIS data, and then generating SAVI through a single piece of data to realize the soil-adjusted vegetation index;

所述土地覆盖信息分类包括:先对MODIS数据进行几何校正,再利用遥感图像的多波段信息,进行非监督分类,实现土地覆盖信息分类;The classification of the land cover information includes: first geometrically correcting the MODIS data, and then using the multi-band information of the remote sensing image to perform non-supervised classification to realize the classification of the land cover information;

所述云检测包括:先对MODIS数据进行几何校正,然后滤除图像中的云,实现云检测;Described cloud detection comprises: first carry out geometric correction to MODIS data, then filter out the cloud in the image, realize cloud detection;

所述几何校正包括:利用MODIS 500米分辨率的1B数据中的1KM分辨率经纬度信息作为控制点,对1KM分辨率的MODIS数据进行几何校正,灰度重采样方法采用最临近插值的方法,实现几何校正;The geometric correction includes: using the 1KM resolution longitude and latitude information in the 1B data of MODIS 500 meter resolution as control points, the MODIS data of 1KM resolution is geometrically corrected, and the gray scale resampling method adopts the method of nearest interpolation to realize Geometric Correction;

所述图像剪切包括:先对MODIS数据进行几何校正,再从大的图像中裁切出较小的一块研究区,实现图像剪切;The image clipping includes: first geometrically correcting the MODIS data, and then cutting out a smaller research area from the large image to realize image clipping;

所述图像拼接包括:先对MODIS数据进行几何校正,再通过MODIS数据内部的地理坐标数据,将相邻的多幅MODIS 1B数据影像拼接成一个较大的完整的图像,实现图像拼接;Described image mosaic comprises: first carry out geometric correction to MODIS data, then through the geographical coordinate data inside MODIS data, a plurality of adjacent pieces of MODIS 1B data images are mosaiced into a bigger complete image, realizes image mosaic;

所述图像匹配包括:先对MODIS数据进行几何校正,再通过几何纠正的结果获得的每个像元的定位信息进行相同区域数据的获取,用于生成对同一地区的匹配的多幅影像,实现图像匹配。The image matching includes: first geometrically correcting the MODIS data, and then obtaining the same area data through the positioning information of each pixel obtained as a result of the geometric correction, so as to generate multiple matched images of the same area, and realize Image matching.

上述方案中,所述地图应用服务子系统通过基于结点的属性绑定、分层管理技术和R树技术管理空间数据和属性数据,并采用了皮肤+骨架技术,借助分布式存储、分布式运算技术实现海量数据的存储与动态载入和显示,至少包括可视化模块和查询模块,是原型系统平台对外服务的信息窗口。In the above solution, the map application service subsystem manages spatial data and attribute data through node-based attribute binding, hierarchical management technology and R-tree technology, and adopts skin + skeleton technology, with the help of distributed storage, distributed Computing technology realizes the storage, dynamic loading and display of massive data, including at least the visualization module and query module, which are the information windows of the prototype system platform for external services.

上述方案中,所述可视化模块用于通过菜单命令控制地图,进行无级放大,随着分级放大,调用显示区域内更大分辨率的影像,并从不同的角度进行观察,按规定的路线进行浏览,实现从一览全球到详细观察某个城镇甚至范围更小的区域,通过键盘鼠标或者导航球实现漫游世界的任意地区;In the above solution, the visualization module is used to control the map through menu commands to perform stepless zoom-in. With the step-by-step zoom-in, images with larger resolutions in the display area are called and observed from different angles according to the specified route. Browsing, from a global overview to a detailed observation of a town or even a smaller area, roaming anywhere in the world through the keyboard, mouse or navigation ball;

所述查询模块用于实现对基础空间数据的资料查询、将各类等级矢量图和基础地形图进行分层综合显示,以及对GIS系统中的图形信息和属性信息进行双向空间查询。The query module is used to realize data query of basic spatial data, layered and comprehensive display of various levels of vector graphics and basic topographic maps, and bidirectional spatial query of graphic information and attribute information in the GIS system.

上述方案中,所述虚拟现实子系统包括:In the above scheme, the virtual reality subsystem includes:

海量数据管理功能模块,用于实现对实时采集的数据进行管理,并保留和整理一段时间内的历史数据;The mass data management function module is used to realize the management of the real-time collected data, and retain and organize the historical data within a period of time;

大型地理景观的实时漫游浏览与编辑功能模块,用于实现大型地理景观的实时漫游浏览与编辑;The real-time roaming browsing and editing function module of large geographical landscapes is used to realize the real-time roaming browsing and editing of large geographical landscapes;

三维分析与显示功能模块,用于提供GIS分析功能的接口,全面的三维分析功能,查询地形数据,对地形数据进行统计分析,支持以可视化的方式对地形进行各种方式的测量,并把测量结果以直观的方式进行可视化;The 3D analysis and display function module is used to provide the interface of GIS analysis function, comprehensive 3D analysis function, query terrain data, perform statistical analysis on terrain data, support various ways of terrain measurement in a visual way, and measure Results are visualized in an intuitive way;

数字模拟模型的可视化功能模块,用于实现数字模拟模型的可视化;The visualization function module of the digital simulation model is used to realize the visualization of the digital simulation model;

工程建设模型与方案的可视化功能模块,用于实现工程建设模型与方案的可视化。The visualization function module of engineering construction models and schemes is used to realize the visualization of engineering construction models and schemes.

上述方案中,所述大型地理景观的实时漫游浏览与编辑功能模块支持多视角浏览和全屏浏览、历史回放、屏幕抓取、飞行路线编辑、目标信息查询,达到真实的视觉仿真效果。In the above solution, the real-time roaming browsing and editing function module of the large-scale geographical landscape supports multi-view viewing and full-screen browsing, history playback, screen capture, flight route editing, and target information query to achieve a real visual simulation effect.

(三)有益效果(3) Beneficial effects

从上述技术方案可以看出,本发明具有以下有益效果:As can be seen from the foregoing technical solutions, the present invention has the following beneficial effects:

1、本发明提供的这种数字地球原型系统,是一个通过多分辨率、多时相、多类型空间对地观测数据、地学数据和相关社会、经济数据的(数据)获取,建立以地理坐标为依据的、具有海量存储的分布式数据库体系,并利用科学计算、网络以及虚拟现实等技术,实现真实地球及其相关现象的数字化重现和预测的模型系统。该数字地球原型系统通过原型系统的建立与应用示范,构建了数字地球原型系统的数据资源共享平台、知识共享平台、计算资源共享平台和协同工作平台,并通过原型系统的建立,解决了空间数据应用的科学服务平台建设的相关关键技术,形成了地球科学空间信息应用的服务体系。1. This digital earth prototype system provided by the present invention is a (data) acquisition of multi-resolution, multi-temporal, multi-type space earth observation data, geoscience data and related social and economic data, and establishes a system based on geographical coordinates. Based on a distributed database system with massive storage, and using scientific computing, network, and virtual reality technologies, it is a model system that realizes the digital reproduction and prediction of the real earth and its related phenomena. Through the establishment and application demonstration of the prototype system, the digital earth prototype system builds the data resource sharing platform, knowledge sharing platform, computing resource sharing platform and collaborative work platform of the digital earth prototype system, and through the establishment of the prototype system, solves the problem of spatial data The key technologies related to the construction of the applied scientific service platform have formed a service system for the application of geoscience spatial information.

2、本发明提供的这种数字地球原型系统,创建了以大型先进软硬件环境为核心,由数据接收、元数据、模型库、网格计算、空间信息库、地图服务和虚拟现实7个子系统组成,并以网络为基础、以国家和行业标准为参照的大型空间信息服务平台。它构造了数字地球概念模型和数字地球理论框架,提出了真实地球、意识地球、数字地球的互动思维。该系统自主开发了数字地球数据挖掘算法和反演软件,开发了地学反演软件,发展了多种数据融合技术,构建了无级比例尺地理信息系统(GIS)信息综合模型。2. The digital earth prototype system provided by the present invention has created a large-scale advanced software and hardware environment as the core, and consists of seven subsystems including data reception, metadata, model library, grid computing, spatial information library, map service and virtual reality It is a large-scale spatial information service platform based on the network and referred to by national and industry standards. It constructs the conceptual model of digital earth and the theoretical framework of digital earth, and puts forward the interactive thinking of real earth, conscious earth and digital earth. The system independently developed digital earth data mining algorithms and inversion software, developed geoscience inversion software, developed a variety of data fusion technologies, and built a stepless scale geographic information system (GIS) information synthesis model.

3、本发明提供的这种数字地球原型系统,将网格技术和工作流技术结合起来用于原型系统数据处理,使得计算资源与数据处理的算法与模型得到大范围的共享,节省了时间与经济资源;采用亿兆字节(TB)的服务器群集技术,解决了网络GIS传输瓶颈问题,确保大数据量地图服务应用高效运作;集成了国际先进影像压缩技术,形成了海量影像数据压缩和管理能力;建立了精校正同名控制点库,提高了数字产品的整体精度,为国产数字产品与国际数字产品有机衔接提供了条件。3. The digital earth prototype system provided by the present invention combines grid technology and workflow technology for data processing of the prototype system, so that computing resources and data processing algorithms and models are widely shared, saving time and effort. Economic resources; adopting terabyte (TB) server cluster technology, which solves the bottleneck problem of network GIS transmission and ensures the efficient operation of large data volume map service applications; integrates international advanced image compression technology, forming a massive image data compression and management Ability; established a control point library with the same name for precise calibration, which improved the overall accuracy of digital products and provided conditions for the organic connection between domestic digital products and international digital products.

4、本发明提供的这种数字地球原型系统,构筑了可测度标准数字平台,提高了数字产品标准化水平;实现了不同虚拟环境、虚拟现实与地理信息软件之间的交互和基于分页(PAGE)和层次细节/连续层次细节(LOD/CLOD)技术的大地形数据实时显示,开发出网络三维浏览系统;数据接收系统具有宽的捕获和跟踪带宽,信息码速率连续可变,系统自动化程度高,解决了极轨卫星高仰角过顶目标丢失问题,实现了无人值守。接收子系统与原型系统实现了无缝镶嵌,可异地操作。4. This digital earth prototype system provided by the present invention builds a measurable standard digital platform, improves the standardization level of digital products; realizes the interaction between different virtual environments, virtual reality and geographic information software and based on paging Real-time display of large terrain data with Level of Detail/Continuous Level of Detail (LOD/CLOD) technology, developed a network 3D browsing system; the data receiving system has a wide capture and tracking bandwidth, the information code rate is continuously variable, and the system has a high degree of automation. It solves the problem of missing targets at high elevation angles of polar-orbiting satellites and realizes unattended operation. The receiving subsystem and the prototype system are seamlessly embedded and can be operated in different places.

5、本发明提供的这种数字地球原型系统,是一个高度集成的系统,制定了一套以国家和行业标准为参照的综合系统集成规范,构成了数字地球工作平台,实现了空间信息的共享。5. The digital earth prototype system provided by the present invention is a highly integrated system. A set of comprehensive system integration specifications based on national and industry standards has been formulated to form a digital earth working platform and realize the sharing of spatial information .

6、在本发明提供的这种数字地球原型系统中,数据接收与快速处理子系统实现了接收处理、数据存档自动化,接收数据实时可视化,图像质量稳定。空间信息数据库子系统建立了精校正同名控制点库,提供了规模遥感数据的海量运算各种算法,实现了国际坐标体系数字产品的有机衔接,构筑了可测度标准数字平台。模型库综合集成了图像预处理、地物特性反演、数据融合和数据处理等多个模型,为遥感信息的进一步挖掘与提取提供了有效地技术方法。地图应用服务子系统实现图层控制、缩放、多层数据表现、图像图形的配准和显示功能,实现了空间数据与属性数据的有效查询,具备长度、面积量算与缓冲区分析等功能。虚拟现实子系统建立了仿真专用的地理景观数据库与专题数据库,实现了实时漫游浏览与编辑,三维环境下淹没分析、挖填方计算等功能,实现了三维场景网络发布、浏览与信息查询等功能。6. In the digital earth prototype system provided by the present invention, the data receiving and fast processing subsystem realizes automatic receiving processing and data archiving, real-time visualization of received data, and stable image quality. The spatial information database subsystem has established a fine-calibration control point library with the same name, provided various algorithms for massive computing of large-scale remote sensing data, realized the organic connection of digital products in the international coordinate system, and built a measurable standard digital platform. The model library integrates multiple models such as image preprocessing, feature inversion, data fusion and data processing, and provides effective technical methods for further mining and extraction of remote sensing information. The map application service subsystem realizes layer control, zooming, multi-layer data representation, registration and display of image graphics, realizes effective query of spatial data and attribute data, and has functions such as length and area measurement and buffer analysis. The virtual reality subsystem has established a geographical landscape database and a thematic database dedicated to simulation, realizing real-time roaming browsing and editing, inundation analysis in a 3D environment, calculation of excavation and filling, and other functions, and realizing the functions of 3D scene network publishing, browsing, and information query. .

附图说明 Description of drawings

图1为NASA数字地球演示系统的体系结构示意图;Figure 1 is a schematic diagram of the architecture of the NASA Digital Earth Demonstration System;

图2为亚历山大数字地球原型的体系结构示意图;Figure 2 is a schematic diagram of the architecture of the Alexandria Digital Earth prototype;

图3为本发明提供的数字地球原型系统的结构框图;Fig. 3 is the structural block diagram of the digital earth prototype system provided by the present invention;

图4为本发明提供的数字地球原型系统中数据接收与快速处理子系统的系统框图;Fig. 4 is a system block diagram of the data receiving and fast processing subsystem in the digital earth prototype system provided by the present invention;

图5为本发明提供的数字地球原型系统中元数据服务子系统的结构框图;Fig. 5 is a block diagram of the metadata service subsystem in the digital earth prototype system provided by the present invention;

图6为本发明提供的数字地球原型系统中元数据服务子系统的运行过程示意图;Fig. 6 is a schematic diagram of the operation process of the metadata service subsystem in the digital earth prototype system provided by the present invention;

图7为本发明提供的数字地球原型系统中网格计算子系统与外部模块的逻辑结构示意图;7 is a schematic diagram of the logic structure of the grid computing subsystem and external modules in the digital earth prototype system provided by the present invention;

图8为本发明提供的数字地球原型系统中网格计算子系统与内部模块的逻辑结构示意图;Fig. 8 is a schematic diagram of the logical structure of the grid computing subsystem and internal modules in the digital earth prototype system provided by the present invention;

图9为本发明提供的数字地球原型系统中网格计算子系统数据流结构示意图;Fig. 9 is a schematic diagram of the data flow structure of the grid computing subsystem in the digital earth prototype system provided by the present invention;

图10为本发明提供的数字地球原型系统中网格计算子系统控制流结构示意图;Fig. 10 is a schematic diagram of the control flow structure of the grid computing subsystem in the digital earth prototype system provided by the present invention;

图11为本发明提供的数字地球原型系统中地图应用服务子系统服务流程示意图;Fig. 11 is a schematic diagram of the service flow of the map application service subsystem in the digital earth prototype system provided by the present invention;

图12为本发明提供的数字地球原型系统框架体系结构图;Fig. 12 is a frame structure diagram of the digital earth prototype system provided by the present invention;

图13为本发明提供的数字地球原型系统三个基本功能层的示意图;Fig. 13 is a schematic diagram of three basic functional layers of the digital earth prototype system provided by the present invention;

图14为本发明提供的数字地球原型系统的框架结构示意图;Fig. 14 is a schematic diagram of the frame structure of the digital earth prototype system provided by the present invention;

图15为本发明提供的数字地球原型系统的体系结构示意图。Fig. 15 is a schematic diagram of the architecture of the digital earth prototype system provided by the present invention.

具体实施方式 Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.

本发明提供的这种数字地球原型系统,是一个通过多分辨率、多时相、多类型空间对地观测数据、地学数据和相关社会、经济数据的(数据)获取,建立以地理坐标为依据的、具有海量存储的分布式数据库体系,并利用科学计算、网络以及虚拟现实等技术,实现真实地球及其相关现象的数字化重现和预测的模型系统。该数字地球原型系统通过原型系统的建立与应用示范,构建了数字地球原型系统的数据资源共享平台、知识共享平台、计算资源共享平台和协同工作平台,并通过原型系统的建立,解决了空间数据应用的科学服务平台建设的相关关键技术,形成了地球科学空间信息应用的服务体系。This digital earth prototype system provided by the present invention is a (data) acquisition of multi-resolution, multi-temporal and multi-type space observation data, geoscience data and related social and economic data, and establishes a system based on geographic coordinates. , a distributed database system with massive storage, and a model system that uses scientific computing, network, and virtual reality technologies to realize the digital reproduction and prediction of the real earth and its related phenomena. Through the establishment and application demonstration of the prototype system, the digital earth prototype system builds the data resource sharing platform, knowledge sharing platform, computing resource sharing platform and collaborative work platform of the digital earth prototype system, and through the establishment of the prototype system, solves the problem of spatial data The key technologies related to the construction of the applied scientific service platform have formed a service system for the application of geoscience spatial information.

如图3所示,图3为本发明提供的数字地球原型系统的结构框图,该数字地球原型系统包括数据接收与快速处理子系统10、元数据服务子系统11、模型库子系统12、空间信息数据库子系统13、网格计算子系统14、地图应用服务子系统15和虚拟现实子系统16。As shown in Figure 3, Figure 3 is a structural block diagram of the digital earth prototype system provided by the present invention, the digital earth prototype system includes a data receiving and fast processing subsystem 10, a metadata service subsystem 11, a model library subsystem 12, a space Information database subsystem 13 , grid computing subsystem 14 , map application service subsystem 15 and virtual reality subsystem 16 .

其中,数据接收与快速处理子系统10用于接收与处理星载中分辨率成像光谱仪(MODIS)发射的数据,并快速处理入库,提供数字地球原型系统中其它子系统试验和应用的基础数据源。Among them, the data receiving and fast processing subsystem 10 is used to receive and process the data emitted by the spaceborne medium-resolution imaging spectrometer (MODIS), and quickly process and put it into the warehouse, and provide the basic data for the experiment and application of other subsystems in the digital earth prototype system source.

元数据服务子系统11用于管理整个系统的数据库中元数据信息,为系统合理快速利用数据库中元数据信息提供服务。The metadata service subsystem 11 is used to manage the metadata information in the database of the whole system, and provide services for the system to use the metadata information in the database reasonably and quickly.

模型库子系统12用于为数字地球原型系统的空间数据处理与分析提供算法和应用程序的通用模型。The model library subsystem 12 is used to provide general models of algorithms and applications for the spatial data processing and analysis of the digital earth prototype system.

空间信息数据库子系统13用于管理数字地球原型系统中的空间数据,对客观模拟和反映现实世界的空间数据进行标准化处理、提取和分析,形成适宜多领域规模化应用的数据库。The spatial information database subsystem 13 is used to manage the spatial data in the digital earth prototype system, standardize processing, extraction and analysis of objectively simulated and reflected real-world spatial data, and form a database suitable for multi-field large-scale applications.

网格计算子系统14用于根据用户需求从远程数据服务器或本地获得数据,触发服务并监控其运行状态,将一个任务分割成若干个子任务,然后把子任务分配给网格计算池中的计算机执行,回收及整合执行结果,将结果返回给用户。The grid computing subsystem 14 is used to obtain data from remote data servers or locally according to user needs, trigger services and monitor their running status, divide a task into several subtasks, and then distribute subtasks to computers in the grid computing pool Execute, recycle and integrate the execution results, and return the results to the user.

地图应用服务子系统15用于在因特网环境下实现全球信息的可视化。The map application service subsystem 15 is used to realize the visualization of global information in the Internet environment.

虚拟现实子系统16用于根据所建立的领域知识库和数据库运用人工智能、模式识别技术进行建模、学习、规划和计算,实现视觉、触觉、听觉以及动感的虚拟现实模拟。The virtual reality subsystem 16 is used to use artificial intelligence and pattern recognition technology to perform modeling, learning, planning and calculation according to the established domain knowledge base and database, so as to realize visual, tactile, auditory and dynamic virtual reality simulation.

数字地球原型系统1.0版经过四年时间的建设,完成了数据接收与快速处理、网格计算、空间信息数据库、元数据服务、模型库、地图服务与虚拟现实等多个子系统的建立,在整个流程中,从数据获取,到数据分析与显示表达,子系统紧密衔接,构成数字地球工作平台。下面结合附图对本发明提供的这种数字地球原型系统进一步详细说明。After four years of construction, the digital earth prototype system version 1.0 has completed the establishment of multiple subsystems such as data reception and fast processing, grid computing, spatial information database, metadata service, model library, map service and virtual reality. In the process, from data acquisition to data analysis and display expression, the subsystems are closely connected to form a digital earth work platform. The digital earth prototype system provided by the present invention will be further described in detail below in conjunction with the accompanying drawings.

对于数据接收与快速处理子系统,该子系统以接收与处理星载中MODIS数据为目标,用先进的集成技术,融国内、外产品为一体,构建数字地球原型体系的航天数据支撑系统,开辟MODIS集成技术及数据产品的广阔市场。该子系统按着功能划分,从天线接收到生成数据产品共有八个功能模块,它们分别是地面站控制系统模块、卫星捕获与跟踪模块、数据接收与快视模块、数据处理模块、数据生产模块、数据回放与编辑模块、数据分发与备份模块和应用软件模块。As for the data receiving and fast processing subsystem, the subsystem aims at receiving and processing MODIS data in the spaceborne, uses advanced integration technology, integrates domestic and foreign products, builds the aerospace data support system of the digital earth prototype system, and develops The vast market of MODIS integration technology and data products. The subsystem is divided according to its functions. There are eight functional modules from antenna reception to data generation. They are the ground station control system module, satellite acquisition and tracking module, data reception and quick view module, data processing module, and data production module. , data playback and editing module, data distribution and backup module and application software module.

