CN100538773C - 动态传感实验仪 - Google Patents

动态传感实验仪 Download PDF

Info

Publication number
CN100538773C
CN100538773C CNB2006100164098A CN200610016409A CN100538773C CN 100538773 C CN100538773 C CN 100538773C CN B2006100164098 A CNB2006100164098 A CN B2006100164098A CN 200610016409 A CN200610016409 A CN 200610016409A CN 100538773 C CN100538773 C CN 100538773C
Authority
CN
China
Prior art keywords
experiments
optical fiber
light source
amplitude
test instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100164098A
Other languages
English (en)
Other versions
CN1945662A (zh
Inventor
董苏姗
刘志国
杨祥鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jing'ao Optronics Sci. & Tech. Co., Ltd.
Original Assignee
TIANJIN AT PHOTONICS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIANJIN AT PHOTONICS Inc filed Critical TIANJIN AT PHOTONICS Inc
Priority to CNB2006100164098A priority Critical patent/CN100538773C/zh
Publication of CN1945662A publication Critical patent/CN1945662A/zh
Application granted granted Critical
Publication of CN100538773C publication Critical patent/CN100538773C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开一种动态传感实验仪,有动态传感实验仪壳体,工频电流传感幅度、波形频率记录和测量实验结构,工频电压传感幅度、波形频率记录和测量实验结构,振动传感的幅度、波形频率记录和测量实验结构,流速和流量及涡旋原理的实验结构均设置在动态传感实验仪的壳体内,它们的输入端与光源相连,输出分别与解调结构及功率输出接口相连;瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构设置在壳体的外部,其输入端与光源相连接,输出与解调结构相连。通过本发明的实验仪的实验,可以使学生了解动态传感与静态传感的不同,可以使学生了解和掌握光纤光栅动态传感器设计原理和方法,以及了解和掌握动态传感量的解调原理和方法。

Description

动态传感实验仪
技术领域
本发明涉及一种光纤传感技术。特别是涉及一种能够方便的应用于大学的光纤通讯和传感教学中,清楚了解光纤和光纤光栅传感器技术的特性的动态传感实验仪。
背景技术
光纤和光纤光栅传感器是近几年高速发展的新型传感器,光纤和光纤光栅传感器可集信息的传感与传输于一体,与传统的传感器相比它具有很多优势:如防爆,抗电磁干扰,抗腐蚀,抗震动,耐高温,体积小,重量轻,灵活方便,特别能在恶劣环境下使用。由于光纤和光纤光栅传感器是近几年发展的新型传感器,目前,还没有用于高等教育的关于光纤和光纤光栅传感器这方面的高等教学仪器,因此,在教学中很难使学生亲自掌握光纤和光纤光栅传感器的特性。
发明内容
本发明所要解决的技术问题是,提供一种能够方便的应用于大学的光纤通讯和传感教学中,清楚了解光纤和光纤光栅传感器技术的特性的动态传感实验仪。