其中,地面站控制系统模块用于控制和监测地面站各个部分的运行状况,以直接命令的方式或者预先制定程序的方式运行。对于预先制定程序的方式,所述地面站控制系统模块提供图形界面的用户菜单,用于实现多颗卫星多条轨道接收任务设定、任务时间表及执行状态显示、接收过程中各种状态参数的实时显示、事件信息记录文件和浏览、子系统状态配置运行和磁盘文件管理。另外,地面站控制系统模块控制和监测地面站各个部分的运行状况。能以直接命令方式或者预先制定程序的方式运行。对于预先制定程序的方式,能提供图形界面的用户菜单,以便利用这种方式监测、控制整个接收系统的各个环节。Among them, the ground station control system module is used to control and monitor the operating conditions of various parts of the ground station, and operates in the form of direct commands or pre-established programs. For the method of pre-establishing the program, the ground station control system module provides a user menu of a graphical interface, which is used to realize multi-satellite multi-orbit receiving task setting, task schedule and execution status display, and various status parameters in the receiving process Real-time display, event information record file and browsing, subsystem status configuration operation and disk file management. In addition, the ground station control system module controls and monitors the operation status of various parts of the ground station. It can be run as a direct command or as a pre-programmed program. For the method of pre-establishing the program, a user menu of the graphical interface can be provided, so that this method can be used to monitor and control all aspects of the entire receiving system.

卫星捕获与跟踪模块用于实现卫星轨道报计算、轨道参数显示和轨道选取。卫星捕获与跟踪模块在实现卫星轨道报计算时,通过获取两行参数来进行卫星轨道报的计算;在实现轨道参数显示时,以文字方式显示过境卫星的所有轨道参数;在实现轨道选取时,用户根据需要任意选择想要接收的卫星轨道及其相应参数。The satellite acquisition and tracking module is used to realize satellite orbit report calculation, orbit parameter display and orbit selection. When the satellite acquisition and tracking module realizes the calculation of the satellite orbit report, it calculates the satellite orbit report by obtaining two lines of parameters; when realizing the display of the orbit parameters, it displays all the orbit parameters of the transiting satellites in text; when realizing the orbit selection, Users can arbitrarily choose the satellite orbits they want to receive and their corresponding parameters according to their needs.

数据接收与快视模块用于实现数据接收与数据快视。数据接收与快视模块在实现数据接收时,根据选定的过境卫星轨道参数,按卫星轨道时间表自动接收卫星信号,并对接收的信号进行至少包括放大、变频、解调、输出和存储的预处理,获取原始数据(RAW DATA)。数据接收与快视模块在实现数据快视时,显示过境卫星轨道、当前正在接收的轨道及其进度,并将接收的数据以彩色图像的形式实时显示。The data receiving and quick view module is used to realize data receiving and data quick view. When realizing data reception, the data receiving and quick view module automatically receives satellite signals according to the selected transit satellite orbit parameters and satellite orbit timetable, and performs at least amplification, frequency conversion, demodulation, output and storage on the received signals. Preprocessing to obtain raw data (RAW DATA). The data receiving and quick view module displays the transit satellite orbit, the currently receiving orbit and its progress when realizing the data quick view, and displays the received data in the form of color images in real time.

数据处理模块用于对接收并经预处理的原始数据进行解包规整、地理定位和定标订正处理,生成0级、1A级、1B级标准的MODIS格式数据。The data processing module is used to unpack and regularize the received and preprocessed raw data, geolocate and calibrate and correct, and generate MODIS format data of 0-level, 1A-level, and 1B-level standards.

数据生产模块用于生成0级、1A级、1B级MODIS标准数据产品,其中1B级产品格式为标准的地球观测系统/分层数据格式(EOS/HDF),并提供面向陆地、海洋和大气遥感应用的高级数据产品。The data production module is used to generate level 0, level 1A, and level 1B MODIS standard data products, of which level 1B product format is the standard Earth Observation System/Hierarchical Data Format (EOS/HDF), and provides remote sensing for land, ocean and atmosphere Applied advanced data products.

数据回放与编辑模块用于对生成的数据产品进行回放显示和编辑处理。数据回放与编辑模块对生成的数据产品进行编辑处理包括图像合成、图像增强、数据投影变换、图层叠加、地理信息添加、图像数据提取、数据格式转换和图像拼接。图像合成用于将任意波段数据进行多通道合成显示,制作彩色图像;图像增强用于对显示图像进行增强处理;数据投影变换用于对图像进行至少包括兰勃托、极射赤面、麦卡托、等经纬度、高斯-克吕格的投影变换,并实时显示变换图像;图层叠加用于在图像上叠加至少包括经纬网格、行政区划、地理标志的地理信息图层;地理信息添加用于在图像上添加常用图形符号和注记字符,并对添加的图形符号和注记字符进行编辑;图像数据提取用于对图像进行分割,按省、市边界或自定义边界挖取图像,提取数据;数据格式转换用于将HDF数据按照位图图形文件(BMP)或2进制格式进行图像格式文件输出;图像拼接用于进行区域数据集基础上的多轨、多天数据拼接合成和显示。The data playback and editing module is used to playback, display and edit the generated data products. The data playback and editing module edits the generated data products, including image synthesis, image enhancement, data projection transformation, layer overlay, geographic information addition, image data extraction, data format conversion and image splicing. Image synthesis is used to perform multi-channel composite display of arbitrary band data to produce color images; image enhancement is used to enhance the displayed image; data projection transformation is used to perform at least Lamberto, polar eclipse, and Mercator on the image , equal longitude and latitude, and Gauss-Krüger projection transformation, and display the transformed image in real time; layer overlay is used to overlay geographic information layers including at least latitude and longitude grids, administrative divisions, and geographical indications on the image; geographic information addition is used to Add commonly used graphic symbols and annotation characters on the image, and edit the added graphic symbols and annotation characters; image data extraction is used to segment the image, dig the image according to the province, city boundary or custom boundary, and extract data ; Data format conversion is used to output HDF data in image format according to bitmap graphics file (BMP) or binary format; image mosaic is used for multi-track, multi-day data mosaic synthesis and display based on regional datasets.

数据分发与备份模块用于对系统接收和处理的各级数据进行智能存档、分发、管理和备份。The data distribution and backup module is used for intelligent archiving, distribution, management and backup of all levels of data received and processed by the system.

应用软件模块用于提供MODIS数据几何精确纠正、MODIS数据全国镶嵌图及行政界线叠加、火灾监测、水灾监测、旱灾监测、地表温度反演、植被指数计算、云检测、海洋水色和积雪监测信息。应用软件模块以NASA公布的算法和标准为基础,具有图像处理功能,面向遥感应用,采取公开的高级数据产品的设计框架,公开算法、公开标准。The application software module is used to provide precise geometric correction of MODIS data, national mosaic map of MODIS data and overlay of administrative boundaries, fire monitoring, flood monitoring, drought monitoring, surface temperature inversion, vegetation index calculation, cloud detection, ocean water color and snow cover monitoring information . The application software module is based on the algorithms and standards announced by NASA, has image processing functions, and is oriented to remote sensing applications. It adopts an open design framework for advanced data products, open algorithms, and open standards.

该数据接收与快速处理子系统从结构上划分还可以由以下几个分系统组成:天线与控制分系统、信道分系统、GPS时码单元、数据摄入分系统、接收与处理平台分系统、数据记录和存档分系统和高端数据产品开发与应用软件分系统。The data receiving and fast processing subsystem can also be composed of the following subsystems in terms of structure: antenna and control subsystem, channel subsystem, GPS time code unit, data intake subsystem, receiving and processing platform subsystem, Data recording and archiving subsystems and high-end data product development and application software subsystems.

1、天线与控制分系统1. Antenna and control subsystem

主要由天线、馈源、伺服和控制单元组成。天线结构采用X/Y型座架和无配重技术。控制系统由天线控制单元(ACU)、天线驱动单元(ADU)、轴角编码单元组成。步进跟踪接收机将下变频送来的中频信号进行检波,ACU根据此信号电平大小进行轨道步进自动跟踪,提高天线跟踪目标的精度。X/Y型座架保证系统的过顶跟踪能力。It is mainly composed of antenna, feed, servo and control unit. The antenna structure adopts X/Y type mount and no counterweight technology. The control system consists of Antenna Control Unit (ACU), Antenna Drive Unit (ADU), and Axis Angle Encoding Unit. The step tracking receiver detects the intermediate frequency signal sent by the down-conversion, and the ACU performs track step automatic tracking according to the signal level to improve the accuracy of the antenna tracking target. The X/Y mount ensures the overhead tracking capability of the system.

分系统技术指标:Subsystem technical indicators:

口径:3.2MCaliber: 3.2M

工作频率:8.0GHz~8.5GHzWorking frequency: 8.0GHz~8.5GHz

天线增益:>46dBAntenna gain: >46dB

第一旁瓣:优于-15dBFirst side lobe: better than -15dB

极化方式:圆极化、RHC、LHC可切换Polarization mode: circular polarization, RHC, LHC can be switched

天线运动范围:X:0度~180度Antenna movement range: X: 0 degrees to 180 degrees

Y:0度~180度Y: 0 degrees to 180 degrees

运动速度:X:0度~6度/秒Movement speed: X: 0°~6°/sec

Y:0度~6度/秒Y: 0°~6°/sec

运动加速度:X:0度~6度/秒*秒Motion acceleration: X: 0°~6°/sec*sec

Y:0度~6度/秒*秒Y: 0°~6°/sec*sec

伺服分辨率:优于0.01度Servo resolution: better than 0.01 degrees

定位精度:优于0.07(rms)Positioning accuracy: better than 0.07(rms)

工作方式:Way of working:

——待机- standby

——手动- Manual

——命令预制- command prefab

——等待预制——Waiting for prefabrication

——轨道程序跟踪- track program tracking

——远控——remote control

控保要求:X-Y预限位切断电源保护Control protection requirements: X-Y pre-limit cut-off power protection

X-Y电机制动器制动X-Y motor brake braking

弹簧时缓冲吸收最后过冲能量Spring time cushioning absorbs final overshoot energy

环境要求:工作湿度:-40度~60度Environmental requirements: working humidity: -40 degrees to 60 degrees

湿度:10~100%Humidity: 10~100%

耐风速:小于等于28.4m/s保精度工作Wind speed resistance: less than or equal to 28.4m/s to ensure precision work

小于等于36.7m/s可工作Less than or equal to 36.7m/s can work

小于等于54m/s保全收藏Less than or equal to 54m/s preservation collection

2、信道分系统2. Channel subsystem

主要由低噪声放大器、上变频器、下变频器、解调器组成。It is mainly composed of low-noise amplifier, up-converter, down-converter and demodulator.

低噪声放大器LNA和第一下变频器安装在天线上,保证1GHZ信号从天线传到接收机房的损耗较小。The low-noise amplifier LNA and the first down-converter are installed on the antenna to ensure that the loss of the 1GHZ signal transmitted from the antenna to the receiving room is relatively small.

DM-D-3型信号解调器采用先进的数字解调技术,具有功耗低、体积小、抗干扰、可靠性高的特点。DM-D-3 signal demodulator adopts advanced digital demodulation technology, which has the characteristics of low power consumption, small size, anti-interference and high reliability.

技术指标:Technical indicators:

A、噪声放大器(LAN)A. Noise Amplifier (LAN)

频率范围:8000Mhz~8500Mhz,带宽500MhzFrequency range: 8000Mhz~8500Mhz, bandwidth 500Mhz

噪声系数:小于等于1.3dBNoise figure: less than or equal to 1.3dB

输入接口:BJ84玻导法兰Input interface: BJ84 glass guide flange

输出接口:SMAOutput interface: SMA

B、第一级下变频器B. First stage down converter

输入频率:8000Mhz~8500MhzInput frequency: 8000Mhz~8500Mhz

输出频率:750Mhz~1250MhzOutput frequency: 750Mhz~1250Mhz

增益:大于等于10dBGain: greater than or equal to 10dB

输入接口:SMAInput interface: SMA

输出接口:L16Output interface: L16

C、第二下变频器:750Mhz~1250Mhz L16接头C. Second down converter: 750Mhz~1250Mhz L16 connector

输出中频:140Mhz N型/L16接头Output intermediate frequency: 140Mhz N type/L16 connector

增益:大于等于10dBGain: greater than or equal to 10dB

调谐步进:1Khz串口控制RS232标准Tuning step: 1Khz serial port control RS232 standard

环境要求:Environmental requirements:

LAN及第一级下变频满足室外单元工作条件LAN and first stage down-conversion meet the working conditions of outdoor unit

第二级下变频器为室内单元:The second stage down converter is an indoor unit:

工作温度:0度~35度Working temperature: 0 degrees to 35 degrees

湿度:10%~100%Humidity: 10%~100%

解调器:Demodulator:

解调方式:BPSK,QPSK,UQPSKDemodulation method: BPSK, QPSK, UQPSK

解调码速率范围:4~60MbpsDemodulation code rate range: 4 ~ 60Mbps

输入中频:140MhzInput IF: 140Mhz

载波捕获范围:正负600KhzCarrier capture range: plus or minus 600Khz

载波同步带宽:正负700KhzCarrier synchronization bandwidth: plus or minus 700Khz

3、GPS时码单元3. GPS time code unit

GPS接收机,完成自动校时功能GPS receiver, complete automatic time calibration function

4、数据摄入分系统4. Data intake subsystem

采用由国外引进的高速数据摄入板,数据摄入速率为400Mbps,实现字位帧同步。能兼容多种遥感卫星数据的摄入。The high-speed data intake board imported from abroad is adopted, and the data intake rate is 400Mbps to realize bit-frame synchronization. Compatible with the intake of various remote sensing satellite data.

5、接收与处理平台分系统5. Receiving and processing platform subsystem

由工作站和接收处理软件组成。It consists of a workstation and receiving and processing software.

6、数据记录和存档分系统6. Data recording and archiving subsystem

7、高端数据产品开发与应用软件分系统7. High-end data product development and application software subsystem

该数据接收与快速处理子系统的系统框图如图4所示,图4为本发明提供的数字地球原型系统中数据接收与快速处理子系统的系统框图。该数据接收与快速处理子系统绝大部分硬件实现了国产化,同时也部分地集成了国外的先进产品,如高速进机板。该系统的集成技术,转化为高技术产品,现已为海军等单位研制了多套对地观测系统/中分辨率成像光谱仪(EOS/MODIS)接收系统。运行实践证明,该系统运行稳定,接收图像清晰。由于MODIS具有250米,500米,1000米的空间分辨率,每天至少4次过境的时间分辨率,波谱范围覆盖从可见光到远红外的36个通道,在遥感应用、大气与海洋研究中发挥了重要作用。与同类产品相比,本子系统已达到国际先进水平,该子系统的技术特点:The system block diagram of the data receiving and fast processing subsystem is shown in Figure 4, and Figure 4 is the system block diagram of the data receiving and fast processing subsystem in the digital earth prototype system provided by the present invention. Most of the hardware of the data receiving and fast processing subsystem has been localized, and it has also partially integrated foreign advanced products, such as high-speed feeder boards. The integration technology of this system has been transformed into high-tech products, and several sets of Earth Observation System/Moderate Resolution Imaging Spectrometer (EOS/MODIS) receiving systems have been developed for the Navy and other units. The operation practice has proved that the system runs stably and the received image is clear. Since MODIS has a spatial resolution of 250 meters, 500 meters, and 1000 meters, a time resolution of at least 4 transits per day, and a spectral range covering 36 channels from visible light to far infrared, it has played an important role in remote sensing applications, atmospheric and ocean research. important role. Compared with similar products, this subsystem has reached the international advanced level. The technical characteristics of this subsystem:

(1)可接收EOS/MODIS两颗星上的数据,上午星(TERRA)和下午星(AUQA);(1) It can receive data from two EOS/MODIS stars, morning star (TERRA) and afternoon star (AUQA);

(2)采用步进跟踪和程序跟踪两种技术,使天线跟踪达到高精度(≤0.02°),避免了由于卫星本身姿态和轨道预报不准而产生的信号丢失(掉线)问题;(2) Adopting two technologies of step tracking and program tracking, the antenna tracking can achieve high precision (≤0.02°), avoiding the problem of signal loss (disconnection) caused by inaccurate satellite attitude and orbit prediction;

(3)采用网板式天线,风矩小,天线增益值高;(3) Mesh plate antenna is adopted, the wind moment is small, and the antenna gain value is high;

(4)接收与处理软件功能强,计算速度快;(4) The receiving and processing software has strong functions and fast calculation speed;

(5)接收软件同时具有管理、监控整个地面站的功能,实时动态显示系统运行的状态参数,并产生运行报告文件(历史的和现在的);(5) The receiving software also has the functions of managing and monitoring the entire ground station, dynamically displays the status parameters of the system operation in real time, and generates operation report files (historical and current);

(6)系统产生的1B数据是国际通用标准的EOS/MODIS格式,并带有MOD03产品【定标(Calibrated)和地理定位(geolocated)】,对开发高级产品是必需的;(6) The 1B data generated by the system is in the EOS/MODIS format of the international general standard, with MOD03 products [Calibrated and geolocated], which are necessary for the development of advanced products;

(7)实时产生彩色快视图像并自动生成浏览图像文件;(7) Generate color snapshot images in real time and automatically generate browsing image files;

(8)产生夜间红外波段快视图像;(8) Generate a quick-view image in the infrared band at night;

(9)源数据和产品数据的自动存档;(9) Automatic archiving of source data and product data;

(10)硬盘等存贮设备的智能化管理;(10) Intelligent management of storage devices such as hard disks;

(11)网上自动读取轨道参数;(11) Automatically read track parameters online;

(12)接收与数据处理过程的全程自动化,数据处理过程配有图形动态显示。(12) The whole process of receiving and data processing is fully automated, and the data processing process is equipped with graphic dynamic display.

对于元数据服务子系统,该子系统在参考了FGDC提供的用于建设空间信息交换中心(ClearingHouse)的I-Site系列软件和由Blue AngelTechnologies公司开发的MetaStar系列产品后,设计并部分实现了一个元数据服务子系统,其体系结构如图所示。它主要包括服务器端的空间元数据服务器、空间元数据库管理器,客户端的空间元数据查询工具,空间元数据管理工具。为了方便用户使用,服务器还提供一个空间元数据网关,使得用户可以通过WWW网在浏览器中对系统进行查询和管理。For the metadata service subsystem, the subsystem designed and partially realized a The metadata service subsystem, its architecture is shown in the figure. It mainly includes the server-side spatial metadata server, the spatial metadata database manager, the client-side spatial metadata query tool, and the spatial metadata management tool. For the convenience of users, the server also provides a spatial metadata gateway, so that users can query and manage the system in a browser through the WWW network.

该元数据服务子系统按着功能划分,包括空间元数据网关、服务器端的空间元数据服务器、服务器端的空间元数据库管理器、客户端的空间元数据查询工具和客户器端的空间元数据管理工具。The metadata service subsystem is divided according to function, including spatial metadata gateway, server-side spatial metadata server, server-side spatial metadata database manager, client-side spatial metadata query tool and client-side spatial metadata management tool.

如图5所示,图5为本发明提供的数字地球原型系统中元数据服务子系统的结构框图。空间元数据网关,用于实现客户端与服务器端的信息交互。一般为Z39.50网关,使用已有的免费软件。它在某个意义上相当于客户端的协议处理传输模块的工作。它的主要功能是将用户通过HTTP协议传过来的一系列参数转化为满足协议的系统消息,然后发送到服务器,最后将结果以HTML格式的形式返回给浏览器。这里,Z39.50协议是一种在客户/服务器环境下计算机与计算机之间进行数据库检索的通讯协议。它的出版及使用解决了不同系统间的数据交流的问题,克服了信息检索网络化的障碍[10]。需要提及的是,在1992年以后的Z39.50协议标准中增加了对空间数据查询的支持,使得空间信息的查询可以通过Z39.50协议进行。As shown in Fig. 5, Fig. 5 is a structural block diagram of the metadata service subsystem in the digital earth prototype system provided by the present invention. The spatial metadata gateway is used to realize the information interaction between the client and the server. Generally Z39.50 gateway, using the existing free software. In a sense, it is equivalent to the work of the client's protocol processing transmission module. Its main function is to convert a series of parameters passed by the user through the HTTP protocol into system messages that meet the protocol, then send them to the server, and finally return the results to the browser in HTML format. Here, the Z39.50 protocol is a communication protocol for database retrieval between computers in a client/server environment. Its publication and use solve the problem of data exchange between different systems and overcome the obstacles of information retrieval network [10] . It should be mentioned that support for spatial data query was added to the Z39.50 protocol standard after 1992, so that the query of spatial information can be carried out through the Z39.50 protocol.

空间元数据服务器,用于接收来自空间元数据网关的信息,经过解析后调用相应的功能模块,如果需要返回结果集,则将结果组织好后以可扩展置标语言(XML)文档的形式返回给客户端,并负责空间元数据在因特网上的发布。空间元数据的发布支持国际通用的网络信息搜索和提取协议----Z39.50协议,能够与其他支持Z39.50协议的共享系统实现互联。通过空间元数据服务器,数据用户可以查询远程的空间元数据库,获取系统返回的空间元数据集,实现特定的操作。The spatial metadata server is used to receive the information from the spatial metadata gateway, call the corresponding function module after parsing, and if it needs to return the result set, organize the result and return it in the form of Extensible Markup Language (XML) document To the client, and responsible for the distribution of spatial metadata on the Internet. The release of spatial metadata supports the international common network information search and extraction protocol - Z39.50 protocol, and can be interconnected with other shared systems that support the Z39.50 protocol. Through the spatial metadata server, data users can query the remote spatial metadata database, obtain the spatial metadata set returned by the system, and implement specific operations.

空间元数据库管理器,用于空间元数据的采集、存储、管理和维护。空间元数据的存储和管理主要由空间元数据库来承担。以XML文档方式确定的空间元数据数据结构和输入的空间元数据,可以通过空间元数据管理器,建立XML和关系数据的合理映射,将其存放到关系数据库中,同时借助成熟的关系数据库软件,实现对空间元数据的有效管理,包括数据完整性维护和安全性维护两方面。而且,空间元数据管理器还负责建立合理的索引,提高高速的查询和检索。当然它还负责元数据记录的添加、删除和修改。The spatial metadata database manager is used for the collection, storage, management and maintenance of spatial metadata. The storage and management of spatial metadata is mainly undertaken by the spatial metadata database. The data structure of spatial metadata determined in the form of XML documents and the input spatial metadata can establish a reasonable mapping between XML and relational data through the spatial metadata manager, and store them in the relational database. At the same time, with the help of mature relational database software , to realize effective management of spatial metadata, including two aspects of data integrity maintenance and security maintenance. Moreover, the spatial metadata manager is also responsible for establishing a reasonable index to improve high-speed query and retrieval. Of course it is also responsible for adding, deleting and modifying metadata records.

空间元数据查询工具,用于为客户端提供一个界面来管理元数据模式信息、元数据记录以及各种映射关系,包括添加、删除和修改和浏览元数据记录。使用空间元数据管理工具,都需要先登录空间元数据服务器,获取一定的权限,才能进行权限内的操作The spatial metadata query tool is used to provide an interface for the client to manage metadata schema information, metadata records and various mapping relationships, including adding, deleting, modifying and browsing metadata records. To use spatial metadata management tools, you need to log in to the spatial metadata server first to obtain certain permissions before performing operations within the permissions

空间元数据管理工具,由用户界面模块和协议处理传输模块构成,用户界面模块用于实现与用户交互,输入查询条件和呈现查询结果;协议处理传输模块用于将用户界面模块收集到的查询参数组织成查询语句,通过TCP/IP协议发送给空间元数据服务器,然后查询空间元数据库,将查询结果交用户界面模块显示。The spatial metadata management tool is composed of a user interface module and a protocol processing and transmission module. The user interface module is used to interact with users, input query conditions and present query results; the protocol processing and transmission module is used to collect query parameters collected by the user interface module Organize query statements, send them to the spatial metadata server through TCP/IP protocol, then query the spatial metadata database, and submit the query results to the user interface module for display.

该元数据服务子系统的主要特征如下:The main features of the metadata service subsystem are as follows:

(1)鉴于空间元数据标准的不统一,合理的空间元数据系统应该支持尽可能多的空间元数据标准。系统基于FGDC标准,并保证对空间元数据标准可扩展性的支持。(1) In view of the disunity of spatial metadata standards, a reasonable spatial metadata system should support as many spatial metadata standards as possible. The system is based on the FGDC standard and guarantees support for the scalability of the spatial metadata standard.

(2)鉴于Z39.50协议是目前国际上广泛被接纳的一种在客户服务器环境下计算机与计算机之间进行数据库检索与查询的通信协议,所以空间元数据系统应该提供支持Z39.50协议访问的接口,保证响应任何基于Z39.50协议的查询,所以本系统支持基于Z39.50协议的查询。(2) Since the Z39.50 protocol is currently widely accepted internationally as a communication protocol for database retrieval and query between computers in a client-server environment, the spatial metadata system should provide access to the Z39.50 protocol The interface is guaranteed to respond to any query based on the Z39.50 protocol, so this system supports queries based on the Z39.50 protocol.

(3)系统服务器提供一个网关,使得用户可以通过WWW网来访问服务器,因为一般的元数据查询都是通过浏览器进行的。当然元数据的管理和维护界面应该也是可以通过浏览器进行,实现了真正意义上的基于Internet的空间信息元数据管理系统。(3) The system server provides a gateway, so that users can access the server through the WWW network, because the general metadata query is carried out through the browser. Of course, the metadata management and maintenance interface should also be available through a browser, realizing a true Internet-based spatial information metadata management system.

(4)对元数据的存储方式有比较灵活的支持,可以用文件系统也可以通过数据库来存储。考虑空间元数据信息内部结构的复杂性,空间元数据系统可以选择XML文档来存储空间元数据标准模板,并支持基于XML的空间元数据的输入、存储、查询和输出。研究分布式环境下,用XML作为数据中介,实现异构数据的集成和交换。XML作为下一代Internet语言,具有极大的灵活性。利用XML,可以在Internet展开各种复杂的应用。(4) There is more flexible support for the storage method of metadata, which can be stored by the file system or by the database. Considering the complexity of the internal structure of spatial metadata information, the spatial metadata system can choose XML documents to store the standard templates of spatial metadata, and support the input, storage, query and output of spatial metadata based on XML. In the distributed environment, use XML as a data intermediary to realize the integration and exchange of heterogeneous data. As the next-generation Internet language, XML has great flexibility. Using XML, various complex applications can be launched on the Internet.

系统的运行过程描述如下:在服务器端通过socket建立监听组件。当接收到客户端的连接请求后,与客户端建立连接。然后客户端可以把查询请求通过Socket连接发送到服务器端。服务器端执行ActiveX数据对象(ADO)执行数据库的查询操作,并把查询到的结果封装为XML的形式,通过Socket连接发送到客户端。客户端通过解析收到的XML字符串,得到所需的信息。这一过程可用下图6所示,图6为本发明提供的数字地球原型系统中元数据服务子系统的运行过程示意图。The operation process of the system is described as follows: the listening component is established on the server side through the socket. After receiving the connection request from the client, establish a connection with the client. Then the client can send the query request to the server through the Socket connection. The server executes ActiveX Data Objects (ADO) to perform database query operations, and encapsulates the query results in the form of XML, and sends them to the client through the Socket connection. The client gets the required information by parsing the received XML string. This process can be shown in Figure 6 below, which is a schematic diagram of the operation process of the metadata service subsystem in the digital earth prototype system provided by the present invention.

用XML作为数据交换的中介,会给系统的实现带来极大的灵活性。系统可以屏蔽掉后台的多种数据源,用统一的XML数据呈现给用户。接收数据一方根据XML数据的“模式(Schema)”可以对数据进行任意的处理,如分解出其中需处理的数据或是以不同的样式来呈现。通过XML,我们可以实现网上数据的交换、处理自动化,作为下一代Internet应用的基础。Using XML as the intermediary of data exchange will bring great flexibility to the realization of the system. The system can shield multiple data sources in the background and present it to users with unified XML data. The party receiving the data can process the data arbitrarily according to the "Schema" of the XML data, such as decomposing the data to be processed or presenting it in different styles. Through XML, we can realize the exchange and processing automation of online data, as the basis of the next generation of Internet applications.

元数据服务子系统包括以下功能模块:管理员登录,元数据浏览,可以查看所有的元数据记录;元数据录入,完成元数据属性信息的录入;元数据管理,完成元数据查询、删除和属性信息的修改;账户管理,以超级用户身份登录的管理员将有权限进行新的管理员账户的创立以及旧的账户的删除;注销登陆,用于账户的注销。The metadata service subsystem includes the following functional modules: administrator login, metadata browsing, you can view all metadata records; metadata entry, complete the entry of metadata attribute information; metadata management, complete metadata query, deletion and attribute information Information modification; account management, the administrator who logs in as a super user will have the authority to create a new administrator account and delete the old account; logout is used to cancel the account.

1、元数据浏览子模块1. Metadata browsing sub-module

(1)该页面主要完成管理员登录的功能。系统会对用户名和密码进行验证,用户名称以及密码匹配则通过验证,否则报错。测试账户admin密码为power(1) This page mainly completes the function of administrator login. The system will verify the user name and password. If the user name and password match, the verification will pass, otherwise an error will be reported. Test account admin password is power

(2)登录成功之后进入元数据服务子系统主页面,该页面左半部分显示系统功能,右半部分含有系统功能介绍页面。(2) After successful login, enter the main page of the metadata service subsystem. The left half of the page displays the system functions, and the right half contains the system function introduction page.

(3)元数据浏览页面列出元数据管理系统数据库中的所有记录,显示每条记录的中文数据集名称,英文数据集名称和摘要,点击中文数据集名称,就会显示和数据集中文名称对应的相应元数据记录的详细信息。也可以通过XML形式查看相应元数据记录的详细信息。(3) The metadata browsing page lists all the records in the database of the metadata management system, and displays the Chinese dataset name, English dataset name and summary of each record. Click the Chinese dataset name, and the dataset Chinese name will be displayed The details of the corresponding corresponding metadata record. You can also view the detailed information of the corresponding metadata record in XML form.

2、元数据录入子模块2. Metadata entry sub-module

(1)元数据录入子模块列出添加元数据记录所应该填写的各个字段,页面下方有按钮提示“输入完毕,开始入库”的按钮。开始入库之前要进行验证。本页面的查错机制:点击按钮之后激活查错功能,检查必填字段是否为空,有相应提示。对于所有不合乎要求的字段都会给出提示要求重新输入正确内容。(1) The metadata input sub-module lists the fields that should be filled in to add metadata records, and there is a button at the bottom of the page that prompts "Enter the input and start storing". Verification is required before starting storage. The error checking mechanism of this page: After clicking the button, activate the error checking function, check whether the required fields are empty, and there will be corresponding prompts. For all fields that do not meet the requirements, a prompt will be given to re-enter the correct content.

(2)把刚才输入的所有信息显示出来,供用户核实。如更改可以退回到前一个页面,否则继续点击按钮“确认无误,正式上传”。(2) Display all the information just entered for verification by the user. If you make changes, you can return to the previous page, otherwise continue to click the button "Confirm and upload officially".

(3)页面正式向数据库中添加记录,将刚才填写的信息依次写入相应的字段。本过程不可见,提醒用户新的记录已经添加完成。并有关闭页面的按钮。结束本次添加新记录的全部操作。(3) The page officially adds records to the database, and writes the information just filled in to the corresponding fields in sequence. This process is invisible, reminding the user that the new record has been added. And there is a button to close the page. End all operations of adding new records this time.

3、元数据管理子模块3. Metadata management sub-module

(1)该查询系统主要是为了帮助管理人员快速的定位要查找的元数据记录记录,以便对其字段内容进行核实,或者更改,甚至整条记录的删除。元数据查询中包含的检索字段有:数据集中文名称、数据起始日期、数据结束日期、最大经度、最高纬度、最小经度、最低纬度、关键词。所有的检索字段皆为模糊查询,并且所有字段之间的关系都是“与”的关系。空字段将会自动被屏蔽,不进行匹配检索。各个字段都空白时将列出数据库中所有元数据记录。(1) The query system is mainly to help managers quickly locate the metadata records to be searched, so as to verify the field content, or change, or even delete the entire record. The search fields included in the metadata query are: dataset Chinese name, data start date, data end date, maximum longitude, maximum latitude, minimum longitude, minimum latitude, keywords. All search fields are fuzzy queries, and the relationship between all fields is "and". Empty fields will be automatically masked and no matching search will be performed. When each field is blank, all metadata records in the database will be listed.

(2)根据特定的查询条件返回查询结果,列出查询出来的每条记录的中文数据集名称,英文数据集名称和摘要。点击中文数据集名称,就会显示和数据集中文名称对应的相应元数据记录的详细信息。也可以通过XML形式查看相应元数据记录的详细信息。也可以通过XML形式查看相应元数据记录的详细信息。页面下方有两个链接“编辑信息”以及“删除记录”。(2) Return query results according to specific query conditions, and list the Chinese data set name, English data set name and abstract of each record that is queried. Click on the name of the Chinese dataset, and the detailed information of the corresponding metadata record corresponding to the Chinese name of the dataset will be displayed. You can also view the detailed information of the corresponding metadata record in XML form. You can also view the detailed information of the corresponding metadata record in XML form. There are two links "Edit Information" and "Delete Record" at the bottom of the page.

(3)根据数据集中文名称显示记录的具体信息,可以直接对关键部分修改,页面底下有两个按钮,分别进行更改操作以及放弃操作。根据传送过来的信息更新相关字段,提醒用户元数据记录属性修改已经完成。并有关闭页面的按钮。结束本次修改记录的全部操作。(3) According to the specific information of the records displayed in the Chinese name of the data set, you can directly modify the key parts. There are two buttons at the bottom of the page to perform the modification operation and the abandonment operation respectively. Update relevant fields according to the transmitted information, and remind users that the modification of metadata record attributes has been completed. And there is a button to close the page. End all operations of modifying the record this time.

(4)如果选择删除记录操作,系统会完成删除记录并提示用户记录已经删除。(4) If you choose to delete the record, the system will delete the record and prompt the user that the record has been deleted.

4、账户管理子模块4. Account management sub-module

该页面检索数据库中普通管理员的账户记录,如果记录个数为0,则显示“目前还没有建立其它登录账户”;否则将显示已经存在的普通账户,显示内容包括登录名称以及密码(明文显示)。页面下方有新建账户的功能区,输入用户名以及密码。为提醒操作者大小写敏感问题,增设了密码检验步骤。尽管密码都会明文显示,仅以次环节作为提醒。This page retrieves the account records of ordinary administrators in the database. If the number of records is 0, it will display "No other login account has been established yet"; ). At the bottom of the page, there is a functional area for creating a new account, enter the user name and password. In order to remind the operator of case-sensitive issues, a password verification step has been added. Although the password will be displayed in plain text, only the second link is used as a reminder.

在每一个账户信息栏中都包含一个“删除”操作链接。点击后请用户确认是否删除账户,确认后执行删除造作并自动切换回到账户管理的初始页面。Each account information column contains a "delete" action link. After clicking, the user is asked to confirm whether to delete the account, and after confirmation, the deletion operation will be executed and it will automatically switch back to the initial page of account management.

对于模型库子系统,其中保存的通用模型至少包括:改进的同态滤波去云模型、金字塔结构遥感数据快速压缩与回放模型、多尺度遥感图像小波融合模型、高光谱遥感图像立方体模型、地表温度反演模型、样条多尺度图像表示与配准模型、雷达数据土壤水分的反演模型、植被指数模型生物量模型、净初级生产率模型、微波遥感数据地面参数反演模型和雷达干涉测量(INSAR)模型等。For the model library subsystem, the general models stored in it include at least: improved homomorphic filter cloud removal model, pyramid structure remote sensing data fast compression and playback model, multi-scale remote sensing image wavelet fusion model, hyperspectral remote sensing image cube model, surface temperature Inversion model, spline multi-scale image representation and registration model, radar data soil moisture inversion model, vegetation index model biomass model, net primary productivity model, microwave remote sensing data ground parameter inversion model and radar interferometry (INSAR ) model, etc.

模型是将原始数据处理成可用的信息和知识的中间过程,是数字地球应用的重要内容。数字地球1.0版模型库中收录了近年来遥感所自主开发的模型,包括图像预处理、地面物质特性反演、数据融合和微波数据处理等16个模型,这些模型经过课题验证和发表在国内外刊物上。一些已经使用多年的模型,如植被指数等没有收录到本模型库中,本模型库将不断收入新的模型,同时希望对已经收录的模型使用和改进。模型库按模型名称、算法与文档说明的方式介绍给用户。Model is the intermediate process of processing raw data into usable information and knowledge, and it is an important content of Digital Earth application. The Model Library of Digital Earth Version 1.0 includes models independently developed by the Institute of Remote Sensing in recent years, including 16 models such as image preprocessing, inversion of ground material properties, data fusion, and microwave data processing. These models have been verified and published at home and abroad on publications. Some models that have been used for many years, such as vegetation index, are not included in this model library. This model library will continue to include new models, and at the same time hope to use and improve the models that have been included. The model library is introduced to users in the form of model name, algorithm and document description.

1、改进的同态滤波去云模型1. Improved homomorphic filtering cloud removal model

图像函数f(x,y)可以简化为光源入射量函数fi(x,y)与地面反射率函数fr(x,y)的乘积。在这里,把式(1)的形式做一些改变:The image function f(x, y) can be simplified as the product of the light source incidence function fi(x, y) and the ground reflectance function fr(x, y). Here, some changes are made to the form of formula (1):

f(x,y)=i0×fi(x,y)×fr(x,y)f(x,y)=i 0 ×f i (x,y)×f r (x,y)

其中,i0是光源入射量常数,对于地表的每一点(x,y)来说都是恒定的,fi(x,y)是由薄云引起的入射量变化函数,fr(x,y)是地面反射率函数。Among them, i0 is the light source incident constant, which is constant for every point (x, y) on the surface, fi(x, y) is the incident quantity change function caused by thin clouds, fr(x, y) is Ground albedo function.

fi(x,y)主要反映的是图像中的低频部分,即大范围内的亮度差异。去云的问题即转化为如何减弱fi(x,y)所引起的图像照明不均,图像上各部分的平均亮度有起伏而使对应于云区的图像细节结构较难分辨的问题。fi(x, y) mainly reflects the low-frequency part in the image, that is, the brightness difference in a large range. The problem of cloud removal is transformed into how to reduce the uneven illumination of the image caused by fi(x, y), and the average brightness of each part of the image fluctuates, making it difficult to distinguish the detailed structure of the image corresponding to the cloud area.

对数变换:Log transformation:

由于fi(x,y)和fr(x,y)二者是乘积关系,在频率域无法分开处理。因此,对(l’)取对数,是空间域内的乘积关系转化为相加关系:Since fi(x, y) and fr(x, y) are product relations, they cannot be processed separately in the frequency domain. Therefore, taking the logarithm for (l') is to transform the product relationship in the space domain into an additive relationship:

g(x,y)=lnf(x,y)=lni0+lnfi(x,y)+lnfr(x,y)g(x,y)=lnf(x,y)=lni 0 +lnf i (x,y)+lnf r (x,y)

实际运用中,需要将f(x,y)加1之后再取对数。这是为了避免出现对0取对数而得到无意义的值。In practice, it is necessary to add 1 to f(x, y) and then take the logarithm. This is to avoid taking the logarithm of 0 and getting a meaningless value.

低通滤波:Low-pass filtering:

如果直接采用高通滤波提取fr(x,y),无云区的细节部分会被不必要地过度增强,引起图像的失真。既然fi(x,y)缓慢变化,而fr(x,y)快速变化,对g(x,y)进行低通滤波,就可以先把fi(x,y)分离出来。If the high-pass filter is directly used to extract fr(x, y), the details of the cloud-free area will be unnecessarily over-enhanced, causing image distortion. Since fi(x, y) changes slowly, and fr(x, y) changes rapidly, by performing low-pass filtering on g(x, y), fi(x, y) can be separated first.

g′(x,y)=LPF(g(x,y))≈lni0+lnfi(x,y)g'(x,y)=LPF(g(x,y))≈lni 0 +lnf i (x,y)

如果一副图像包含有噪声,根据噪声干扰的统计学特征,可以假定这些噪声相对于每一坐标点是不相关的,且其数学期望值为零。与噪声相类似,ln(fr(x,y))快速变化,也可以假定其相对于每一坐标点是不相关的(其数学期望值不为零)。对图像的某一区域来说,ln(fr(x,y))可以视为“随即加性噪声”,对该区域取均值后可以“消除”。[8]为了简化计算,采用邻区平均的方法来近似低通滤波算子:If an image contains noise, according to the statistical characteristics of noise interference, it can be assumed that these noises are irrelevant to each coordinate point, and their mathematical expectation value is zero. Similar to noise, ln(fr(x, y)) changes rapidly, and it can also be assumed to be uncorrelated with respect to each coordinate point (its mathematical expectation value is not zero). For a certain area of the image, ln(fr(x, y)) can be regarded as "random additive noise", which can be "eliminated" after averaging the area. [8] In order to simplify the calculation, the neighborhood average method is used to approximate the low-pass filter operator:

gg ′′ (( xx ,, ythe y )) == LPFLPF (( gg (( xx ,, ythe y )) )) ≈≈ 11 NN 22 ΣΣ jj == ythe y -- [[ NN // 22 ]] ythe y ++ [[ NN // 22 ]] (( ΣΣ ii == xx -- [[ NN // 22 ]] xx ++ [[ NN // 22 ]] ff (( ii ,, jj )) ))

其中,N是奇数,上述计算在以(x,y)为中心,N×N大小的区域内进行。[N/2]代表N/2的整数部分。N的取值应适当较大,否则对于整幅图像来说,较小的邻区平均并不能很好地削弱高频部分。Wherein, N is an odd number, and the above calculation is performed in an area of N×N size centered on (x, y). [N/2] represents the integer part of N/2. The value of N should be appropriately large, otherwise, for the entire image, a small neighborhood average cannot weaken the high-frequency part well.

2、金字塔结构遥感数据快速压缩与回放模型2. Pyramid structure remote sensing data fast compression and playback model

可视化是通过数字地球与人交互的窗口实现的。用遥感数字图像重建三维数字地球是本研究的关键技术和最显著的特点。将不同比例尺的遥感图像乃至整个地球、国家和区域无缝拼接,任意漫游和放大,由三维数据通过人造视差的方法,构造虚拟立体。实现上述任务的关键技术是小波不同尺度遥感数据金字塔快速压缩与回放技术。研究中开发了小波不同尺度遥感数据金字塔快速压缩与回放软件。原理介绍如下:Visualization is realized through the window through which the digital earth interacts with people. Reconstruction of 3D digital earth with remote sensing digital images is the key technology and most notable feature of this study. Seamlessly splicing remote sensing images of different scales and even the entire earth, country and region, roaming and zooming in at will, and constructing a virtual stereo from 3D data through the method of artificial parallax. The key technology to realize the above tasks is the fast compression and playback technology of wavelet different scale remote sensing data pyramid. In the research, the rapid compression and playback software of wavelet different scale remote sensing data pyramids was developed. The principle is as follows:

为了利用有限的存储容量存储更多的影像,就需要研究怎样才能最大限度地压缩影像数据,并保证利用这些被压缩的数据所重建的影像质量和速度是用户能够接受的,这就是较大影像的无级显示与压缩所要解决的问题。In order to store more images with limited storage capacity, it is necessary to study how to compress the image data to the maximum extent, and ensure that the image quality and speed reconstructed by these compressed data are acceptable to users. This is the larger image The problem to be solved by stepless display and compression.

由于影像像素之间存在密切的相关性,即影像数据含有较高的冗余度,因此可以对影像数据进行压缩。另一方面,用于重建该影像必须具备振幅、相位、两个空间频率至少四个量,这四个变量是相互独立的,即其中任何一个都不能从其余三个变量中获得。所以,把一个含有大量相关像素的影像,经过某种可逆的变换(压缩-解压),变成仅含有由非相关元素组成的数据组,便可以完成影像数据的压缩。目前常用方法有数据分块(tile)、金字塔层次影像以及小波压缩。一方面进行影像压缩,减小冗余度;另一方面优化存储结构,以提高解压影像的速度,数据分块技术适于连续重叠小影像构成大影像显示,主要应用在游戏地图显示领域。金字塔层次影像压缩技术,是目前研究的一个重要方向。Since there is a close correlation between image pixels, that is, the image data has a high degree of redundancy, the image data can be compressed. On the other hand, for reconstructing the image, there must be at least four quantities of amplitude, phase, and two spatial frequencies. These four variables are independent of each other, that is, any one of them cannot be obtained from the other three variables. Therefore, image data compression can be completed by converting an image containing a large number of related pixels into a data group consisting of only non-related elements through some reversible transformation (compression-decompression). At present, the commonly used methods include data block (tile), pyramid level image and wavelet compression. On the one hand, image compression is performed to reduce redundancy; on the other hand, the storage structure is optimized to increase the speed of image decompression. The data block technology is suitable for continuous overlapping of small images to form a large image display, which is mainly used in the field of game map display. Pyramid-level image compression technology is an important direction of current research.