本发明所采用的技术方案是:一种动态传感实验仪,包括有:工频电流传感幅度、波形频率记录和测量实验结构;工频电压传感幅度、波形频率记录和测量实验结构;振动传感的幅度、波形频率记录和测量实验结构;卡门涡流流速和流量及卡门涡旋原理的实验结构;瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构,其中,工频电流传感幅度、波形频率记录和测量实验结构,工频电压传感幅度、波形频率记录和测量实验结构,振动传感的幅度、波形频率记录和测量实验结构,卡门涡流流速和流量及卡门涡旋原理的实验结构均设置在动态传感实验仪的壳体内,它们的输入端与设置在壳体内的光源相连接,它们的输出分别与设置在壳体内的连接显示结构的解调结构以及功率输出接口相连;瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构设置在壳体的外部,其输入端与设置在壳体内的光源相连接,输出与设置在壳体内的连接显示结构的解调结构相连。
所述的光源为激光光源和宽带光源中的一种,其中振动传感的幅度、波形频率记录和测量实验结构,流体的流速和流量及涡旋原理的实验结构,瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构,均采用宽带光源作为其光源;工频电流传感幅度、波形频率记录和测量实验结构;工频电压传感幅度、波形频率记录和测量实验结构采用激光光源。
所述的设置在壳体内的解调结构,包括有:线性滤波器、光电二极管和电子放大器,其中,接收实验输出信号的线性滤波器的输出信号经由光电二极管进入电子放大器放大后,输出到显示结构。
所述的动态传感实验仪壳体的面板上设置有显示结构、总开关、电流/电压开关、振动/流量开关、瞬态压力开关、宽带输出接口、信号输入接口、功率输出接口以及零点调整。
所述的工频电流传感幅度、波形频率记录和测量实验结构,是由光源、起偏器、法拉第旋转晶体、检偏器、电流环、第一光纤准直器、第二光纤准直器和可调电源构成,使用激光光源通过光纤与第一光纤准直器、起偏器依次相连,起偏器与法拉第旋转晶体紧密相连,法拉第旋转晶体与检偏器紧密相连,检偏器通过第二光纤准直器、光纤至输出,连接到设置在动态传感实验仪壳体面板上的功率输出接口,其中,电流环与可调电源相连,并且,电流环环绕第一光纤准直器、起偏器、法拉第旋转晶体、检偏器以及第二光纤准直器。
所述的工频电压传感幅度、波形频率记录和测量实验结构,包括有:激光光源、第三光纤准直器、起偏器、电光晶体、检偏器、第四光纤准直器、纵向电场以及可调电源构成,光源通过光纤和第三光纤准直器与起偏器相连,起偏器与电光晶体紧密相连,电光晶体与检偏器紧密相连,检偏器通过光纤和第四光纤准直器至输出,连接到设置在动态传感实验仪壳体面板上的功率输出接口,其中,可调电源绕在电光晶体上,形成纵向电场。
所述的振动传感的幅度、波形频率记录和测量实验结构,包括有:宽带光源;光耦合器;以及由基座、质量块、位于基座和质量块上的悬臂梁弹性体、粘贴在悬臂梁弹性体上的光纤光栅、设置在基座底端的振源体组成的振动传感结构构成,宽带光源通过光纤与光耦合器的输入端相连,光耦合器的第一输出端与粘贴在悬臂梁弹性体上的光纤光栅相连,光耦合器的第二输出端为振动传感实验的输出端P3与设置在壳体内的连接显示结构的解调结构相连。
流体的流速和流量及涡旋原理的实验结构,包括有:贯通的筒体、涡轮、第一光纤光栅和支撑第一光纤光栅的载体、第二光纤光栅和支撑第二光纤光栅的载体,其中,涡轮、第一光纤光栅和支撑第一光纤光栅的载体、第二光纤光栅和支撑第二光纤光栅的载体,依次沿贯通的筒体的轴向设置在筒体内,第一光纤光栅输出端和第二光纤光栅输出端分别伸出到筒体的外侧,流体由筒体的临近涡轮的口流入,从筒体的临近第二载体的口流出。
所述的瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构,包括有爆炸体;光耦合器;宽带光源;以及由密封弹性体、位于密封弹性体内的光纤光栅、与光纤光栅相连并伸出密封弹性体外部的光纤组成的光纤光栅传感器构成,其中,宽带光源通过光纤与光耦合器的输入端相连,光耦合器的第一输出端与伸出光纤光栅传感器一端部的光纤相连,光纤光栅传感器的另一端部嵌入密封弹性体的壁内,光耦合器的第二输出端作为光振动输出,并通过设置在动态传感实验仪的壳体的面板上的信号输入接口连接设置在壳体内的解调结构。
本发明的动态传感实验仪,是动态传感测量光纤光栅动态传感的实验仪。通过本实验仪的实验,可以使学生了解动态传感与静态传感的不同,可以使学生了解和掌握光纤光栅动态传感器设计原理和方法,以及了解和掌握动态传感量的解调原理和方法。
附图说明
图1是本发明实验仪的面板结构示意图;
图2是本发明实验仪中解调结构的结构示意图;
图3是工频电流传感幅度、波形频率记录和测量实验结构的结构示意图;
图4是工频电压传感幅度、波形频率记录和测量实验结构的结构示意图;
图5是振动传感的幅度、波形频率记录和测量实验结构的结构示意图;
图6是图5中的振动传感结构的示意图;
图7是卡门涡流流速和流量及卡门涡旋原理的实验结构的结构示意图;
图8是图7断面结构示意图;
图9是瞬态压力传感幅度和瞬态压力变化波形记录测量实验结构示意图;
图10是图9中的光纤光栅传感器的结构示意图。
其中:
1:显示结构  2:总开关  3:电流/电压开关  4:振动/流量开关
5:瞬态压力开关  6:宽带输出接口  7:信号输入接口  8:功率输出接口
9:零点调整  11:光源  12:起偏器  13:法拉第旋转晶体  14:检偏器
15:电流环  16、第一光纤准直器  17:第二光纤准直器  18:可调电源
20:光纤  22:起偏器  23:电光晶体  24:检偏器  25:纵向电场
26:第三光纤准直  27:第四光纤准直器  28:可调电源  30:电子放大器  44:光纤
31:基座  32:质量块  33:悬臂梁弹性体  34:宽带光源  35:光纤光栅
36:振源体  37:光耦合器  38:线性滤波器  39:光电二极管  40:振动传感结构
41:光纤光栅传感器  42:光耦合器  43:爆炸体  45:光纤光栅  46:密封弹性体
51:涡轮  53a:第一光纤光栅  53b:第二光纤光栅53b  54a:载体  54b:载体
55:筒体  A:壳体  P1、P2、P3、P4a、P4b、P5:输出  F:气体流动方向
具体实施方式
下面结合实施例对本发明的动态传感实验仪做出详细说明。
本发明的动态传感实验仪,包括有:工频电流传感幅度、波形频率记录和测量实验结构;工频电压传感幅度、波形频率记录和测量实验结构;振动传感的幅度、波形频率记录和测量实验结构;流体的流速和流量及涡旋原理的实验结构;瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构,其中,工频电流传感幅度、波形频率记录和测量实验结构,工频电压传感幅度、波形频率记录和测量实验结构,振动传感的幅度、波形频率记录和测量实验结构,流体的流速和流量及涡旋原理的实验结构均设置在动态传感实验仪的壳体结构A结构内,它们的输入端与设置在壳体A内的光源相连接,它们的输出分别与设置在壳体A内的连接显示结构的解调结构以及功率输出接口相连;瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构设置在壳体A的外部,其输入端与设置在壳体A内的光源相连接,输出与设置在壳体A内的连接显示结构的解调结构相连。
所述的光源11为激光光源和宽带光源中的一种。其中振动传感的幅度、波形频率记录和测量实验结构,流体的流速和流量及涡旋原理的实验结构,瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构,均采用宽带光源作为其光源;工频电流传感幅度、波形频率记录和测量实验结构;工频电压传感幅度、波形频率记录和测量实验结构采用激光光源。
所述的激光光源采用本公司的专利申请纤维光学实验仪的方法制作。
所述的宽带光源装置2采用在专利号为2005201235710中所公开的技术。
如图2所示,所述的设置在壳体A内的解调结构,包括有:线性滤波器38、光电二极管39、电子放大器30以及显示结构1构成,其中,接收实验输出信号的线性滤波器38的输出信号经由光电二极管39进入电子放大器30结构放大后,输出到显示结构1。本实施例中的电子放大器采用天津爱天光电子科技有限公司设计生产并销售的电子放大器。
如图1所示,所述的动态传感实验仪壳体A的面板上设置有显示结构1、总开关2、电流/电压开关3、振动/流量开关4、瞬态压力开关5、宽带输出接口6、信号输入接口7、功率输出接口8以及零点调整9。功率输出接口8用于连接功率计来检测输入和输出光的功率。
如图3所示,所述的工频电流传感幅度、波形频率记录和测量实验结构,是由光源11、起偏器12、法拉第旋转晶体13、检偏器14、电流环15、第一光纤准直器16、第二光纤准直器17和可调电源18构成,光源11采用激光光源通过光纤20与第一光纤准直器16、起偏器12依次相连,起偏器12与法拉第旋转晶体13紧密相连,法拉第旋转晶体13与检偏器14紧密相连,检偏器14通过第二光纤准直器17、光纤20至输出P1,连接到设置在动态传感实验仪壳体A面板上的功率输出接口8,其中,电流环15与可调电源18相连,并且,电流环15环绕第一光纤准直器16、起偏器12、法拉第旋转晶体13、检偏器14以及第二光纤准直器17。
本发明的实施例应用磁光晶体的法拉第磁致旋光效应,基于法拉第效应的光导电流传感器的基本原理光是电磁波,它可以分成两个互相垂直的偏振方向。