小波压缩是目前最新的视频压缩技术,能够实现在较低的带宽下实现高品质的画面传输、压缩和存储,同时小波是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。它与Fourier变换、窗口傅利叶(Fourier)变换或伽柏(Gabor)变换相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。小波分析可以在指定的频带和时(空)域内,对信号成分进行分析。时(空)频域局部化性质和多分辨率分析特征,是小波分析的主要特点和优点。它可以在任意的时(空)尺度内,以任意高的分辨率,观察信号的细微特征。Wavelet compression is the latest video compression technology at present, which can realize high-quality picture transmission, compression and storage at a lower bandwidth. At the same time, wavelet is a rapidly developing new field in current mathematics. Broad double meaning. Compared with Fourier transform, windowed Fourier transform or Gabor transform, it is a local transformation of time and frequency, so it can effectively extract information from the signal, and it can be processed by operations such as stretching and translation. Multiscale analysis of functions or signals solves many difficult problems that cannot be solved by Fourier transform, so wavelet transformation is known as "mathematical microscope", which is a milestone in the history of harmonic analysis. Wavelet analysis can analyze the signal components in the specified frequency band and time (space) domain. Time (space) frequency domain localization properties and multi-resolution analysis features are the main characteristics and advantages of wavelet analysis. It can observe the subtle features of the signal at any time (space) scale and at any high resolution.

在时(空)域定义:Defined in the time (space) domain:

Figure C20071011801200321
Figure C20071011801200321

为小波函数ψ(x)的有效带宽。于是伸缩平移小波ψs(x-x0)的时宽中心为x0,有效时宽为sσx。在尺度-空间平面内,由is the effective bandwidth of the wavelet function ψ(x). Therefore, the time width center of the telescopic translation wavelet ψs(x-x0) is x0, and the effective time width is sσx. In the scale-space plane, by

[x0-sσx,x0+sσx][ω0/s-σ0/s,ω0/s+σ0/s][x 0 -sσ x , x 0 +sσ x ][ω 0 /s-σ 0 /s, ω 0 /s+σ 0 /s]

定义的矩形窗口,反映了小波变换的时(空)频域分辨率。当尺度s增加时,小波滤波器中心频率减小,频带变窄,而时窗宽度增大。这意味着在低频带内,有越来越高的频度分辨率。反之亦反,即意味着高频带将有更好的时间(位置)分辨率。The defined rectangular window reflects the time (space) frequency domain resolution of the wavelet transform. When the scale s increases, the wavelet filter center frequency decreases, the frequency band narrows, and the time window width increases. This means that in the low frequency band, there is an increasingly higher frequency resolution. And vice versa, which means that the high frequency band will have better time (position) resolution.

在压缩过程中,采用金字塔层次存储不同分辨率层次的小波系数,采用不同的码字长度进行编码,并据分辨率的不同要求,压缩不必要的小波系数,从而达到编码、压缩的目的。在软件中,首先读入影像图的文件头信息,获取数据的尺寸、像素的大小;In the process of compression, the pyramid level is used to store wavelet coefficients of different resolution levels, different code word lengths are used for encoding, and unnecessary wavelet coefficients are compressed according to different requirements of resolution, so as to achieve the purpose of encoding and compression. In the software, first read the file header information of the image image to obtain the size of the data and the size of the pixels;

其次,根据映射内存中屏幕的四个角点的坐标,计算所需要影像的比例尺和坐标;根据分辨率的不同要求,解压数据;将数据调入到映射内存。最后,将映射内存反转到显示内存中,显示给用户。Secondly, according to the coordinates of the four corners of the screen in the mapped memory, calculate the scale and coordinates of the required image; decompress the data according to the different requirements of the resolution; transfer the data to the mapped memory. Finally, the mapped memory is reversed into display memory for display to the user.

实现了遥感数据压缩比大于20%,回放时间在3秒之内。The compression ratio of remote sensing data is greater than 20%, and the playback time is within 3 seconds.

3、多尺度遥感图像小波融合模型3. Multi-scale remote sensing image wavelet fusion model

不同分辨率下的信息差别(即细节),可以通过将函数在一小波正交基上分解而获得,解决了以前的图像用定义在渐增分辨率序列(Vj)j∈Z上的细节来描述时难以解决的细节间的相关性问题,去处了信息的冗余。The information difference (that is, the details) at different resolutions can be obtained by decomposing the function on a small wavelet orthogonal basis, which solves the details of the previous images defined on the increasing resolution sequence (V j ) j∈Z The correlation problem between the details that is difficult to solve when describing, removes the redundancy of information.

平方可积函数空间L2(R)中的一列闭子空间{Vj}j∈Z若满足一定的条件,则称{Vj}j∈Z为L2(R)的一个多分辨分析(MRA)。我们利用多分辨率分析可以得到空间L2(R)的正交分解。If a closed subspace {V j } j∈Z in the square integrable function space L 2 (R) satisfies certain conditions, then {V j } j∈Z is called a multiresolution analysis of L 2 (R) ( MRA). We can obtain the orthogonal decomposition of space L 2 (R) by using multi-resolution analysis.

设Wj+1是Vj+1在Vj上的正交补空间,则有 V j = V j + 1 ⊕ W j + 1 Let W j+1 be the orthogonal complement space of V j+1 on V j , then we have V j = V j + 1 ⊕ W j + 1

对于f∈L2(R),已知f(x)在2j+1和2j分辨率下的逼近分别等于其在Vj+1和Vj中的正交投影,则f(x)在2j分辨率下的高频细节部分为空间Wj+1中的正交投影。For f∈L 2 (R), it is known that the approximation of f(x) at 2 j+1 and 2 j resolutions is equal to its orthogonal projection in V j+1 and V j respectively, then f(x) The high frequency detail at 2 j resolution is an orthographic projection in the space W j+1 .

设f(x)在2k(k∈Z)分辨率下在Vk和Wk中的投影分别为fk∈Vk和gk∈Wk,则fk=fk-1+gk-1,因此Let the projections of f(x) in V k and W k at 2 k (k∈Z) resolution be f k ∈ V k and g kW k , then f k = f k-1 + g k -1 , so

ff == ff 11 ++ gg 11 == ff 22 ++ gg 22 ++ gg 11 == ff NN ++ gg NN ++ ·· ·· ·· ++ gg 22 ++ gg 11 == ff NN ++ ΣΣ ii == 11 NN gg ii

由于{φk,n:k,n∈Z}是Vk的规范正交基,

Figure C20071011801200333
是Wk的规范正交基,因而fk,gk可表示为:Since {φ k, n : k, n ∈ Z} is an orthonormal basis of V k ,
Figure C20071011801200333
is the orthonormal basis of W k , so f k , g k can be expressed as:

ff kk == ΣΣ nno cc nno kk φφ (( 22 kk xx -- nno )) ,, {{ cc nno kk }} ∈∈ ll 22

Figure C20071011801200335
Figure C20071011801200335

其中φ称为尺度函数,

Figure C20071011801200336
称为小波函数。where φ is called the scaling function,
Figure C20071011801200336
called the wavelet function.

分解算法:由{cn k}求{cn k-1}和{dn k-1}Decomposition algorithm: find {c n k -1 } and {d n k-1 } from {c n k }

cc nno kk -- 11 == ΣΣ nno aa ll -- 22 nno cc ll kk dd nno kk -- 11 == ΣΣ nno bb ll -- 22 nno cc ll kk

重构算法:由{cn k-1}和{dn k-1}求{cn k}Reconstruction algorithm: find {c n k } from {c n k-1 } and {d n k-1 }

cc nno kk == ΣΣ nno [[ pp nno -- 22 ll cc ll kk -- 11 ++ qq nno -- 22 ll dd ll kk -- 11 ]]

上述分解算法与重构算法又称为Mallat算法。其中{an},{bn}称为分解序列,{pn},{qn}称为重构序列。The above decomposition algorithm and reconstruction algorithm are also called Mallat algorithm. Among them, {a n }, {b n } are called decomposition sequences, and {p n }, {q n } are called reconstruction sequences.

4、高光谱遥感图像立方体模型4. Hyperspectral remote sensing image cube model

高光谱是高光谱分辨率遥感在特定光谱域获得连续的地物光谱图像,高光谱遥感应用可以在光谱维上展开。在高光谱影像中的象元是由连续波段构成,一种表现这种光谱与地表现象关系的表达方式是建立图像立方体了,见下图。Hyperspectral is high spectral resolution remote sensing to obtain continuous ground object spectral images in a specific spectral domain, and hyperspectral remote sensing applications can be expanded in the spectral dimension. The pixels in the hyperspectral image are composed of continuous bands. One way to express the relationship between the spectrum and the surface phenomenon is to build an image cube, as shown in the figure below.

在图像立方体中,x和y轴表示光谱的空间维,图中表示一个农场;z轴由所有剩余波段组成,叠合方式如同书中的页。In the image cube, the x and y axes represent the spatial dimensions of the spectrum, and a farm is represented in the figure; the z axis consists of all remaining bands, superimposed like pages in a book.

图像立方体制作:Image Cube Maker:

(1)顶层图像是R,G,B合成图像;(1) The top-level image is a composite image of R, G, and B;

(2)色彩沿着边部像元的z轴向流变化用R,G,B表示;(2) The z-axis flow change of the color along the edge pixel is represented by R, G, B;

(3)全部像元z轴方向构成光谱立方体,光谱立方体中包含了许多变化信息。(3) The z-axis direction of all pixels constitutes a spectral cube, which contains a lot of change information.

5、地表温度反演模型5. Surface temperature inversion model

改进地表温度反演的分裂窗算法:建立了不同观测角度和地表高程影响的分裂窗算法系列模型系数,(1)考虑不同卫星观测角时,因大气辐射路径带来的影响。在0°~65°之间分别设立了以下几个区间:0°~30°之间为10°间隔,30°~65°为5°一个间隔;(2)利用地表典型波谱知识库和植被冠层辐射传输模型,建立叶面积指数与像元比辐射率之间的关系,将这种关系作为先验知识,为地表温度反演提供像元级比辐射率值;(3)根据我国地形明显的3级台阶差异,建立不同海拔高度的算法模型系数,Improved split-window algorithm for surface temperature inversion: Established a series of model coefficients for split-window algorithms affected by different observation angles and surface elevations. (1) Considering the influence of atmospheric radiation paths when different satellite observation angles are considered. The following intervals were established between 0° and 65°: 10° intervals between 0° and 30°, and 5° intervals between 30° and 65°; (2) Using the typical surface spectrum knowledge base and vegetation The canopy radiative transfer model establishes the relationship between leaf area index and pixel specific emissivity, and uses this relationship as prior knowledge to provide pixel-level specific emissivity values for surface temperature inversion; (3) according to my country's terrain Obvious 3-level step difference, establish algorithm model coefficients for different altitudes,

TT sthe s == (( AA 11 ++ AA 22 11 -- ϵϵ ϵϵ ++ AA 33 ΔϵΔϵ ϵϵ 22 )) TT 3131 ++ TT 3232 22 ++ (( BB 11 ++ BB 22 11 -- ϵϵ ϵϵ ++ BB 33 ΔϵΔϵ ϵϵ 22 )) (( TT 3131 -- TT 3232 )) ++ CC

实现地表温度反演的日夜算法:建立MODIS中红外和热红外窗口7个通道的辐射亮度值与各参数之间的查找表,利用查找表得出与给定观测值最接近的大气廓线初始值大气廓线;正模式选用RTTOV7.0模式来计算不同大气状况下的辐射亮度值;反演算法选用正则化约束和牛顿迭代反演算法。Realize the day and night algorithm for surface temperature inversion: establish a lookup table between the radiance values of the 7 channels of the MODIS mid-infrared and thermal infrared windows and each parameter, and use the lookup table to obtain the initial atmospheric profile closest to the given observation value Atmospheric profile; the positive mode uses RTTOV7.0 mode to calculate the radiance value under different atmospheric conditions; the inversion algorithm uses regularization constraints and Newton iterative inversion algorithm.

6、B样条多尺度图像表示与配准模型6. B-spline multi-scale image representation and registration model

基于B-样条多尺度表示具有多分辨率特性,一阶导数和Hessian矩阵可以利用多尺度递归计算的特性实现图像匹配,基本模型,Based on B-spline multi-scale representation has multi-resolution characteristics, the first derivative and Hessian matrix can use the characteristics of multi-scale recursive calculation to achieve image matching, the basic model,

SS 11 nno == {{ gg nno (( xx )) == ΣΣ kk == ∞∞ ++ ∞∞ cc (( kk )) ββ nno (( xx -- kk )) }} ,, xx ∈∈ RR 11

ββ nno (( xx )) == ΣΣ jj == 00 nno ++ 11 (( -- 11 )) jj nno !! (( nno ++ 11 jj )) (( xx ++ nno ++ 11 22 -- jj )) ++ nno

其中, ( x ) + n = max ( 0,1 ) n , n > 0 in, ( x ) + no = max ( 0,1 ) no , no > 0

B-样条导数递归计算模型,B-spline derivative recursive calculation model,

∂∂ ββ nno (( xx )) ∂∂ xx == ββ nno -- 11 (( xx ++ 11 22 )) -- ββ nno -- 11 (( xx -- 11 22 ))

7、雷达数据土壤水分的反演模型7. Inversion model of soil moisture from radar data

利用沃尔夫冈(wolfgang)基于动态检测的模型,认为同一点的后向散射系数(规范化到40°的)之间的比较能获得该点的土壤水份信息。对于同一个点,最大和最小的σ°(40)表示最干和最湿的地表状态,分别用σ°dry(40,t)和σ°wet(40),其中σ°dry(40,t)中的t表示最干的情况是随季节而变化的。Using wolfgang's model based on dynamic detection, it is considered that the comparison between the backscatter coefficients (normalized to 40°) of the same point can obtain the soil moisture information of the point. For the same point, the largest and smallest σ°(40) represent the driest and wettest surface states, respectively σ° dry (40, t) and σ° wet (40), where σ° dry (40, t The t in ) indicates that the driest conditions vary with the seasons.

假设σ°(40)和表面土壤水分有一个线性关系,wolfgang的土壤水份获取模型表示为:Assuming that σ°(40) has a linear relationship with surface soil moisture, Wolfgang’s soil moisture acquisition model is expressed as:

8、植被指数8. Vegetation index

比值植被指数:Ratio vegetation index:

NDVI=(TM4/TM3)NDVI=(TM4/TM3)

归一化植被指数:Normalized Difference Vegetation Index:

NDVI=(TM4-TM3)/(TM4+TM3)NDVI=(TM4-TM3)/(TM4+TM3)

土壤调节植被指数:Soil Adjusted Vegetation Index:

SAVI=[(I+L)*(TM4-TM3)]/(TM4+TM3+L),L=0.5SAVI=[(I+L)*(TM4-TM3)]/(TM4+TM3+L), L=0.5

转换植被指数:Convert vegetation index:

TVI=(NDVI+0.5)TVI=(NDVI+0.5)

环境植被指数:Environmental Vegetation Index:

EVI=TM4-TM3EVI=TM4-TM3

9、生物量模型9. Biomass model

植被指数不可以直接用于衡量生物量或NPP,它是通过与叶面积指数(LAI)等的关系来估测这些生物参数。叶面吸收光合有效辐射,光合作用合成有机质,进而将植被指数通过LAI与生物量联系起来。S.W Todd等1998年利用TM数据对位于Rocky山区雨影区的已放牧和未放牧的矮草草原进行研究,其中放牧区的NDVI与地上生物量的相关系数为0.812,未牧地区的NDVI与生物量相关系数为0.304,并建立了牧区生物量的光谱模型,Vegetation index cannot be directly used to measure biomass or NPP, it estimates these biological parameters through the relationship with leaf area index (LAI), etc. The leaf surface absorbs photosynthetically active radiation, photosynthesizes organic matter, and then links vegetation index with biomass through LAI. S.W Todd et al. used TM data in 1998 to study the grazing and non-grazing shortgrass grasslands located in the rain shadow area of the Rocky Mountains. The correlation coefficient between the NDVI of the grazing area and the aboveground biomass was 0.812, and the NDVI of the non-grazing area was related to the biomass. The biomass correlation coefficient is 0.304, and a spectral model of pastoral biomass is established,

生物量=60.86+352.71*NDVI,其中R2为0.66。Biomass=60.86+352.71*NDVI, where R2 is 0.66.

10、净初级生产率模型10. Net Primary Productivity Model

NPP是单元时间从大气进入绿色植物的碳通量,NPP是衡量生态环境变化的基本要素。NPP is the carbon flux from the atmosphere into green plants per unit time, and NPP is the basic element to measure the change of ecological environment.

净初级生产率(Net primary productivity NPP)一般公式:NPP=0.29*[exp(-0.216)*RDI**2]RnNet primary productivity (NPP) general formula: NPP=0.29*[exp(-0.216)*RDI**2]Rn

Rn:年净辐射(kcal/cm**2)Rn: annual net radiation (kcal/cm**2)

RDI:辐射干量指数(=Rn/(lr))RDI: Radiation dryness index (=Rn/(lr))

I:潜在蒸腾热量(580cal/gH20)I: Potential heat of transpiration (580cal/gH20)

R:年降水量(cm)。R: annual precipitation (cm).

11、微波遥感数据地面参数反演模型11. Inversion model of ground parameters of microwave remote sensing data

高斯IEM面散射模型适用范围为 ( ks ) ( kl ) < 1.2 &epsiv; , 范围较宽,被用作地面参数提取的基本公式。The Gaussian IEM surface scattering model is applicable to ( ks ) ( kl ) < 1.2 &epsiv; , It has a wide range and is used as the basic formula for ground parameter extraction.

&sigma;&sigma; pppp == || &alpha;&alpha; pppp || 22 [[ sthe s rr &alpha;&alpha; pppp (( &theta;&theta; )) ++ bb pppp (( &theta;&theta; )) ]]

其中,pp表示入射-散射的极化状态,σpp表示该极化状态下的地面散射系数,sr是地面离散高度S及相关长度L有关的地面粗糙参数sr=(ks)2W。W为高斯分布型地面相关函数的一阶能量谱。Among them, pp represents the polarization state of incident-scattering, σ pp represents the ground scattering coefficient in this polarization state, s r is the ground roughness parameter s r =(ks) 2 W related to the ground discrete height S and the correlation length L. W is the first-order energy spectrum of the Gaussian distribution ground correlation function.

粗糙度:描述地面粗糙度的参量有2个,地面离散高度s和地面相关函数,对一维离散数据,像元单元地面离散高度为,Roughness: There are two parameters to describe the roughness of the ground, the ground discrete height s and the ground correlation function. For one-dimensional discrete data, the pixel unit ground discrete height is,

SS == &Sigma;&Sigma; ii == 11 nno ZZ ii 22 -- NN (( zz &OverBar;&OverBar; )) 22 NN -- 11

与地面离散高度s和地面长度L有关的地面粗糙度参数Sr与后向散射系数有关:The ground roughness parameter S r related to the ground discrete height s and the ground length L is related to the backscatter coefficient:

1010 loglog (( &sigma;&sigma; vvvv )) == &sigma;&sigma; vvvv (( &theta;&theta; )) ++ bb vvvv (( &theta;&theta; )) 1010 loglog 11 sthe s rr

12、雷达干涉测量(INSAR)模型12. Radar interferometry (INSAR) model

合成孔径雷达干涉测量技术(INSAR)是以同一地区的两张合成孔径雷达(SAR)图像为基本处理数据,通过求取两幅SAR图像的相位差,获取干涉图像,然后经相位解缠,从干涉条纹中获取地形高程数据新技术,干涉测量基本模型,Synthetic Aperture Radar Interferometry (INSAR) uses two Synthetic Aperture Radar (SAR) images in the same area as the basic processing data. By calculating the phase difference of the two SAR images, the interference image is obtained, and then unwrapped by phase, from A new technology for obtaining terrain elevation data in interference fringes, a basic model of interferometry,

&phi;&phi; pp == -- 44 &pi;&pi; &lambda;&lambda; (( BB sinsin (( &theta;&theta; pp 00 -- &alpha;&alpha; )) -- DD. pp ++ BB &perp;&perp; pp 00 RR lplp sinsin &theta;&theta; pp 00 Hh pp ))

B-基线距离;B-baseline distance;

BB &perp;&perp; pp 00 == BB coscos (( &theta;&theta; pp 00 -- &alpha;&alpha; )) ;;

Figure C20071011801200383
Figure C20071011801200383

Hp=地形高度;H p = terrain height;

Dp=地表移动;D p = surface movement;

α=基线水平夹角。α = baseline horizontal angle.

雷达差分干涉测量(D-INSAR):差分干涉雷达测量技术(D-INSAR)是指利用同一地区的两幅干涉图像,其中一幅是通过形变事件前的两幅SAR获取的干涉图像,另一幅是通过形变事件前后两幅SAR图像获取的干涉图像,然后通过两幅干涉图差分处理(除去地球曲面、地形起伏影响)来获取地表微量形变的测量技术。Differential radar interferometry (D-INSAR): Differential interferometric radar measurement (D-INSAR) refers to the use of two interferometric images of the same area, one of which is the interferometric image acquired by two SARs before the deformation event, and the other The first one is the interference image obtained by two SAR images before and after the deformation event, and then the difference processing of the two interferograms (removing the influence of the earth's curved surface and terrain fluctuations) is a measurement technique for obtaining the micro-deformation of the surface.

对于空间信息数据库子系统,为了满足数字地球原型的海量数据的需求,遥感数据子系统以多尺度遥感标准数据的深加工为主要内容。包括空间数据处理、遥感数据处理、特征信息处理、专题信息分析等四个主要模块。For the spatial information database subsystem, in order to meet the massive data requirements of the digital earth prototype, the remote sensing data subsystem takes the deep processing of multi-scale remote sensing standard data as the main content. Including spatial data processing, remote sensing data processing, feature information processing, thematic information analysis and other four main modules.

空间数据处理模块用于实现控制底层数据处理、底层控制框架布设和底层数据精度检验。空间数据处理模块建立遥感标准数据平台预处理环节,将符合国家测绘标准的地形图控制本底用于多时空尺度遥感数据几何精校正数学模型的执行过程,并生成用于几何精校正质量精度检验的参照本底,使可测度检验有据可依。主要包括:The spatial data processing module is used to implement control bottom data processing, bottom control framework layout and bottom data accuracy inspection. The spatial data processing module establishes the preprocessing link of the remote sensing standard data platform, uses the topographic map control background conforming to the national surveying and mapping standard for the execution process of the mathematical model of the geometric fine correction of the multi-temporal and spatial scale remote sensing data, and generates it for the quality and accuracy inspection of the geometric fine correction The reference background, so that the measurable inspection has evidence to rely on. mainly include:

1、控制底层数据处理——通过几何精校正实现扫描地形图与理论值相符合的数字栅格地图,消除扫描误差和纸质地形图的变形误差。它是遥感图像几何精校正数学模型实现基础中的基础;并同时应用于数据产品定量化检验精度的参照本底基本单元。1. Control the underlying data processing - realize the digital raster map in which the scanned topographic map conforms to the theoretical value through geometric fine correction, and eliminate the scanning error and the deformation error of the paper topographic map. It is the basis for the realization of the mathematical model of the geometric fine correction of remote sensing images; it is also applied to the basic unit of the reference background for the quantitative inspection of data products.

2、底层控制框架布设——以数字栅格地图为基本单元,形成满足各种坐标体系的基本控制框架,是遥感图像几何精校正数学模型实现的基础,同时还具备进行图像数据产品质量精度检验参照本底的功能。2. The layout of the underlying control framework - with the digital grid map as the basic unit, a basic control framework that satisfies various coordinate systems is formed, which is the basis for the realization of the mathematical model of remote sensing image geometric fine correction, and also has the ability to test the quality and accuracy of image data products Refer to the function of the background.

3、底层数据精度检验——是对遥感图像几何精校正数学模型实现基础和相关数据产品质量精度的参照本底的检验,以便保证参照本底的权威性。3. Underlying data accuracy inspection——it is the reference background inspection of the basis for the realization of the mathematical model of geometric fine correction of remote sensing images and the quality accuracy of related data products, so as to ensure the authority of the reference background.

遥感数据处理模块用于实现同名控制点库建立、可测度精处理检验和图像元数据库建立。遥感数据处理模块建立遥感标准数据平台,将各种时空尺度的遥感数据进行统一的定位、定标,使各种遥感图像数据归一化到同一坐标体系中,以定量化的理念贯穿于每一个处理环节之中,使得作为遥感应用基础数据的质量精度检验建立在可测度的环境中,生成适宜各种应用目的的标准遥感数据本底。主要包括:The remote sensing data processing module is used to realize the establishment of the control point library with the same name, the measurable precision processing inspection and the establishment of the image metadata database. The remote sensing data processing module establishes a remote sensing standard data platform to uniformly locate and calibrate remote sensing data of various temporal and spatial scales, so that various remote sensing image data can be normalized into the same coordinate system, and the concept of quantification runs through each In the processing link, the quality and accuracy inspection as the basic data of remote sensing applications is established in a measurable environment, and standard remote sensing data backgrounds suitable for various application purposes are generated. mainly include:

1、同名控制点库建立——选取既能够满足几何精校正数学模型要求,又具有典型意义的地面控制点集。其选取的合理性直接关系到不同数据源的复合使用精度和同一区域数据动态对比分析的基础。是保证遥感图像数据产品系统精度的核心,最大限度地防止误差的传递。并将所提出的“同名控制点技术”用于控制遥感图像数据几何精校正的系统精度,防止因控制点选取方案的不同而造成遥感图像产品的系统误差。它的主要作用在于使遥感图像数据产品质量的可测度检验具有了实际意义。1. Establishment of the control point library with the same name——Select the ground control point set that can meet the requirements of the mathematical model for precise geometric correction and has a typical meaning. The rationality of its selection is directly related to the composite use accuracy of different data sources and the basis of dynamic comparative analysis of data in the same area. It is the core to ensure the accuracy of the remote sensing image data product system, and prevent the transmission of errors to the greatest extent. And the proposed "control point technology of the same name" is used to control the system accuracy of geometric fine correction of remote sensing image data, so as to prevent the systematic error of remote sensing image products caused by different control point selection schemes. Its main function is to make the measurable inspection of the quality of remote sensing image data products have practical significance.

2、可测度精处理检验——对遥感图像几何精校正产品质量精度进行的检验,由于是将图像数据产品和检验的参照本底置于同一检测环境中,使得质量检验在透明的状态下随意进行,摒弃了以往对每一景图像精度笼统采取一个区域象元值的含混表述方式,保证了检验结果的权威性。2. Measurable precision processing inspection - inspection of the quality accuracy of remote sensing image geometric fine correction products, since the image data product and the reference background of the inspection are placed in the same inspection environment, the quality inspection is free in a transparent state In this way, the previous ambiguous expression method of using a region pixel value for the image accuracy of each scene is abandoned, which ensures the authority of the test results.

3、图像元数据库建立——包括遥感图像描述信息、几何精校正控制点选取信息和标准图像产品的检测报告等,它是衡量整个遥感图像处理过程中标准化水平的重要标志。并使数据产品生成的每一个具体环节的脉络趋于清晰,使质量精度的检验结果具有说服力。3. Establishment of image metadata database - including remote sensing image description information, geometric fine correction control point selection information and standard image product inspection reports, etc. It is an important symbol to measure the standardization level of the entire remote sensing image processing process. And make the context of each specific link of data product generation tend to be clear, so that the test results of quality accuracy are convincing.

特征信息处理模块用于实现色彩的还原和增强、影像镶嵌色彩匹配、非同源数据同化和多尺度数据融合。特征信息处理模块在标准遥感数据本底的基础上,客观地提取各种谱段匹配响应中固有的特性信息,规范信息提取的操作流程,形成成熟的特色算法模式。尝试新的提取信息算法;进一步探讨、完善遥感影像制图和专题制图的标准。主要包括:The feature information processing module is used to restore and enhance color, image mosaic color matching, non-homologous data assimilation and multi-scale data fusion. The feature information processing module objectively extracts the inherent feature information in various spectral band matching responses based on the standard remote sensing data background, standardizes the operation process of information extraction, and forms a mature characteristic algorithm model. Try new information extraction algorithms; further explore and improve the standards for remote sensing image mapping and thematic mapping. mainly include:

1、色彩的还原、增强1. Color reduction and enhancement

2、影像镶嵌色彩匹配2. Image mosaic color matching

3、非同源数据同化3. Non-homologous data assimilation

4、多尺度数据融合4. Multi-scale data fusion

专题信息分析模块用于实现对遥感数据成果进行基于标准遥感数据平台的各种遥感应用分析。专题信息分析模块将经过标准化建设的遥感数据成果根据国家所关注环境方面的重点问题,开展基于标准遥感数据平台的各种遥感应用分析。旨在突出遥感固有信息所反映的交互式解译结果的应用;注重学科、领域之间的交叉与渗透,并逐步形成应用于不同学科、领域的遥感分析方法。向国家有关部门提供可持续的各种科学分析数据。同时,结合遥感数据多领域覆盖的特点,有针对性地及时了解和掌握各个领域对遥感数据应用需求的程度、趋势。在城市环境、植被动态、水域动态、耕地动态和沙漠化等方面,有针对性的开展了基于标准数据平台的应用分析。还将在湿地环境、海岸带变迁,以及遥感考古等方面开展工作。The thematic information analysis module is used to implement various remote sensing application analysis based on the standard remote sensing data platform for remote sensing data results. The thematic information analysis module conducts various remote sensing application analysis based on the standard remote sensing data platform based on the standardized remote sensing data results according to the key environmental issues of national concern. It aims to highlight the application of interactive interpretation results reflected by the inherent information of remote sensing; pay attention to the intersection and penetration between disciplines and fields, and gradually form remote sensing analysis methods applied to different disciplines and fields. Provide sustainable and various scientific analysis data to relevant national departments. At the same time, combined with the characteristics of multi-field coverage of remote sensing data, we can understand and grasp the degree and trend of remote sensing data application needs in various fields in a targeted and timely manner. In terms of urban environment, vegetation dynamics, water dynamics, cultivated land dynamics, and desertification, targeted application analysis based on standard data platforms has been carried out. Work will also be carried out on wetland environment, coastal zone changes, and remote sensing archaeology.

对于网格计算子系统,数字地球是由海量、多分辨率、多时相、多类型空间对地观测数据和社会经济数据及其分析算法和模型构建而成的虚拟地球。对遥感数据的处理是数字地球中的一个关键。网格计算子系统是一个基于网格技术,针对遥感数据的处理平台。目前我们已经实现了网格计算子系统的原型系统。本系统利用从第三方远程获取的MODIS数据进行地面和大气参数的反演,还可以提供指定地理区域中的大气气溶胶厚度和植被指数的信息。本系统提供一个JSP Web portal,用户通过游览器(IE)来使用本系统。本系统根据用户需求从远程数据服务器或本地获得数据,触发服务并监控其运行状态。在任务的执行过程中,本系统将一个任务分割成若干个子任务,然后把子任务分配给网格计算池中的PC(或高性能计算机)执行,回收及整合执行结果,将结果返回给用户。For the grid computing subsystem, the digital earth is a virtual earth constructed by massive, multi-resolution, multi-temporal, multi-type space earth observation data and socio-economic data and its analysis algorithms and models. The processing of remote sensing data is a key in Digital Earth. The grid computing subsystem is a processing platform for remote sensing data based on grid technology. At present, we have realized the prototype system of the grid computing subsystem. This system uses MODIS data obtained remotely from a third party to perform inversion of ground and atmospheric parameters, and can also provide information on atmospheric aerosol thickness and vegetation index in a specified geographic area. The system provides a JSP Web portal, and users use the system through a browser (IE). The system obtains data from remote data servers or locally according to user needs, triggers services and monitors their running status. During task execution, the system divides a task into several subtasks, then assigns the subtasks to PCs (or high-performance computers) in the grid computing pool for execution, recycles and integrates the execution results, and returns the results to the user .

网格计算子系统与外部模块的逻辑结构如图7所示,图7为本发明提供的数字地球原型系统中网格计算子系统与外部模块的逻辑结构示意图。网格计算子系统与以下2个外部模块有关:The logical structure of the grid computing subsystem and external modules is shown in Figure 7, which is a schematic diagram of the logical structure of the grid computing subsystem and external modules in the digital earth prototype system provided by the present invention. The grid computing subsystem is related to the following two external modules:

(1)数据服务器:网格子系统本地只提供演示数据,其它数据需从第三方的数据服务器获取。(1) Data server: The grid subsystem only provides demonstration data locally, and other data must be obtained from a third-party data server.

(2)高性能计算机:当某些处理任务过大,网格子系统处理困难时,将该任务移交给高性能计算机来处理。(2) High-performance computer: When some processing tasks are too large and the grid subsystem is difficult to handle, the task is handed over to a high-performance computer for processing.

网格计算子系统与内部模块的逻辑结构如图8所示,图8为本发明提供的数字地球原型系统中网格计算子系统与内部模块的逻辑结构示意图。The logical structure of the grid computing subsystem and internal modules is shown in Figure 8, which is a schematic diagram of the logical structure of the grid computing subsystem and internal modules in the digital earth prototype system provided by the present invention.

另外,图9和图10还分别示出了网格计算子系统数据流结构示意图和网格计算子系统控制流结构示意图。In addition, FIG. 9 and FIG. 10 also respectively show a schematic diagram of a data flow structure of the grid computing subsystem and a schematic diagram of a control flow structure of the grid computing subsystem.

网格计算子系统主要模块(模块功能,模块接口)如下:The main modules (module functions, module interfaces) of the grid computing subsystem are as follows:

1、流程控制模块1. Process control module

功能:以应用为单位进行流程控制。采用工作流技术。Function: Process control in units of applications. Adopt workflow technology.

接口:和JSP网站进行交互。输入为远程数据URL,应用所需参数(用户填写),任务单号(网站生成)。Interface: interact with the JSP website. The input is the remote data URL, the parameters required by the application (filled in by the user), and the order number (generated by the website).

2、网格中间件2. Grid middleware

功能:集中管理和调度底层硬件计算资源。负责将上层递交的任务按一定策略分发到可用计算机上进行计算,并回收结果。Function: Centralized management and scheduling of underlying hardware computing resources. Responsible for distributing the tasks submitted by the upper layer to available computers for calculation according to a certain strategy, and retrieving the results.

接口:以批处理文件和任务描述文件为载体。输入为任务的可执行程序,输入输出参数,运行环境需求;输出为任务的计算结果和局部日志信息。Interface: take batch files and task description files as carriers. The input is the executable program of the task, the input and output parameters, and the operating environment requirements; the output is the calculation result and local log information of the task.

3、初始化模块3. Initialize the module

功能:为专项处理进行准备,包括数据获取,日志文件的创建,获取远程数据,解压,子任务分割和封装,数据格式转换和接口转换。Functions: Prepare for special processing, including data acquisition, log file creation, remote data acquisition, decompression, subtask segmentation and packaging, data format conversion and interface conversion.

接口:采用XML格式,输入参数为远程数据URL,专项处理所需的遥感参数,任务单编号;输出参数为子任务封装参数。Interface: in XML format, input parameters are remote data URL, remote sensing parameters required for special processing, task order number; output parameters are subtask package parameters.

4、专题处理模块4. Thematic processing module

功能:节点提供地表温度反演,气溶胶光学厚度反演,一系列植被指数(NDVI,EVI,SAVI),地表覆盖分类,云检测,几何纠正,剪切,拼接,匹配功能,具体功能描述参见SIG-SID-PS-001到SIG-SID-PS-011。Functions: The node provides surface temperature inversion, aerosol optical depth inversion, a series of vegetation indices (NDVI, EVI, SAVI), land cover classification, cloud detection, geometric correction, clipping, splicing, and matching functions. For specific function descriptions, see SIG-SID-PS-001 to SIG-SID-PS-011.

接口:采用私有协议,输入参数为子任务封装参数;输出为专项功能处理后的ASCII格式数据,经纬度数据,元数据。Interface: using a private protocol, the input parameters are subtask package parameters; the output is ASCII format data processed by special functions, latitude and longitude data, and metadata.

5、后处理模块5. Post-processing module

功能:将子任务的计算结果合并,生成HDF文件,并压缩,放入结果数据库。Function: Merge the calculation results of subtasks, generate HDF files, compress them, and put them into the result database.

接口:输入为子任务的结果文件集(ASCIII格式数据,经纬度数据,元数据);输出为最终压缩包结果的URL。Interface: The input is the result file set of the subtask (ASCIII format data, latitude and longitude data, metadata); the output is the URL of the final compressed package result.

网格计算子系统目前的具体服务功能有:The current specific service functions of the grid computing subsystem are:

1.地表温度反演功能1. Surface temperature retrieval function

功能描述:通过移动分窗自适应分裂窗方法,使用MODIS的热红外数据实现地表温度的反演。Function description: Through the method of moving the window and adaptively splitting the window, the inversion of the surface temperature is realized by using the thermal infrared data of MODIS.

2.气溶胶光学厚度反演功能2. Aerosol optical depth retrieval function

功能描述:利用暗象元法提取MODIS影像的气溶胶光学厚度参数。Function description: Use the dark pixel method to extract the aerosol optical depth parameters of MODIS images.

3.归一化植被指数(NDVI)3. Normalized Difference Vegetation Index (NDVI)

功能描述:先对MODIS数据进行几何校正,再通过单幅数据生成NDVI。Functional description: firstly perform geometric correction on MODIS data, and then generate NDVI from single data.

4.增强型植被指数(EVI)4. Enhanced Vegetation Index (EVI)

功能描述:先对MODIS数据进行几何校正,再通过单幅数据生成EVI。Functional description: firstly perform geometric correction on MODIS data, and then generate EVI from single data.

5.土壤调节植被指数(SAVI)5. Soil Adjusted Vegetation Index (SAVI)

功能描述:先对MODIS数据进行几何校正,再通过单幅数据生成SAVI。Functional description: firstly perform geometric correction on MODIS data, and then generate SAVI from single data.

6.土地覆盖分类6. Land cover classification

功能描述:先对MODIS数据进行几何校正,再利用遥感图像的多波段信息,进行非监督分类,达到提取地表覆盖信息的目的。Function description: First, geometrically correct the MODIS data, and then use the multi-band information of remote sensing images to perform non-supervised classification to achieve the purpose of extracting land cover information.

7.云检测7. Cloud Detection

功能描述:先对MODIS数据进行几何校正,然后滤除图像中的云。Function description: Firstly, geometrically correct the MODIS data, and then filter out the clouds in the image.

8.几何校正8. Geometry Correction

功能描述:利用MODIS 500米分辨率的1B数据中的1KM分辨率经纬度信息作为控制点,对1KM分辨率的MODIS数据进行几何校正,灰度重采样方法为最临近插值的方法。Function description: Use the latitude and longitude information of 1KM resolution in the 1B data of MODIS 500m resolution as control points to perform geometric correction on the MODIS data with 1KM resolution, and the gray scale resampling method is the nearest interpolation method.

9.图像剪切9. Image cropping

功能描述:先对MODIS数据进行几何校正,再从大的图像中裁切出较小的一块研究区。Functional description: First, geometrically correct the MODIS data, and then cut out a smaller research area from the large image.

10.图像拼接10. Image Stitching

功能描述:先对MODIS数据进行几何校正,再通过MODIS数据内部的地理坐标数据,将相邻的多幅MODIS 1B数据影像拼接成一个较大的完整的图像。Functional description: First, geometrically correct the MODIS data, and then splice multiple adjacent MODIS 1B data images into a larger complete image through the geographic coordinate data inside the MODIS data.

11.图像匹配11. Image matching

功能描述:先对MODIS数据进行几何校正,再通过几何纠正的结果获得的每个像元的定位信息进行相同区域数据的获取,用于生成对同一地区的匹配的多幅影像。Functional description: first perform geometric correction on the MODIS data, and then acquire the data of the same area through the positioning information of each pixel obtained from the result of the geometric correction, and use it to generate matching multiple images of the same area.

对于地图应用服务子系统,该子系统通过基于结点的属性绑定、分层管理技术和R树技术管理空间数据和属性数据,并采用了皮肤+骨架技术,借助分布式存储、分布式运算技术实现海量数据的存储与动态载入和显示,至少包括可视化模块和查询模块,是原型系统平台对外服务的信息窗口。For the map application service subsystem, the subsystem manages spatial data and attribute data through node-based attribute binding, hierarchical management technology and R-tree technology, and adopts skin + skeleton technology, with the help of distributed storage and distributed computing The technology realizes the storage and dynamic loading and display of massive data, including at least the visualization module and the query module, which are the information windows of the prototype system platform for external services.

地图服务子系统是基于Internet环境下的全球可视化信息系统。系统基础结构支持基于包设备的流操作来传输不断更新的数据,配制成包用动态服务页面(turnkey ASP)解决方案,第三方数据可以独立发布,并与客户端反馈的主要数据融合。The map service subsystem is a global visual information system based on the Internet environment. The system infrastructure supports streaming operations based on packaged devices to transmit continuously updated data, and is formulated as a packaged dynamic service page (turnkey ASP) solution. Third-party data can be released independently and integrated with the main data fed back by the client.

针对当前遥感技术对海量数据存储和传输能力的要求,集成了目前国际上最先进的两种基于小波的影像压缩技术:多分辨率影像小波压缩格式(MrSID)和增强压缩小波(ECW);提供了海量影像数据压缩和管理能力,解决大规模地形数据在Internet上的实时、快速传输。In response to the current requirements of remote sensing technology for massive data storage and transmission capabilities, it integrates two of the most advanced wavelet-based image compression technologies in the world: multi-resolution image wavelet compression format (MrSID) and enhanced compression wavelet (ECW); provide It has the ability to compress and manage massive image data, and solve the real-time and fast transmission of large-scale terrain data on the Internet.

系统通过基于结点的属性绑定、分层管理技术和R树技术管理空间数据和属性数据。另外采用了皮肤+骨架技术,并借助分布式存储、分布式运算技术解决了海量数据的存储与动态载入、显示的问题。The system manages spatial data and attribute data through node-based attribute binding, hierarchical management technology and R-tree technology. In addition, the skin + skeleton technology is adopted, and the problems of massive data storage, dynamic loading and display are solved with the help of distributed storage and distributed computing technology.

采用TB的服务器群集技术,解决了Internet GIS的瓶颈问题,确保超大数据量的GIS应用高效运作。当规模扩大时,只需增加应用实例或服务器即可,原来开发的应用不需要作任何改变,而且完全可以不需中断服务而动态地加入或卸载。在降低成本的同时,大大提高系统性能。The use of TB server cluster technology solves the bottleneck problem of Internet GIS and ensures the efficient operation of GIS applications with large data volumes. When the scale expands, it only needs to add application instances or servers, and the originally developed applications do not need to be changed, and can be added or uninstalled dynamically without interrupting the service. While reducing costs, greatly improve system performance.

客户端采用异步传输和客户端缓存的技术,对数据在传输和解压缩的同时,并根据视点的位置用多进制小波(M-Band Wavelet)对地形做简化,解决用户长时间等待的问题。The client adopts the technology of asynchronous transmission and client caching, while transmitting and decompressing the data, and uses M-Band Wavelet to simplify the terrain according to the position of the viewpoint, so as to solve the problem of users waiting for a long time.

在客户端的浏览器上,地形层上可以叠加矢量数据、标注和建筑物模型等,该系统将全球地形场景浏览、空间分析和双向查询融为一体。On the client's browser, vector data, labels and building models can be superimposed on the terrain layer. The system integrates global terrain scene browsing, spatial analysis and two-way query.