当一束光通过处于磁场中的法拉第旋转片时,它的偏振方向会发生旋转。旋转的角度θ为:θ=V∫Bdl
如果法拉第旋转片处于均匀磁场,则:θ=VBL
其中,θ为偏转角度,V为法拉第旋转片的费尔德(Verdet)常数,
B为外界磁场强度,L为光通过法拉第旋转片的路程。
根据安培环路定律:
式中I为通过电流,H为离导线某点的磁场强度,d1为磁场H所在处线元。当无限长导线通过电流I时,导钱周围将形成圆周磁场,在r固定的圆周上,则有:
Figure C200610016409D00082
如果光沿这一圆周走一圈,即让通有光的光纤绕此圆周一圈,则光的偏振方向旋转角度θ为:θ=VB2πr=VμH2πr=VμI
式中μ为法拉第旋转片的导磁系数,法拉第旋转片一般采用质地密实且较重的火石(Flint)玻璃,常用的光敏玻璃是SF-59,光敏玻璃的导磁系数为1。
从上式中可知只要测量出偏振光的旋转角度,就可以知道电流的大小。为了增加灵敏度,可以在同一圆周上多绕n圈,则:θ=nVI 在图3的结构示意图中,输入光源为非偏振光源,处于地电位,其功率为Pin。光由光纤进入高压处的起偏器后,输入光成为只有一个偏振方向的偏振光,此偏振光通过处于磁场中的法拉第旋转片后转动θ角,此光可分成互相垂直的两个分量,其中一个分量将无损耗地通过检偏器输出,另一个分量被检偏器全部消除,因此输出功率将减小。输出光经在光纤输出后,偏振效应将被减小或消除。若起偏器和检偏器的光轴为同一方向,经过此系统后的输出功率Pout为:Pout=Pin cos2θ
就可以计算出被测电流I。如果外磁场为零,则输出功率是输入功率的1/2,对于直流系统,θ是常数。因此这种光电流传感器不仅可以测量交流电流,也可以用来测量直流电流。
如图4所示,所述的工频电压传感幅度、波形频率记录和测量实验结构,包括有:由激光光源构成的光源11、第三光纤准直器26、起偏器22、电光晶体23、检偏器24、第四光纤准直器27、纵向电场25以及可调电源28构成,光源11通过光纤20和第三光纤准直器26与起偏器22相连,起偏器22与电光晶体23紧密相连,电光晶体23与检偏器24紧密相连,检偏器24通过光纤20和第四光纤准直器27至输出P2,连接到设置在动态传感实验仪壳体A面板上的功率输出接口8,其中,可调电源28绕在电光晶体23上,形成纵向电场25,使起偏器22、电光晶体23、第三光纤准直器26、第四光纤准直器27和检偏器24结构处于可调外界纵向电场中。
本实验中测电压范围设定在0—2V,工业应用中可以高达800KV。本发明的实施例应用克尔(Kerr)电光效应,在外界电场作用下,电光晶体会产生双折射效应,其折射率差与电场强度的平方成正比,其位相差是:
ΔΦ=2πdK(V/l)2,其中,d是光通过电场的有效长度;K是克尔常数;V/l是电场强度。测量其相位的变化即可测量出电压的变化。
如图5、图6所示,所述的振动传感的幅度、波形频率记录和测量实验结构,包括有:宽带光源34;光耦合器37;以及由基座31、质量块32、位于基座31和质量块32上的悬臂梁弹性体33、粘贴在悬臂梁弹性体33上的光纤光栅35、设置在基座31底端的振源体36组成的振动传感结构40构成,宽带光源34通过光纤20与光耦合器37的输入端相连,光耦合器37的第一输出端与粘贴在悬臂梁弹性体33上的光纤光栅35相连,光耦合器37的第二输出端为振动传感实验的输出端P3与设置在壳体A内的连接显示结构1的解调结构相连。
本实验目的是通过实验使学生了解光纤光栅振动传感器的原理和检测振动频率,振幅等的基本知识和原理,因此测加速度测量范围0.1-10g,频率范围35—1000HZ。如图所示,在受迫振动中,质量m受到的力除了惯性力ma外还有弹性恢复力F,即:ma=ma+F
由受迫振动理论可知,在振动稳定后,传感器在此非惯性系中振动的频率与源振动频率相同,振子m的振幅与悬臂梁材料杨氏模量E、形状、长度、振子m和振源加速度a有关。通过测量光纤光栅产生的应变可以计算(或测量)出振子m的振幅A,因材料杨氏模量E、形状、长度、振子m已知,可以计算(或测量)出振源加速度a。
G = f 2 A ( 9800 / 4 π 2 ) = f 2 A 248.2
其中f是振动频率,G为重力加速度g的倍数;矩形悬臂梁厚度为2d,宽度为b,长度为l。由材料力学可知,其惯性矩:
I = 2 bd 3 3 , 端部最大挠度(振幅): h max = 1 2 l 3 bd 3 F E ,根部梁表面最大应变: ϵ = d ρ = 3 2 l bd 2 F E , 其中ρ是根部最大曲率半径, ρ = 2 bd 3 3 l E F .