系统采用网络实名插件(ActiveX)控件构建网络客户端/服务器结构(Client/Server)模型,如图11所示,图11为本发明提供的数字地球原型系统中地图应用服务子系统服务流程示意图。ActiveX是建立在对象链接与嵌入技术(OLE)技术基础之上的Internet技术,其基础是COM(Component Object Model),它既是一个自动化对象,也是一个标准的COM对象,能被支持OLE标准的任何程序语言或应用系统所使用。ActiveX控件与Web浏览器结合在一起,执行速度快,可以用多种语言实现,能复用原有软件的源代码,从而提高了软件开发效率,快速建立起功能全面的应用系统。ActiveX控件可以通过开发式图形语言(OpenGL)图形库和ATL模板来实现,OpenGL指令的解释模型是客户/服务器模式,即客户(用OpenGL进行绘制工作的应用程序)向服务器发布命令,这些OpenGL命令则由服务器来解释,因此OpenGL就具有网络透明性;ATL(ActiveX Template Library)对Microsoft的基于COM的各种新组件技术,如MTS、ASP等有很好的支持,它能快速开发出高效、简洁的代码,对COM组件的开发提供最大限度的代码自动生成以及可视化支持。基于ActiveX控件的数字地球虚拟系统是依赖ActiveX来完成三维虚拟地形景观的建模和显示。The system adopts the network real-name plug-in (ActiveX) control to build a network client/server structure (Client/Server) model, as shown in Figure 11, which is a schematic diagram of the service flow of the map application service subsystem in the digital earth prototype system provided by the present invention. ActiveX is an Internet technology based on Object Linking and Embedding (OLE) technology. Its foundation is COM (Component Object Model). It is not only an automation object, but also a standard COM object. used by programming languages or application systems. The combination of ActiveX control and Web browser has fast execution speed, can be implemented in multiple languages, and can reuse the source code of the original software, thereby improving the efficiency of software development and quickly establishing a full-featured application system. The ActiveX control can be realized through the development graphics language (OpenGL) graphics library and ATL template. The interpretation model of the OpenGL command is the client/server model, that is, the client (the application program that uses OpenGL for drawing work) issues commands to the server. These OpenGL commands It is interpreted by the server, so OpenGL has network transparency; ATL (ActiveX Template Library) has good support for Microsoft's various new component technologies based on COM, such as MTS, ASP, etc., and it can quickly develop efficient, Concise code, providing maximum automatic code generation and visualization support for the development of COM components. The digital earth virtual system based on ActiveX controls relies on ActiveX to complete the modeling and display of 3D virtual terrain landscape.

客户端部分是与远程用户交互的接口和界面,通过http协议与服务器端进行通讯。主要完成三维地形景观的建模与显示、场景的漫游和操作、空间分析和属性信息查询、三维模型的接口等功能。The client part is the interface and interface for interacting with remote users, and communicates with the server through the http protocol. It mainly completes the modeling and display of 3D terrain landscape, scene roaming and operation, spatial analysis and attribute information query, 3D model interface and other functions.

客户端对不同比例尺的数据分别进行缓冲,当用户操作时,首先检查缓冲区的数据是否符合要求,如果不符合,则向服务器端请求应补充的数据。客户端将服务器的DEM数据和影像数据传输到本机上可分为两个过程:一是ActiveX控件在浏览器上启动时将数据块的索引文件传到客户端并读入内存,二是视点变化或漫游时实时传输数据:随着视点向地面拉进,视角也相应变小,客户端随之向服务器请求更高分辨率、空间范围更小的数据,反之视点远离时,若数据已经从服务器端调入,便不再发送请求;地形沿规定的路线漫游时,要实时绘制先前没有调入而又位于视景体内的数据。为了保证数据传输的连续性,客户端的程序采用多线程的模式,当显示某层数据时,同时另一线程在后台调入其相邻的数据块。The client buffers the data of different scales separately. When the user operates, it first checks whether the data in the buffer meets the requirements. If not, it requests the supplementary data from the server. The client transfers the server's DEM data and image data to the local machine can be divided into two processes: one is when the ActiveX control is started on the browser, the index file of the data block is transmitted to the client and read into the memory; the other is the viewpoint Real-time data transmission when changing or roaming: As the viewpoint is drawn toward the ground, the viewing angle becomes smaller accordingly, and the client then requests data with higher resolution and smaller spatial range from the server. When the server is called in, no more requests will be sent; when the terrain is roaming along the specified route, the data that has not been called in before but is located in the viewing volume must be drawn in real time. In order to ensure the continuity of data transmission, the client program adopts a multi-threaded mode. When a certain layer of data is displayed, another thread transfers its adjacent data blocks in the background at the same time.

该地图应用服务子系统的主要特征是:(1)通过适当的索引和检索参数,能实时传送不同层次数据,保证数据的一致性、完整性,实现客户端的数据重用。(2)数据一旦调入内存或驻留本地,便于服务器端无关,所以能减少数据的冗余传输和减轻服务器的压力。这些特点可满足海量数据可视化对多层信息显示、有效数据传送、智能缩放等技术的要求。The main features of the map application service subsystem are: (1) Through appropriate indexing and retrieval parameters, different levels of data can be transmitted in real time, ensuring data consistency and integrity, and realizing data reuse at the client. (2) Once the data is loaded into the memory or resides locally, it is convenient for the server side to be irrelevant, so it can reduce the redundant transmission of data and reduce the pressure on the server. These features can meet the requirements of mass data visualization for multi-layer information display, effective data transmission, intelligent scaling and other technologies.

Web环境的一个特点就是对于用户操作的快速反应,Internet中可供选择的信息很多,如果等待时间太长,用户会放弃对这种信息的要求或转移到其它信息的服务上,这就要求在服务器端应尽可能减少运算量,将较多的数据运算分散到客户端。服务器端包括两部分:一是Web服务器部分,二是数据库部分。Web服务器主要是接收客户端提交的请求,在数据库中快速搜寻到满足条件的数据,并通过HTTP协议将结果返回远程的客户端。面向数字地球的虚拟现实系统的数据库主要包括三维模型数据库、数字高程模型(DEM)数据库、影像数据库。其数据从覆盖全球的分辨率为几分或几秒的DEM数据和分辨率几百米的卫星影像到局部区域高分辨率的DEM数据和正射航空影像,数据量可想而知,少则几个G,多则上百G甚至几个TB。对于如此大的数据,要想在中低档微机上达到实时交互的目的,必须对数据分级、分块管理。One of the characteristics of the Web environment is the quick response to user operations. There are a lot of information to choose from in the Internet. If the waiting time is too long, the user will give up the request for this information or transfer to other information services. The server side should reduce the amount of calculation as much as possible, and distribute more data calculations to the client. The server side includes two parts: one is the Web server part, and the other is the database part. The web server is mainly to receive the request submitted by the client, quickly search for the data that meets the conditions in the database, and return the result to the remote client through the HTTP protocol. The database of virtual reality system oriented to Digital Earth mainly includes 3D model database, digital elevation model (DEM) database and image database. Its data ranges from DEM data with a resolution of a few minutes or seconds covering the whole world and satellite images with a resolution of hundreds of meters to high-resolution DEM data and orthophoto aerial images in local areas. The amount of data can be imagined, ranging from a few A G, as many as hundreds of G or even several TB. For such a large amount of data, in order to achieve the purpose of real-time interaction on the medium and low-end microcomputer, the data must be classified and managed in blocks.

地图应用服务子系统的功能模块主要包括:The functional modules of the map application service subsystem mainly include:

1、可视化模块1. Visualization module

系统启动后,可通过菜单命令控制地图,能够无级放大。随着分级放大,调用显示区域内更大分辨率的影像。能够从不同的角度进行观察,按规定的路线进行浏览等。能实现从一览全球到详细观察某个城镇甚至范围更小的区域,通过键盘鼠标或者导航球可以漫游世界的任意地区,真正实现了“所见即所得”。After the system is started, the map can be controlled through menu commands, and can be enlarged steplessly. As the scale zooms in, larger resolution imagery within the display area is recalled. Be able to observe from different angles, browse according to the prescribed route, etc. It can realize from a global overview to a detailed observation of a town or even a smaller area, and can roam any area of the world through a keyboard, mouse or navigation ball, truly realizing "what you see is what you get".

2、查询模块2. Query module

(1)“基础空间数据的资料查询”基本功能:(1) Basic functions of "data query of basic spatial data":

对地图进行放大、缩小、漫游、复位。Zoom in, zoom out, roam and reset the map.

图层控制,浏览器端矢量格式显示。Layer control, browser-side vector format display.

支持并发用户Support for concurrent users

从信息查询图形,从图形查询信息query graph from information, query information from graph

选择图元闪烁Selected primitives flicker

鹰眼eagle eye

表示出多层数据(各种专题、基础矢量数据的分类,如道路(公路、街道、铁路、注记)、水系、绿地、境界、立交桥、公交线路、地下管线、医院、学校、邮局、加油站、收费站、停车场、电话亭、火车站、运动场馆、影院、美术馆、纪念馆、博物馆、展览馆、图书馆、故居、百货商店、超市、商场、写字楼、办公楼、商厦、大厦、银行等分布)等分层的开关显示和消失效果Represents multi-layer data (various topics, classification of basic vector data, such as roads (roads, streets, railways, notes), water systems, green spaces, borders, overpasses, bus lines, underground pipelines, hospitals, schools, post offices, refueling Stations, toll booths, parking lots, telephone booths, railway stations, sports venues, cinemas, art galleries, memorial halls, museums, exhibition halls, libraries, former residences, department stores, supermarkets, shopping malls, office buildings, office buildings, commercial buildings, mansions, banks Equal distribution) Equal layer switch display and disappear effect

表示出地名库的查询定位(行政地名、自然地物名、建筑物名、街道名、医院、学校、邮局、旅游景点、饭店等)带属性资料。Indicates the query location (administrative place name, natural feature name, building name, street name, hospital, school, post office, tourist attraction, restaurant, etc.) of the place name database with attribute data.

(2)图形显示(2) Graphic display

系统能将各类等级矢量图、以及基础地形图进行分层综合显示,包括图形无级缩放、图形平滑漫游、图形显示“鹰眼”功能。The system can comprehensively display various levels of vector graphics and basic topographic maps, including stepless zooming of graphics, smooth roaming of graphics, and "Eagle Eye" function of graphics display.

(3)空间查询(3) Spatial query

可对GIS系统中的图形信息和属性信息(数据库信息)进行灵活多样的双向空间查询。Flexible and diverse two-way spatial query can be performed on the graphic information and attribute information (database information) in the GIS system.

对于虚拟现实子系统,结合数字地球原型系统其它子系统的结果,虚拟现实子系统主要进行了以下功能模块的开发。For the virtual reality subsystem, combined with the results of other subsystems of the digital earth prototype system, the virtual reality subsystem mainly develops the following functional modules.

1、海量数据管理功能模块1. Mass data management function module

由于某些行业部门不但要对实时采集的数据进行管理,而且要保留、整理一段时间内的历史数据,以便对相关情况进行预测。Because some industry departments not only need to manage the data collected in real time, but also need to retain and organize historical data for a period of time in order to predict the relevant situation.

本系统平台通过建立仿真专用的地理景观数据库与仿真专用的专题数据库,具备海量数据管理功能。The system platform has massive data management functions through the establishment of a simulation-specific geographical landscape database and a simulation-specific thematic database.

同时系统软硬件采用国际领先的产品,具备对不同类型和规模的数据和使用对象都不会崩溃的特质,以及灵活而强有力的恢复机制;具备完善的权限控制机制来保障系统不被有意或无意地破坏;能够具备在并发响应和交互操作的环境下保障数据安全和一致性。At the same time, the software and hardware of the system adopt international leading products, which have the characteristics of not crashing for different types and scales of data and objects of use, as well as a flexible and powerful recovery mechanism; it has a complete authority control mechanism to ensure that the system is not intentionally or illegally accessed. Unintentional destruction; capable of ensuring data security and consistency in an environment of concurrent response and interactive operations.

2、大型地理景观的实时漫游浏览与编辑功能模块2. Real-time roaming browsing and editing function modules of large geographical landscapes

支持多视角浏览和全屏浏览。多种浏览控制方式可以自由切换。Support multi-angle viewing and full-screen browsing. A variety of browsing control methods can be switched freely.

支持历史回放。可以将浏览过程记录下来,并在需要的时候进行回放。Support historical playback. The browsing process can be recorded and played back when needed.

支持屏幕抓取。可以随时将当前屏幕内容作为图像文件保存下来。Supports screen grabbing. The current screen content can be saved as an image file at any time.

灵活方便的飞行路线编辑功能。利用飞行路线编辑器,可以随心所欲的编辑飞行路线。Flexible and convenient flight path editing function. With the flight path editor, you can edit the flight path as you like.

支持目标信息查询功能。提供了方便的目标查询功能,可以方便的获取场景中指定目标的描述信息。Support target information query function. Provides a convenient target query function, which can easily obtain the description information of the specified target in the scene.

真实的视觉仿真效果。通过对遥感图像的处理、数字高程模型的建立、公路水系矢量层导入、区域细节贴图指定等手段,迅速制作出片级场景浏览效果。支持天空、云彩、日光光影、雾化等特殊的显示。Realistic visual simulation effect. Through the processing of remote sensing images, the establishment of digital elevation models, the import of road and river system vector layers, and the designation of regional detail maps, etc., the film-level scene browsing effect can be quickly produced. Supports special displays such as sky, clouds, sunlight and shadows, and fogging.

3、三维分析与显示功能模块3. Three-dimensional analysis and display function module

提供GIS分析功能的接口,全面的三维分析功能。可以查询地形数据,可以对地形数据进行统计分析。支持以可视化的方式对地形进行各种方式的测量,并把测量结果以直观的方式进行可视化。可以进行地形分析、通视分析、水淹分析。Provide the interface of GIS analysis function and comprehensive three-dimensional analysis function. Terrain data can be queried, and terrain data can be statistically analyzed. It supports various ways of measuring the terrain in a visual way, and visualizes the measurement results in an intuitive way. It can perform terrain analysis, line-of-sight analysis, and flood analysis.

4、数字模拟模型的可视化功能模块4. Visualization function module of digital simulation model

以水资源保护的应用为例,可提供水资源模型的接口,应用遥感、遥测、GPS、微波等信息获取系统提供的实时数据,在系统平台开发完善的、具有三维计算机视觉效果的系统,实现暴雨分析模型、降雨径流预报模型、洪水过程计算模型、洪水演进模型等的可视化,实现流域自然地理、社会经济和水利工程设施的数据分析、洪水洪灾演变过程的数值模拟以及计算结果可视化显示等,定量评估不同洪水条件下,洪水调度、滞洪区分洪、堤防决口的风险,为防洪决策提供科学依据。Taking the application of water resource protection as an example, it can provide the interface of water resource model, apply remote sensing, telemetry, GPS, microwave and other information to obtain real-time data provided by the system, and develop a perfect system with three-dimensional computer vision effect on the system platform to realize Visualization of rainstorm analysis model, rainfall runoff forecasting model, flood process calculation model, flood evolution model, etc., to realize data analysis of watershed natural geography, socio-economic and water conservancy engineering facilities, numerical simulation of flood evolution process and visual display of calculation results, etc. Quantitatively assess the risks of flood dispatching, flood detention areas, and embankment breaches under different flood conditions, and provide scientific basis for flood control decisions.

5、工程建设模型与方案的可视化功能模块5. Visual function modules of engineering construction models and schemes

工程建设的选址、规划、管理和模拟控制。可以按需要计算不同区域的工程建设的土方开挖量和工作量。通过创建三维场景,可预先了解工程全貌,利用仿真技术模拟各种设施的运转情况。Site selection, planning, management and simulation control of engineering construction. The earthwork excavation volume and workload of engineering construction in different areas can be calculated as required. By creating a 3D scene, you can understand the overall picture of the project in advance, and use simulation technology to simulate the operation of various facilities.

通过触发器,传感器等软件插件可以模拟控制各种设备,表现运作情况,模拟设施各种复杂的变化。Through triggers, sensors and other software plug-ins, various equipment can be simulated and controlled, the operation status can be displayed, and various complex changes of the facility can be simulated.

虚拟现实(Virtual Reality-VR),也称为灵境,是一种可以创建和体验虚拟世界(Virtual World)的计算机系统。虚拟世界是全体虚拟环境(VirtualEnvironment)或给定仿真对象的全体。虚拟环境是由计算机生成的,通过视、听、触觉等作用于用户,使之产生身临其境的感觉的交互式视景仿真,因而一个身临其境的虚拟环境系统是由包括计算机图形学、图像处理与模式识别、智能接口技术、人工智能技术、多传感器技术、语音处理与音像技术、网络技术、并行处理技术和高性能计算机系统等不同功能、不同层次的具有相当规模的子系统所构成的大型综合集成环境,所以虚拟现实技术是综合性极强的高新信息技术,在军事、医学、设计、艺术、娱乐等很多领域都得到了广泛的应用。Virtual Reality (Virtual Reality-VR), also known as Lingjing, is a computer system that can create and experience a virtual world (Virtual World). The virtual world is the entire virtual environment (VirtualEnvironment) or the entirety of a given simulation object. The virtual environment is generated by the computer, and acts on the user through sight, hearing, touch, etc., so that it can produce an interactive visual simulation with an immersive feeling. Therefore, an immersive virtual environment system is composed of computer graphics Subsystems of considerable scale with different functions and levels, such as computer science, image processing and pattern recognition, intelligent interface technology, artificial intelligence technology, multi-sensor technology, voice processing and audio-visual technology, network technology, parallel processing technology, and high-performance computer systems Therefore, virtual reality technology is a highly comprehensive high-tech information technology, which has been widely used in military, medical, design, art, entertainment and many other fields.

把虚拟现实技术引入系统模拟仿真的各个阶段,可使人沉浸其中,对所需解决的问题有清晰的认识,而不必在屏幕外面去观察仿真的结果,将使模型的建立和验证更加方便。虚拟现实技术主要体现在:计算机根据所建立的领域知识库和数据库运用人工智能、模式识别等技术,主控机构进行建模、学习、规划和计算。通过三维动画制作和显示头盔进行该领域的视觉模拟;通过传感机制和触觉手套来进行该领域的模拟;通过音响制作和音效卡进行声音模拟;通过机械控制和传动装置进行动感模拟。然后将人对这些感官刺激所作的动作反应反馈给主控机构,从而实时产生新的感觉模型的模拟。Introducing virtual reality technology into each stage of system simulation can immerse people in it and have a clear understanding of the problems to be solved without having to observe the simulation results outside the screen, which will make model establishment and verification more convenient. Virtual reality technology is mainly reflected in: the computer uses artificial intelligence, pattern recognition and other technologies based on the established domain knowledge base and database, and the main control mechanism performs modeling, learning, planning and calculation. The visual simulation of this field is carried out through 3D animation production and display helmet; the simulation of this field is carried out through sensing mechanism and tactile gloves; the sound simulation is carried out through sound production and sound card; the dynamic simulation is carried out through mechanical control and transmission device. Then, the action responses of people to these sensory stimuli are fed back to the main control mechanism, thereby generating a simulation of a new sensory model in real time.

该虚拟现实子系统的结构与组成如下:数字地球原型系统虚拟现实子系统软硬件环境主要由计算机主机系统、控制系统、投影系统、交互设备系统和软件系统(科学计算软件、数据库管理、三维仿真软件)五部分组成。The structure and composition of the virtual reality subsystem are as follows: the hardware and software environment of the virtual reality subsystem of the digital earth prototype system is mainly composed of computer host system, control system, projection system, interactive equipment system and software system (scientific computing software, database management, 3D simulation software) consists of five parts.

该虚拟现实子系统的主要特征如下:The main features of this virtual reality subsystem are as follows:

1)高性能图形工作站1) High-performance graphics workstation

2)高亮度的投影仪及显示屏幕(平面、球面或柱面)2) High-brightness projector and display screen (flat, spherical or cylindrical)

3)边缘融合及色彩校正电子技术3) Edge blending and color correction electronic technology

4)集中式的数据、音频及光照控制系统(包括触感式面扳的屏幕)4) Centralized data, audio and lighting control system (including touch-sensitive panel screen)

5)立体观察装置(发送装置及有源和无源立体观察眼镜)5) Stereo viewing device (sending device and active and passive stereo viewing glasses)

6)输入控制装置(如操纵杆及跟踪球)6) Input control devices (such as joysticks and trackballs)

7)先进的输出装置(如头戴式受话器,以及触觉装置)7) Advanced output devices (such as headsets, and haptic devices)

8)高保真度、多通道的音频/视频回放系统8) High-fidelity, multi-channel audio/video playback system

9)实时三维应用软件、工具包及实用程序9) Real-time 3D application software, toolkits and utilities

10)大型数据库管理系统和网络技术10) Large database management system and network technology

该虚拟现实子系统的技术问题如下:利用面向对象(Object Oriented)技术,以高档微机及工作站为平台,采用仿真软件MultiGen Creator、Vega、Performer、Motif等作为开发工具,建立在SGI的IRIX操作系统环境下运行的虚拟现实系统。The technical problems of this virtual reality subsystem are as follows: using object-oriented (Object Oriented) technology, using high-end microcomputers and workstations as platforms, using simulation software MultiGen Creator, Vega, Performer, Motif, etc. as development tools, and building on SGI's IRIX operating system A virtual reality system operating in an environment.

1、区域内地理景观的实时仿真1. Real-time simulation of geographical landscape in the region

该部分主要实现超大规模场景的实时浏览,为资源合理利用以及规划、环境保护等提供实时仿真的平台。具体包括以1∶10万、1∶1万地形数据采用遥感图像处理PCI软件生成DEM库,并建立3D仿真地形地貌,包括流域地形、地表结构等,显示水文站、雨情站、水文测点以及城市等点位信息。河流、公路、铁路等矢量线属性,水库、湖泊等面状信息、楼房等块状信息。建立流域内相关空间对象(如河流、监测设备、公路、水利设施、居民点、农作物)的几何模型库,对各个几何目标进行精确定位,在大场景仿真时动态、实时的调入模型库的几何模型进行浏览。This part mainly realizes real-time browsing of ultra-large-scale scenes, and provides a real-time simulation platform for rational utilization of resources, planning, and environmental protection. Specifically, it includes 1:100,000 and 1:10,000 terrain data using remote sensing image processing PCI software to generate a DEM library, and establishing 3D simulated terrain and landforms, including watershed topography, surface structure, etc., displaying hydrological stations, rain stations, hydrological survey points and City and other point information. Vector line attributes such as rivers, roads, and railways, surface information such as reservoirs and lakes, and block information such as buildings. Establish a geometric model library of related spatial objects (such as rivers, monitoring equipment, roads, water conservancy facilities, residential areas, crops) in the watershed, accurately locate each geometric object, and dynamically and real-time transfer the data of the model library during large-scale simulation Geometry model to browse.

2、模型的虚拟可视化2. Virtual visualization of the model

提供与专题模型的接口,利用模型提供的数据,对天气系统、生态及环境变化等进行各种尺度的实时模拟,为准确揭示和把握自然现象及其内在规律提供了先进的技术手段。可以实时浏览灾害(洪灾、旱灾)发展和演进过程,真正做到一目了然。Provide an interface with thematic models, use the data provided by the models to conduct real-time simulations of weather systems, ecology, and environmental changes at various scales, providing advanced technical means for accurately revealing and grasping natural phenomena and their inherent laws. The development and evolution process of disasters (floods, droughts) can be viewed in real time, and it is really clear at a glance.

3、基于虚拟现实的辅助决策支持3. Assisted decision support based on virtual reality

通过对以上部分的集成,在数据、地理模型支持下,通过各种专业模型,最终形成基于虚拟现实的辅助决策支持系统。Through the integration of the above parts, with the support of data and geographic models, and through various professional models, an auxiliary decision support system based on virtual reality is finally formed.

建立内容全面的知识库,该知识库应涵盖诸如国家有关法律、法规及各种政策,历史上处理同类问题的经验和教训,流域规划、流域内及相关区域规划、干支流工程规划的布局及其具体要求,经济社会发展的制约因素等内容,从而形成有较强的可视化表现能力的辅助决策支持方案库,对有关的各种信息进行综合处理。Establish a comprehensive knowledge base, which should cover relevant national laws, regulations, and various policies, experience and lessons in dealing with similar issues in history, watershed planning, planning in the watershed and related areas, layout of main and tributary projects, and Its specific requirements, restrictive factors of economic and social development, etc., thus forming an auxiliary decision-making support program library with strong visual performance capabilities, and comprehensively processing various related information.

资源管理系统及其各类工程往往组成了一个复杂的工程体系,如何对这些复杂的工程进行有效的管理是一项难度很大的工作。常规的数据管理方式采用的是数据库及平面图形相接合的方式,这种方式只能表现工程的位置属性,不能显示工程的全貌,不够形象生动,缺少多媒体动画技术,利用先进的计算机地理信息技术及模拟现实技术,把空间信息以三维立体模型的形式直观的表现出来给人以身临其境的感觉,同时把各种专题特征叠加到三维立体模型上,进行模型与特征属性的叠加分析,以空间图形为背景结合多媒体手段进行信息显示,真实、直观、动态地再现自然景观及现状工程分布情况及工程建设情况,得到常规方法难于得到的信息,并将工程在三维环境中精确地定位和描述,能够让决策者有一个全局的、明确的认识,有助于决策者实现工程建设和管理的科学决策。The resource management system and its various projects often constitute a complex engineering system, and how to effectively manage these complex projects is a very difficult task. The conventional data management method adopts the combination of database and plane graphics. This method can only express the position attribute of the project, but cannot show the whole picture of the project. It is not vivid enough and lacks multimedia animation technology. Using advanced computer geographic information technology and Simulated reality technology, the spatial information is displayed intuitively in the form of a three-dimensional model to give people an immersive feeling. Space graphics as the background combined with multimedia means to display information, truly, intuitively and dynamically reproduce the natural landscape and the current project distribution and project construction conditions, obtain information that is difficult to obtain by conventional methods, and accurately locate and describe the project in a three-dimensional environment , so that decision-makers can have an overall and clear understanding, and help decision-makers to realize scientific decision-making in engineering construction and management.

基于上述对本发明提供的数字地球原型系统的详细描述,下面提出对的观测技术的数字地球基础理论框架和互操作扩展模型。如图12所示,图12为本发明提供的数字地球原型系统框架体系结构图。Based on the above detailed description of the digital earth prototype system provided by the present invention, the basic theoretical framework of the digital earth and the interoperable extended model of the observation technology are proposed below. As shown in Fig. 12, Fig. 12 is a frame structure diagram of the digital earth prototype system provided by the present invention.

本发明提供的数字地球原型系统CAS1.0的研究内容主要分为基础理论研究、关键技术研发和领域应用三大方面。目前整合了近3TB的数据资源,数十个数据库系统,并已为农作物估产、灾害监测、城市变化遥感动态监测、数字城市、数字奥运、能源、考古、旅游等多个领域的应用提供服务和支持。以下分别从软硬件环境建设和系统框架结构两个方面再次进行详细说明。The research content of the digital earth prototype system CAS1.0 provided by the present invention is mainly divided into three aspects: basic theory research, key technology research and development and field application. At present, it has integrated nearly 3TB of data resources and dozens of database systems, and has provided services and services for crop yield estimation, disaster monitoring, urban change remote sensing dynamic monitoring, digital city, digital Olympics, energy, archaeology, tourism and other fields. support. The following is a detailed description again from the two aspects of software and hardware environment construction and system framework structure.

1、软硬件环境建设:1. Construction of hardware and software environment:

1.1、EOS/MODIS接收系统1.1. EOS/MODIS receiving system

EOS/MODIS接收系统由以下几个分系统组成:天线与控制分系统(天线、馈源、伺服和控制);信道分系统(低噪声放大器、上变频、下变频器、解调器);数据摄入分系统(高速帧同步板);接收与处理分系统(计算机与软件包);海量数据记录及存贮分系统;高端数据产品分系统。The EOS/MODIS receiving system consists of the following subsystems: antenna and control subsystem (antenna, feed, servo and control); channel subsystem (low noise amplifier, up-converter, down-converter, demodulator); data Intake subsystem (high-speed frame synchronization board); receiving and processing subsystem (computer and software package); massive data recording and storage subsystem; high-end data product subsystem.

该系统的绝大部份硬件实现了国产化,同时也吸收了部分国外的先进技术,如高速进机板和接收软件。目前,该系统运行状况良好,与其他MODIS接收系统相比,具有以下技术特点:天线设计新颖,跟踪精度高,风矩小;信道双功能,可接收两颗卫星(TERRA和AQUI)数据;数据接收处理全过程自动化;系统在接收时,可实时彩色图像快视;实时的系统运行参数报告;定标数据处理计算速度快;自动产生检索浏览图像文件;接收与处理数据的分级自动存档;数据存档资源的智能化管理;网上自动读取轨道预报参数;产生红外波段图像(非可见光);星下点轨迹的实时显示(图形界面)。Most of the hardware of the system has been localized, and at the same time, it has also absorbed some advanced foreign technologies, such as high-speed input board and receiving software. At present, the system is in good condition. Compared with other MODIS receiving systems, it has the following technical characteristics: novel antenna design, high tracking accuracy, and small wind moment; dual-channel functions, which can receive data from two satellites (TERRA and AQUI); The whole process of receiving and processing is automated; when the system is receiving, the real-time color image snapshot can be viewed; real-time system operation parameter report; calibration data processing and calculation speed is fast; automatic generation of retrieval and browsing image files; classification and automatic archiving of received and processed data; Intelligent management of archive resources; online automatic reading of orbit forecast parameters; generation of infrared band images (non-visible light); real-time display of sub-satellite point trajectories (graphical interface).

1.2系统集成硬件环境1.2 System Integration Hardware Environment

主机系统:SGI 3200超级图形工作站一台Host system: one SGI 3200 super graphics workstation

控制与交互系统:方位跟踪器一套和Crestron集中控制系统一套投影系统:Barco909高档投影机3台(含10米弦长、3米高弧形柱面屏幕一套)Control and interaction system: a set of orientation tracker and a set of Crestron centralized control system Projection system: 3 sets of Barco909 high-end projectors (including a set of 10-meter chord length and 3-meter-high curved cylindrical screen)

其它设备:立体眼镜50副,SGI 330NT工作站一台,微机若干台,音响设备、以及高精度扫描仪、数码相机、刻录机、磁带机、360G磁盘阵列等。Other equipment: 50 pairs of stereoscopic glasses, one SGI 330NT workstation, several microcomputers, audio equipment, high-precision scanners, digital cameras, recorders, tape drives, 360G disk arrays, etc.

1.3系统开发软件环境1.3 System development software environment

编程语言:VC++6.0,Unix环境的C,C++,MotifProgramming language: VC++6.0, C in Unix environment, C++, Motif

图像处理及GIS软件:PCI、Arcinfo 8.0,Arcview3.1 PhotoShop等Image processing and GIS software: PCI, Arcinfo 8.0, Arcview3.1 PhotoShop, etc.

仿真建模工具:MultiGen Creator,Maya,3D Max,AutoCadSimulation modeling tools: MultiGen Creator, Maya, 3D Max, AutoCad

场景驱动:Vega,OpenGL,OpenGL PerformerScene driver: Vega, OpenGL, OpenGL Performer

2.数字地球原型系统CAS1.0框架2. Framework of Digital Earth Prototype System CAS1.0

2.1数字地球系统由三个基本功能层构成:基础数据层、数字地球服务层和用户层构成,如图13所示,图13为本发明提供的数字地球原型系统三个基本功能层的示意图。2.1 The Digital Earth system consists of three basic functional layers: the basic data layer, the Digital Earth service layer and the user layer, as shown in Figure 13, which is a schematic diagram of the three basic functional layers of the Digital Earth prototype system provided by the present invention.

2.2数字地球原型系统CAS1.0的基本功能:2.2 Basic functions of the digital earth prototype system CAS1.0:

地表模型分析:能生成平面/立体等高线图、进行地形因子分析(如坡度、坡向、沟脊系数等)、距离量算、剖面图制作以及根据地形数据自动提取水系等。Surface model analysis: It can generate plane/stereo contour maps, analyze topographical factors (such as slope, aspect, ridge coefficient, etc.), measure distances, make profile maps, and automatically extract water systems based on topographical data.

地表三维绘制:对TIN模型和网格模型提供了强大的三维交互地形可视化环境,支持高程分层设色、遥感影像叠加、矢量数据叠加等多种绘制方式;实现三维场景的多角度实时观察、动态飞行模拟;提供地貌晕渲图、飞行场景录制等输出功能3D surface rendering: Provides a powerful 3D interactive terrain visualization environment for TIN models and grid models, supports multiple rendering methods such as elevation layered coloring, remote sensing image overlay, and vector data overlay; realize multi-angle real-time observation of 3D scenes, Dynamic flight simulation; provide output functions such as terrain rendering, flight scene recording, etc.

空间叠加分析:提供区对区、线对区、点对区、区对点、点对线叠加分析等,支持高效率大数据量分析。Spatial overlay analysis: Provide area-to-area, line-to-area, point-to-area, area-to-point, point-to-line overlay analysis, etc., supporting high-efficiency and large-scale data analysis.

高程库管理:采用金字塔结构存放多种空间分辨率的栅格数据,实现对整个地形数据的快速无缝漫游和提取。Elevation library management: use pyramid structure to store raster data with multiple spatial resolutions, and realize fast and seamless roaming and extraction of the entire terrain data.

模型应用:提供高程点标注制图、连线可视性及可视域、土方量计算、表面最佳路径、流域、洪水淹没等实用分析功能。Model application: provide practical analysis functions such as elevation point labeling and mapping, connection visibility and viewing area, earthwork calculation, surface optimal path, watershed, and flood inundation.

2.3数字地球原型系统数据框架2.3 Digital Earth Prototype System Data Framework

数字地球数据结构,多分辨率遥感数据为基本内容数据框架,实现海量数据存储,管理3D景观的数据结构。如图14所示,图14为本发明提供的数字地球原型系统的框架结构示意图。Digital Earth data structure, multi-resolution remote sensing data as the basic content data framework, realizes massive data storage, and manages the data structure of 3D landscape. As shown in FIG. 14, FIG. 14 is a schematic diagram of the frame structure of the digital earth prototype system provided by the present invention.

2.4体系结构:2.4 Architecture:

数字地球原型系统CAS1.0采用三层体系结构,总体构架如图15所示,图15为本发明提供的数字地球原型系统的体系结构示意图。The digital earth prototype system CAS1.0 adopts a three-layer architecture, and the overall structure is shown in Figure 15, which is a schematic diagram of the system structure of the digital earth prototype system provided by the present invention.

采用三层结构可以解决:A three-tier structure can be used to solve:

所内多种服务器,其数目或种类超过50个;Various servers in the firm, the number or type of which exceeds 50;

应用是用不同语言编写的;the application is written in a different language;

多个以上的异构数据源,如不同DBMS或文件系统;Multiple or more heterogeneous data sources, such as different DBMS or file systems;

高工作负荷,例如每天超过5万个事务处理或在同一系统访问同一数据库的并发用户数超过300个;High workload, such as more than 50,000 transactions per day or more than 300 concurrent users accessing the same database on the same system;

应用于企事业内部外部通信。Applied to internal and external communications of enterprises.

2.5数字地球原型系统CAS1.0的组成:2.5 Composition of Digital Earth Prototype System CAS1.0:

数字地球原型系统CAS1.0版经过四年时间的建设,完成了数据接收与快速处理、网格计算、空间信息数据库、元数据服务、模型库、地图服务与虚拟现实等多个子系统的建立,在整个流程中,从数据获取,到数据分析与显示表达,子系统紧密衔接,构成数字地球工作平台。After four years of construction, the digital earth prototype system CAS version 1.0 has completed the establishment of multiple subsystems such as data reception and fast processing, grid computing, spatial information database, metadata service, model library, map service and virtual reality. In the whole process, from data acquisition to data analysis and display expression, the subsystems are closely connected to form a digital earth working platform.

结合以上介绍可见,数字地球原型系统CAS1.0是集成了当今最先进的技术,并将其成功运用于实际应用中的。它成功的探索出一套研究数字地球、实现数字地球的理论和方法,并通过不断的升级完善,从根本上解决数字地球长期停留于理论阶段的尴尬局面。Combining the above introductions, it can be seen that the digital earth prototype system CAS1.0 integrates the most advanced technology today and successfully applies it to practical applications. It has successfully explored a set of theories and methods for researching and realizing digital earth, and through continuous upgrading and improvement, it fundamentally solves the embarrassing situation that digital earth has remained in the theoretical stage for a long time.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (16)

1. A digital earth prototyping system, comprising:
the data receiving and rapid processing subsystem is used for receiving and processing data transmitted by the satellite-borne medium-resolution imaging spectrometer MODIS, rapidly processing and warehousing the data, outputting the data to the metadata service subsystem, and providing a basic data source for testing and application of other subsystems in the digital earth prototype system;
the metadata service subsystem is used for managing metadata information in a database of the whole system, providing service for reasonably and quickly utilizing the metadata information in the database for the system, outputting the metadata information to the spatial information database subsystem and the model base subsystem, and acquiring a general model of an algorithm and an application program from the model base subsystem;
the model base subsystem is used for providing a general model of an algorithm and an application program for the spatial data processing and analysis of the digital earth prototype system, and respectively realizes the sharing and intercommunication of general model data with the metadata service subsystem, the spatial information database subsystem, the grid computing subsystem, the map application service subsystem and the virtual reality subsystem;
the spatial information database subsystem is used for managing spatial data in the digital earth prototype system, carrying out standardized processing, extraction and analysis on the spatial data objectively simulating and reflecting the real world to form a database suitable for multi-field large-scale application, and respectively realizing data sharing and intercommunication with the model database subsystem, the grid computing subsystem, the map application service subsystem and the virtual reality subsystem;
the grid computing subsystem is used for acquiring data from a remote data server or a local server according to user requirements, triggering service and monitoring the running state of the service, dividing a task into a plurality of subtasks, then distributing the subtasks to computers in the grid computing pool for execution, recovering and integrating execution results, returning the results to the user, and respectively realizing data sharing and intercommunication with the model base subsystem and the spatial information database subsystem;
the map application service subsystem is used for realizing the visualization of global information under the Internet environment and respectively realizing the sharing and intercommunication of data with the model base subsystem, the virtual reality subsystem and the spatial information database subsystem;
and the virtual reality subsystem is used for modeling, learning, planning and calculating by applying artificial intelligence and pattern recognition technology according to the established domain knowledge base and the database, realizing visual, tactile, auditory and dynamic virtual reality simulation, and respectively realizing data sharing and intercommunication with the model base subsystem, the map application service subsystem and the spatial information database subsystem.
2. The digital earth prototype system of claim 1, wherein the data receiving and fast processing subsystem comprises:
the ground station control system module is used for controlling and monitoring the operation condition of each part of the ground station and operating in a direct command mode or a preset program mode;
the satellite acquisition and tracking module is used for realizing satellite orbit report calculation, orbit parameter display and orbit selection;
the data receiving and quick viewing module is used for realizing data receiving and data quick viewing;
the data processing module is used for unpacking, regulating, positioning and calibrating and correcting the received and preprocessed original data to generate MODIS format data of 0-level, 1A-level and 1B-level standards;
the data production module is used for generating 0-level, 1A-level and 1B-level MODIS standard data products, wherein the 1B-level product format is a standard earth observation system/hierarchical data format EOS/HDF, and provides high-level data products for land, ocean and atmosphere remote sensing applications;
the data playback and editing module is used for performing playback display and editing processing on the generated data product;
the data distribution and backup module is used for intelligently archiving, distributing, managing and backing up all levels of data received and processed by the system;
and the application software module is used for providing MODIS data geometric accurate correction, MODIS data national mosaic and administrative boundary superposition, fire monitoring, flood monitoring, drought monitoring, surface temperature inversion, vegetation index calculation, cloud detection, sea water color and snow monitoring information.
3. The digital earth prototype system according to claim 2, wherein the ground station control system module provides a user menu of a graphical interface for implementing multi-orbit reception task setting, task schedule and execution status display for a plurality of satellites, real-time display of various status parameters during reception, event information recording file and browsing, subsystem status configuration operation and disk file management for a pre-programmed manner.
4. The digital earth prototype system according to claim 2, wherein the satellite acquisition and tracking module performs the calculation of the satellite orbit report by acquiring two lines of parameters when the satellite orbit report calculation is performed; when the orbit parameter display is realized, displaying all orbit parameters of the transit satellite in a text mode; when the orbit selection is realized, a user randomly selects the satellite orbit and the corresponding parameters which are to be received according to the requirement.
5. The digital earth prototype system according to claim 2,
when the DATA receiving and quick viewing module is used for receiving DATA, automatically receiving satellite signals according to a selected transit satellite orbit parameter and a satellite orbit time table, and preprocessing the received signals at least including amplification, frequency conversion, demodulation, output and storage to obtain original DATA RAW DATA;
and the data receiving and quick viewing module displays the transit satellite orbit, the orbit currently received and the progress thereof when realizing the quick viewing of the data, and displays the received data in a color image form in real time.
6. The digital earth prototype system of claim 2, wherein the data playback and editing module editing the generated data product comprises:
image synthesis, which is used for carrying out multi-channel synthesis display on data of any wave band to manufacture a color image;
image enhancement for performing enhancement processing on the display image;
the data projection transformation is used for performing projection transformation at least comprising Lagbotu, polar ray red plane, Mccatu, equal longitude and latitude and Gauss-Krigger on the image and displaying the transformed image in real time;
the layer superposition is used for superposing a geographic information layer at least comprising a longitude and latitude grid, an administrative district and a geographic mark on the image;
adding geographic information, adding common graphic symbols and annotation characters on the image, and editing the added graphic symbols and annotation characters;
image data extraction, which is used for segmenting the image, digging the image according to province and city boundaries or custom boundaries and extracting data;
the data format conversion is used for outputting the HDF data according to a bitmap image file BMP or a 2-system format;
and image splicing is used for splicing, synthesizing and displaying multi-track and multi-day data on the basis of the regional data set.
7. The digital earth prototype system according to claim 2, wherein the application software module is based on algorithms and standards published by the NASA, has image processing function, is oriented to remote sensing applications, and adopts a design framework of public high-level data products, discloses algorithms and discloses standards.
8. The digital earth prototype system of claim 1, wherein the metadata service subsystem comprises:
the spatial metadata gateway is used for realizing information interaction between the client and the server;
the spatial metadata server is used for receiving the information from the spatial metadata gateway, calling a corresponding functional module after analyzing the information, returning a result set if the result set needs to be returned, organizing the result, returning the result to the client in the form of an extensible markup language (XML) document, and issuing the spatial metadata on the Internet;
the space metadata base manager is used for acquiring, storing, managing and maintaining space metadata;
the spatial metadata query tool is used for providing an interface for the client to manage metadata mode information, metadata records and various mapping relations, including adding, deleting, modifying and browsing the metadata records;
the spatial metadata management tool consists of a user interface module and a protocol processing transmission module, wherein the user interface module is used for realizing interaction with a user, inputting query conditions and presenting query results; the protocol processing transmission module is used for organizing the query parameters collected by the user interface module into query statements, sending the query statements to the space metadata server through a TCP/IP protocol, then querying the space metadata database, and sending the query results to the user interface module for display.
9. The digital earth prototype system according to claim 1, wherein the generic models stored in the model library subsystem comprise at least:
the system comprises an improved homomorphic filtering cloud removing model, a pyramid structure remote sensing data rapid compression and playback model, a multi-scale remote sensing image wavelet fusion model, a hyperspectral remote sensing image cube model, a surface temperature inversion model, a spline multi-scale image representation and registration model, a radar data soil moisture inversion model, a vegetation index model biomass model, a net primary productivity model, a microwave remote sensing data ground parameter inversion model and a radar interferometry INSAR model.
10. The digital earth prototype system of claim 1, wherein the spatial information database subsystem comprises:
the spatial data processing module is used for realizing control of bottom layer data processing, bottom layer control frame layout and bottom layer data precision inspection;
the remote sensing data processing module is used for realizing the establishment of a homonymous control point library, measurable fine processing inspection and image metadata library;
the characteristic information processing module is used for realizing color reduction and enhancement, image mosaic color matching, non-homologous data assimilation and multi-scale data fusion;
and the thematic information analysis module is used for realizing various remote sensing application analyses based on a standard remote sensing data platform on the remote sensing data results.
11. The digital earth prototype system of claim 1, wherein the grid computing subsystem comprises:
the flow control module is used for controlling the flow by adopting a workflow technology and taking application as a unit;
the grid middleware is used for centrally managing and scheduling bottom hardware computing resources, distributing tasks submitted by an upper layer to available computers according to a certain strategy for computing, and recovering results;
the initialization module is used for preparing for special processing, and comprises data acquisition, log file creation, remote data acquisition, decompression, subtask segmentation and packaging, data format conversion and interface conversion;
the special processing module is used for providing earth surface temperature inversion, aerosol optical thickness inversion, normalized vegetation index, enhanced vegetation index, soil regulation vegetation index, land cover information classification, cloud detection, geometric correction, image shearing, image splicing and image matching for the nodes;
and the post-processing module is used for combining the calculation results of the subtasks to generate an HDF file, compressing the HDF file and putting the HDF file into a result database.
12. The digital earth prototype system of claim 11, wherein, in the topic processing module,
the surface temperature inversion comprises: by a mobile windowing self-adaptive split window method, inversion of the earth surface temperature is realized by using thermal infrared data of MODIS;
the aerosol optical thickness inversion comprises: extracting aerosol optical thickness parameters of MODIS images by using a dark pixel method, and realizing the inversion of the aerosol optical thickness;
the normalized vegetation index includes: firstly, carrying out geometric correction on MODIS data, and then generating NDVI through single data to realize normalized vegetation index;
the enhanced vegetation index comprises: firstly, carrying out geometric correction on MODIS data, and then generating an EVI through single data to realize an enhanced vegetation index;
the soil regulating vegetation index comprises: firstly, carrying out geometric correction on MODIS data, and then generating SAVI through single data to realize soil regulation vegetation index;
the land cover information classification includes: firstly, carrying out geometric correction on MODIS data, and then carrying out unsupervised classification by utilizing multiband information of a remote sensing image to realize land cover information classification;
the cloud detection comprises: firstly, carrying out geometric correction on MODIS data, and then filtering out clouds in an image to realize cloud detection;
the geometric correction includes: performing geometric correction on MODIS data with the resolution of 1KM by using longitude and latitude information with the resolution of 1KM in 1B data with the resolution of 500m of MODIS as a control point, wherein the closest interpolation method is adopted in a gray resampling method to realize the geometric correction;
the image cropping includes: firstly, carrying out geometric correction on MODIS data, and then cutting out a smaller research area from a large image to realize image cutting;
the image stitching comprises: firstly, carrying out geometric correction on MODIS data, and splicing a plurality of adjacent MODIS 1B data images into a larger complete image through geographic coordinate data inside the MODIS data to realize image splicing;
the image matching includes: firstly, carrying out geometric correction on MODIS data, and then obtaining the same region data through the positioning information of each pixel obtained by the result of the geometric correction, so as to generate a plurality of images matched with the same region and realize image matching.
13. The digital earth prototype system according to claim 1, wherein the map application service subsystem manages spatial data and attribute data through node-based attribute binding, hierarchical management technology and R-tree technology, and uses skin + skeleton technology to realize mass data storage and dynamic loading and display by means of distributed storage and distributed operation technology, and at least comprises a visualization module and a query module, and is an information window served by the prototype system platform.
14. The digital earth prototype system according to claim 13,
the visualization module is used for controlling a map through a menu command, carrying out stepless amplification, calling an image with higher resolution in a display area along with the hierarchical amplification, observing from different angles, browsing according to a specified route, realizing the detailed observation of a certain town or even a smaller area from the global in summary, and realizing the roaming in any area of the world through a keyboard, a mouse or a navigation ball;
the query module is used for realizing data query of basic spatial data, hierarchical comprehensive display of various grades of vector diagrams and basic topographic maps and bidirectional spatial query of graphic information and attribute information in the GIS system.
15. The digital earth prototype system of claim 1, wherein the virtual reality subsystem comprises:
the mass data management function module is used for managing the data acquired in real time and reserving and sorting historical data within a period of time;
the real-time roaming browsing and editing function module of the large geographic landscape is used for realizing the real-time roaming browsing and editing of the large geographic landscape;
the three-dimensional analysis and display functional module is used for providing an interface with a GIS analysis function, performing a comprehensive three-dimensional analysis function, inquiring topographic data, performing statistical analysis on the topographic data, supporting the measurement of the terrain in various modes in a visual mode, and visualizing the measurement result in a visual mode;
the visualization function module of the digital simulation model is used for realizing the visualization of the digital simulation model;
and the visualization function module of the engineering construction model and the scheme is used for realizing the visualization of the engineering construction model and the scheme.
16. The digital earth prototype system according to claim 15, wherein the real-time roaming browsing and editing function module of large geographic landscape supports multi-view browsing and full-screen browsing, history playback, screen capture, flight route editing, target information query, achieving real visual simulation effect.
CNB2007101180124A 2007-06-27 2007-06-27 A Digital Earth Prototype System Expired - Fee Related CN100547594C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007101180124A CN100547594C (en) 2007-06-27 2007-06-27 A Digital Earth Prototype System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007101180124A CN100547594C (en) 2007-06-27 2007-06-27 A Digital Earth Prototype System