由受迫振动理论可知,当传感器的固有频率远远小于振源频率时,作用在质量块m上的惯性力ma近似与悬臂梁弹性体恢复力F相等,方向相反,即质量块近似不动,只是传感器基座与振源一起振动。在这种情况下,传感器振子振动频率f和振幅A与振源的相同。由上述分析结果可得到如下公式:最大振幅 A = h max = 1 2 l 3 bd 3 ma E 加速度a: a = 2 3 bd 2 lm Eϵ
可测最小加速度估算:
E=5Mpa=5*10000kg/cm2,l=2cm,b=0.5,d=0.1cm,m=0.00025kg,ε=10-6
ma=0.0000175kgf,a=0.0000175/0.00025=0.07(cm/s2)
G=0.07(cm/s2)/980cm/s2=7*10-5g。
如图7、图8所示,所述的流体的流速和流量及涡旋原理的实验结构,包括有:贯通的筒体55、涡轮51、第一光纤光栅53a和支撑第一光纤光栅53a的载体54a、第二光纤光栅53b和支撑第二光纤光栅53b的载体54b,其中,涡轮51、第一光纤光栅53a和支撑第一光纤光栅53a的载体54a、第二光纤光栅53b和支撑第二光纤光栅53b的载体54b,依次沿贯通的筒体55的轴向设置在筒体55内,第一光纤光栅输出端Pa和第二光纤光栅输出端Pb分别伸出到筒体55的外侧,流体51由筒体55的临近涡轮51的口流入,从筒体55的临近第二载体54b的口流出。
利用流体因附面层的分离作用而交替产生的一种自然振荡型旋涡(卡门旋涡)原理测量气体流速,并通过流速的测量直接反映空气流量的流量计称为卡门旋涡式空气流量计。对于圆柱体,设单列旋涡产生的频率为f,则有:
式中St—斯特劳哈尔数;d—圆柱体直径,单位为mm;
f = S t v βd
v—流体流速,单位为m/s;β—直径比,β=d/D,D为管道直径。
若管道面积为A,由上式可知,流体的体积流量qv为:
q v = βdf S t
对于三角状物体,其平均边长为d,则流体的体积流量qv为:
q v = A ( 1 - 1.5 β ) df S t
对于—台具体的卡门旋涡式空气流量计,有如下关系式:
qv=kf
式中qv—流体流量;f—单列旋涡产生的频率;k—比例常数,它与管道直径,圆柱体直径等有关。
由上式可知,体积流量与卡门旋涡流量传感器的输出频率成正比。利用这一原理,只要检测卡门旋涡的频率,就可以求出流体流量。频率的检测利用振动传感的幅度、波形频率记录和测量实验检测。
如图9、图10所示,所述的瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构,包括有爆炸体43;光耦合器42;宽带光源34;以及由密封弹性体46、位于密封弹性体46内的光纤光栅45、与光纤光栅45相连并伸出密封弹性体46外部的光纤44组成的光纤光栅传感器41构成,其中,宽带光源34通过光纤与光耦合器42的输入端相连,光耦合器42的第一输出端与伸出光纤光栅传感器41一端部的光纤44相连,光纤光栅传感器41的另一端部嵌入密封弹性体46的壁内,光耦合器42的第二输出端作为光振动输出P5,并通过设置在动态传感实验仪的壳体A的面板上的信号输入接口7连接设置在壳体A内的解调结构。图中的F为气体流动方向。
为了理解瞬态压力测量的方法,本实验中压力从0—0.7Mpa,响应时间<1ms。
在爆炸过程中,时间是非常短的,密封腔中在理想的状态,气体的流速与压强之间的关系满足伯努力方程
Figure C200610016409D00111
式中v、h、p为同一流线上任意点的流速、相对高度和压强。根据伯努力方程测量压强可以得到气体的速度。
在本实施例中的光纤光栅传感器可采用申请号为200610016075.4的光纤光栅传感器。

Claims (9)