Publications (2)

Publication Number Publication Date
CN101110079A CN101110079A (en) 2008-01-23
CN100547594C true CN100547594C (en) 2009-10-07

Family

ID=39042152

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101180124A Expired - Fee Related CN100547594C (en) 2007-06-27 2007-06-27 A Digital Earth Prototype System

Country Status (1)

Country Link
CN (1) CN100547594C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058821A3 (en) * 2012-10-08 2014-06-19 Bantivoglio John Method and system for managing metadata
TWI696958B (en) * 2018-11-19 2020-06-21 國家中山科學研究院 Image adaptive feature extraction method and its application

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813485B (en) * 2009-02-24 2014-07-16 上海众恒信息产业股份有限公司 Electronic map based on geographic information data and navigation method thereof
US9092887B2 (en) * 2009-09-30 2015-07-28 International Business Machines Corporation Generation of composite spatial representations
CN102103713A (en) * 2009-12-18 2011-06-22 湖南城市学院 Method and system for monitoring wetland resource and ecological environment
CN102713980A (en) * 2010-02-01 2012-10-03 英特尔公司 Extracting and mapping three dimensional features from geo-referenced images
CN101814102B (en) * 2010-03-16 2011-12-28 中交第二公路勘察设计研究院有限公司 Road survey and design method based on high-resolution satellite image
CN102214368B (en) * 2010-04-07 2013-04-17 北京国遥新天地信息技术有限公司 Implementation method of three dimensional full-dimension digital globe
CN101914890B (en) * 2010-08-31 2011-11-16 中交第二公路勘察设计研究院有限公司 Airborne laser measurement-based highway reconstruction and expansion investigation method
CN101950435B (en) * 2010-09-27 2012-05-30 北京师范大学 A Navigation-Based Generation Method of Interactive Unoccluded 3D Topographic Map
CN101982831A (en) * 2010-11-23 2011-03-02 中国科学院对地观测与数字地球科学中心 Road quick extraction system
CN102023866A (en) * 2010-12-16 2011-04-20 中兴通讯股份有限公司 Map control based on Google Maps JavaScript API and production method thereof
CN102157014B (en) * 2011-04-13 2013-01-16 西安理工大学 Method for three-dimensional visualization of comprehensive pipeline of metro
CN102306208A (en) * 2011-06-30 2012-01-04 内蒙古电力勘测设计院 Method for arranging tribit vectorized wind turbine
CN102393912B (en) * 2011-11-01 2013-08-21 中国电子科技集团公司第二十八研究所 Comprehensive target identification method based on uncertain reasoning
CN102412990B (en) * 2011-11-18 2014-10-29 中国科学院对地观测与数字地球科学中心 Remote sensing satellite raw data recording system with centralized management and real-time transmission functions
CN102436531A (en) * 2011-11-25 2012-05-02 北京航空航天大学 Hyperspectral data simulation and application platform based on distribution assembly
CN102521687B (en) * 2011-12-01 2014-12-24 中国资源卫星应用中心 Miniaturized universal platform for preprocessing remote-sensing satellite data
CN103150305B (en) * 2011-12-06 2016-05-11 泰瑞数创科技(北京)有限公司 The real time data processing of the 3-dimensional digital earth and management system
CN102646116A (en) * 2012-02-17 2012-08-22 中国科学院地理科学与资源研究所 A Remote Visualization Method of Ocean Current Vector Field
CN102610159B (en) * 2012-03-07 2014-07-30 北京地拓科技发展有限公司 Channel length calculating method and channel length calculating device
CN102591356B (en) * 2012-03-13 2013-07-31 中国科学院对地观测与数字地球科学中心 Navigation control system and method for achieving navigation control
EP2858027A4 (en) * 2012-05-31 2016-10-12 Intel Corp Method, server, and computer-readable recording medium for providing augmented reality service
CN102831626B (en) * 2012-06-18 2014-11-26 清华大学 Visualization method for multivariable spatio-temporal data under polar region projection mode
CN102819222B (en) * 2012-08-22 2015-09-09 北京二十一世纪科技发展有限公司 A kind of ground artificial system based on small satellite intelligent technology
US10824680B2 (en) * 2012-10-02 2020-11-03 The Boeing Company Panoptic visualization document access control
CN102938164A (en) * 2012-12-05 2013-02-20 上海创图网络科技发展有限公司 Rapid modeling method based on aerial remote sensing photogrammetry
CN103078947B (en) * 2013-01-11 2015-04-22 江苏物联网研究发展中心 Mass data exchange and transaction architecture system of internet of things
CN104156358B (en) * 2013-05-13 2018-09-18 腾讯科技(深圳)有限公司 A kind of batch read method of table for database, device and system
CN103442225B (en) * 2013-07-26 2016-05-25 清华大学 Remote sensing images transmission system under the finite rate upgrading based on database on-line study
CN103413289B (en) * 2013-08-30 2017-04-12 中国神华能源股份有限公司 Image processing method and device for mining area
CN103425801B (en) * 2013-09-04 2016-08-17 中测新图(北京)遥感技术有限责任公司 A kind of data fusion method towards digital earth and device
TWI625699B (en) * 2013-10-16 2018-06-01 啟雲科技股份有限公司 Cloud 3d model constructing system and constructing method thereof
CN103500408A (en) * 2013-10-17 2014-01-08 浪潮(北京)电子信息产业有限公司 Method of processing electronic business data, and cloud computing system
CN103678484A (en) * 2013-10-28 2014-03-26 淮南矿业(集团)有限责任公司 Multi-source data processing system of coal mining subsidence area
US9275425B2 (en) * 2013-12-19 2016-03-01 International Business Machines Corporation Balancing provenance and accuracy tradeoffs in data modeling
CN103728609B (en) * 2014-01-16 2016-02-03 中国科学院地理科学与资源研究所 Satellite-borne multispectral infrared sensor cross-radiometric calibration method
CN103968845B (en) * 2014-04-15 2016-08-31 北京控制工程研究所 A kind of DSP Yu FPGA parallel multi-mode star image processing method for star sensor
CN103996044B (en) * 2014-05-29 2017-10-10 天津航天中为数据系统科技有限公司 The method and apparatus that target is extracted using remote sensing images
CN104714001B (en) * 2015-04-09 2016-03-16 北京师范大学 A Method of Spatial Layout of Soil Erosion Investigation Units
CN104732372A (en) * 2015-04-13 2015-06-24 成都数云科技有限公司 Decision support auxiliary system for agricultural product supply chain
CN105588557A (en) * 2015-12-11 2016-05-18 中国烟草总公司广东省公司 Tobacco field electronic map based on geographic information data and navigation method thereof
CN105868253A (en) * 2015-12-23 2016-08-17 乐视网信息技术(北京)股份有限公司 Data importing and query methods and apparatuses
CN105491157A (en) * 2016-01-12 2016-04-13 浙江大学 User collaborative regularization-based personalized Web service composition method
CN105717491B (en) * 2016-02-04 2018-09-21 象辑知源(武汉)科技有限公司 The prediction technique and prediction meanss of Weather Radar image
CN105954493B (en) * 2016-04-25 2018-03-23 吉林师范大学 A kind of soil collection detecting system
CN106019950B (en) * 2016-08-09 2018-11-16 中国科学院软件研究所 A kind of mobile phone satellite Adaptive Attitude control method
CN106558101A (en) * 2016-11-03 2017-04-05 广州凯耀资产管理有限公司 Spatial information acquisition methods and device
CN107657262B (en) * 2016-12-30 2019-03-15 中科星图股份有限公司 A kind of computer automatic sorting Accuracy Assessment
CN106777333A (en) * 2017-01-12 2017-05-31 哈尔滨中智拓图地理信息技术有限公司 A kind of resource integration platform based on GIS-Geographic Information System
CN107016645A (en) * 2017-04-05 2017-08-04 云南电网有限责任公司电力科学研究院 A kind of transmission of electricity corridor aerial photograph joining method based on LAS
CN106971007B (en) * 2017-04-28 2021-05-28 成都优易数据有限公司 Data processing and data analysis framework controlled by data structure
CN108881117B (en) * 2017-05-12 2021-10-22 上海诺基亚贝尔股份有限公司 Method, apparatus and computer readable medium for deploying virtual reality services in an access network
US10402942B2 (en) 2017-09-28 2019-09-03 Sentera, Inc. Multiple georeferenced aerial image crop analysis and synthesis
CN107894836B (en) * 2017-11-22 2020-10-09 河南大学 Human-computer interaction method for processing and displaying remote sensing image based on gesture and voice recognition
CN108665528A (en) * 2018-04-12 2018-10-16 四川旭普信息产业发展有限公司 Aeroplane photography digital modeling multi-subarea extracting and transfer algorithm
CN108766098A (en) * 2018-07-26 2018-11-06 杭州拓叭吧科技有限公司 A kind of generation system of drive simulating environment and road
CN109325139A (en) * 2018-08-22 2019-02-12 内蒙古蒙草生态环境(集团)股份有限公司 The processing method and processing device of grassland ecology data
CN109145074A (en) * 2018-08-29 2019-01-04 广州怡禄电讯科技有限公司 A kind of common road maintenance project management system based on ArcGIS
CN109213749B (en) * 2018-11-07 2023-06-06 广东瑾诚城市规划勘测设计有限公司 A method and device for establishing a three-dimensional monitoring model of urban underground pipelines
CN109885638B (en) * 2019-02-28 2020-12-01 正元地理信息集团股份有限公司 Three-dimensional space indexing method and system
CN110096997B (en) * 2019-04-29 2020-04-14 宁波大学 A fine classification method of coastal zone integrating multi-source remote sensing data
CN111125274A (en) * 2019-08-29 2020-05-08 电子科技大学 Basic geographic information visualization method based on distributed computation
CN110633282A (en) * 2019-09-18 2019-12-31 四川九洲空管科技有限责任公司 Airspace resource multistage three-dimensional gridding method and tool
CN110727750A (en) * 2019-10-09 2020-01-24 中国石油大学(华东) Method, medium, and apparatus for ocean spatiotemporal process object extraction and multi-scale data mapping
CN110853108B (en) * 2019-10-11 2020-07-10 中国南方电网有限责任公司超高压输电公司天生桥局 Compression storage method of infrared chart data
CN111125052B (en) * 2019-10-25 2020-09-15 北京华如科技股份有限公司 Big data intelligent modeling system and method based on dynamic metadata
CN111090691B (en) * 2019-12-19 2021-02-09 北京百度网讯科技有限公司 Data processing method and device, electronic equipment and storage medium
CN111191088B (en) * 2020-01-02 2022-02-01 武汉大学 Method, system and readable medium for analyzing cross-boundary service demand
CN111404593B (en) * 2020-03-13 2022-02-15 北京华云星地通科技有限公司 Method and device for processing satellite remote sensing data
CN111540034A (en) * 2020-04-27 2020-08-14 扆亮海 Method for filling depression terrain with high expressive force and relief features
CN111949706B (en) * 2020-08-03 2023-11-14 北京吉威空间信息股份有限公司 Storage method for land big data distributed mining analysis
CN112132284B (en) * 2020-08-24 2022-04-15 中国科学院空天信息创新研究院 Knowledge pivot system for earth observation
CN112395378B (en) * 2020-10-13 2023-11-03 北京洛斯达科技发展有限公司 Digital earth display method, device, system and storage medium
CN112346091B (en) * 2020-10-20 2022-07-01 中国电子科技集团公司第五十四研究所 Digital resampling-based non-homologous data receiving and modulating device
CN112256581B (en) * 2020-10-27 2024-01-23 华泰证券股份有限公司 Log playback test method and device for high-simulation securities trade trading system
CN114549674A (en) * 2020-11-24 2022-05-27 阿里巴巴集团控股有限公司 Method, system, equipment and storage medium for toning image and video
CN112540992B (en) * 2020-12-16 2024-05-24 辛集市气象局 Summer corn water deficit index data comprehensive display system
CN112765207B (en) * 2021-04-07 2021-06-18 中国人民解放军国防科技大学 Resource big data processing, storing and inquiring method
CN113221250B (en) * 2021-05-24 2024-03-29 北京市遥感信息研究所 Efficient data scheduling method suitable for remote sensing image ship on-orbit detection system
CN113625264B (en) * 2021-06-16 2024-08-30 中国铁道科学研究院集团有限公司铁道建筑研究所 Method and system for parallel processing of railway detection big data
CN113687961B (en) * 2021-08-18 2023-09-26 国家卫星气象中心(国家空间天气监测预警中心) Cloud-based infrared hyperspectral radiation transmission rapid concurrency computing system and method
CN113886328A (en) * 2021-09-26 2022-01-04 北京和德宇航技术有限公司 Multi-satellite remote sensing data integrated ground preprocessing system
CN114417092B (en) * 2021-11-09 2023-06-27 长安大学 Construction method of desertification monitoring index and desertification state change trend evaluation method
CN114266870A (en) * 2021-12-29 2022-04-01 珠海金山数字网络科技有限公司 Image generation method and device
CN114638936B (en) * 2022-03-21 2022-10-28 中环宇恩(广东)生态科技有限公司 Digital earth prototype processing system and processing method
CN114663401B (en) * 2022-03-23 2025-03-28 四川成电多物理智能感知科技有限公司 A defect prediction method and system based on small sample knowledge transfer learning
CN114758103A (en) * 2022-04-18 2022-07-15 北京禾溪数字遥感科技有限公司 Real and virtual geographic space VR system based on meta universe
CN114564553A (en) * 2022-04-27 2022-05-31 北京东方融创信息技术有限公司 Digital earth visualization system and method
CN115065867B (en) * 2022-08-17 2022-11-11 中国科学院空天信息创新研究院 Dynamic processing method and device based on unmanned aerial vehicle video pyramid model
CN115511925B (en) * 2022-09-26 2023-11-03 成都理工大学 StaMPS parallel optimization processing methods and products based on pipeline communication mechanism
CN116756139B (en) * 2023-05-12 2024-04-23 中国自然资源航空物探遥感中心 Data indexing method, system, storage medium and electronic equipment
CN117289921B (en) * 2023-09-07 2024-05-10 中通服网络信息技术有限公司 Method and system for quickly constructing demonstration system prototype
CN117079056A (en) * 2023-09-18 2023-11-17 西安电子科技大学 Image scene classification method for progressively training multi-scale information retrieval network
CN119247361B (en) * 2024-12-05 2025-02-18 中国科学院空天信息创新研究院 Three-dimensional back projection imaging method and device for array interference SAR

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1985265A (en) * 2004-07-15 2007-06-20 哈里公司 Bare earth digital elevation model extraction for three-dimensional registration from topographical points
CN201111049Y (en) * 2007-06-27 2008-09-03 中国科学院遥感应用研究所 A Digital Earth Prototype System

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1985265A (en) * 2004-07-15 2007-06-20 哈里公司 Bare earth digital elevation model extraction for three-dimensional registration from topographical points
CN201111049Y (en) * 2007-06-27 2008-09-03 中国科学院遥感应用研究所 A Digital Earth Prototype System

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058821A3 (en) * 2012-10-08 2014-06-19 Bantivoglio John Method and system for managing metadata
US11593326B2 (en) 2012-10-08 2023-02-28 GiantChair, Inc. Method and system for managing metadata
TWI696958B (en) * 2018-11-19 2020-06-21 國家中山科學研究院 Image adaptive feature extraction method and its application

Also Published As

Publication number Publication date
CN101110079A (en) 2008-01-23

Similar Documents

Publication Publication Date Title
CN100547594C (en) A Digital Earth Prototype System
CN201111049Y (en) A Digital Earth Prototype System
Yu et al. Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives
Sun et al. Development of a Web-based visualization platform for climate research using Google Earth
Zhu et al. Research and practice in three-dimensional city modeling
Chen et al. Visualization of A-Train vertical profiles using Google Earth
CN106383965A (en) Three-dimensional numerical atmospheric visual support system
Bladin et al. Globe browsing: Contextualized spatio-temporal planetary surface visualization
CN117422839A (en) GIS system based on multidimensional space geographic information big data and GIS system service method
Toschi et al. Geospatial data processing for 3D city model generation, management and visualization
Zhu et al. 3D Terrain visualization for Web GIS
Prandi et al. Services oriented smart city platform based on 3D city model visualization
CN116778285A (en) Big data fusion method and system for constructing digital twin base
Guo et al. A digital earth prototype system: DEPS/CAS
CN117689808A (en) City data integrated management method, system, equipment and medium based on CIM
CN117611755A (en) Two-dimensional and three-dimensional linkage visual display method for island reef change comparison analysis
Sherlock et al. Interactive data styling and multifocal visualization for a multigrid web-based Digital Earth
Murata et al. A web-based real-time and full-resolution data visualization for Himawari-8 satellite sensed images
Gessler et al. The future of geomorphometry
Zhang Design of urban garden landscape visualization system based on GIS and remote sensing technology
Shahabi et al. Geodec: Enabling geospatial decision making
Fu et al. [Retracted] 3D City Online Visualization and Cluster Architecture for Digital City
Wang [Retracted] Optimization of Three‐Dimensional Model of Landscape Space Based on Big Data Analysis
CN113112598A (en) System and method for realizing three-dimensional visual data model of urban geographic information
Dorninger et al. Technical push on 3d data standards for cultural heritage management

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091007

Termination date: 20120627