1.一种动态传感实验仪,其特征在于,包括有:工频电流传感幅度、波形频率记录和测量实验结构;工频电压传感幅度、波形频率记录和测量实验结构;振动传感的幅度、波形频率记录和测量实验结构;流体的流速和流量及涡旋原理的实验结构;瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构,其中,工频电流传感幅度、波形频率记录和测量实验结构,工频电压传感幅度、波形频率记录和测量实验结构,振动传感的幅度、波形频率记录和测量实验结构,流体的流速和流量及涡旋原理的实验结构均设置在动态传感实验仪的壳体(A)内,它们的输入端与设置在壳体(A)内的光源相连接,它们的输出分别与设置在壳体(A)内的连接显示结构的解调结构以及功率输出接口相连;瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构设置在壳体(A)的外部,其输入端与设置在壳体(A)内的光源相连接,输出与设置在壳体(A)内的连接显示结构的解调结构相连。
2.根据权利要求1所述的动态传感实验仪,其特征在于,所述的光源(11)为激光光源和宽带光源中的一种,其中振动传感的幅度、波形频率记录和测量实验结构,流体的流速和流量及涡旋原理的实验结构,瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构,均采用宽带光源作为其光源;工频电流传感幅度、波形频率记录和测量实验结构;工频电压传感幅度、波形频率记录和测量实验结构采用激光光源。
3.根据权利要求1所述的动态传感实验仪,其特征在于,所述的设置在壳体(A)内的解调结构,包括有:线性滤波器(38)、光电二极管(39)和电子放大器(30),其中,接收实验输出信号的线性滤波器(38)的输出信号经由光电二极管(39)进入电子放大器(30)放大后,输出到显示结构(1)。
4.根据权利要求1所述的动态传感实验仪,其特征在于,所述的动态传感实验仪壳体(A)的面板上设置有显示结构(1)、总开关(2)、电流/电压开关(3)、振动/流量开关(4)、瞬态压力开关(5)、宽带输出接口(6)、信号输入接口(7)、功率输出接口(8)以及零点调整(9)。
5.根据权利要求1所述的动态传感实验仪,其特征在于,所述的工频电流传感幅度、波形频率记录和测量实验结构,是由光源(11)、起偏器(12)、法拉第旋转晶体(13)、检偏器(14)、电流环(15)、第一光纤准直器(16)、第二光纤准直器(17)和可调电源(18)构成,使用激光光源(11)通过光纤(20)与第一光纤准直器(16)、起偏器(12)依次相连,起偏器(12)与法拉第旋转晶体(13)紧密相连,法拉第旋转晶体(13)与检偏器(14)紧密相连,检偏器(14)通过第二光纤准直器(17)、光纤(20)至输出(P1),连接到设置在动态传感实验仪壳体(A)面板上的功率输出接口(8),其中,电流环(15)与可调电源(18)相连,并且,电流环(15)环绕第一光纤准直器(16)、起偏器(12)、法拉第旋转晶体(13)、检偏器(14)以及第二光纤准直器(17)。
6.根据权利要求1所述的动态传感实验仪,其特征在于,所述的工频电压传感幅度、波形频率记录和测量实验结构,包括有:激光光源(11)、第三光纤准直器(26)、起偏器(22)、电光晶体(23)、检偏器(24)、第四光纤准直器(27)、纵向电场(25)以及可调电源(28)构成,光源(11)通过光纤(20)和第三光纤准直器(26)与起偏器(22)相连,起偏器(22)与电光晶体(23)紧密相连,电光晶体(23)与检偏器(24)紧密相连,检偏器(24)通过光纤(20)和第四光纤准直器(27)至输出(P2),连接到设置在动态传感实验仪壳体(A)面板上的功率输出接口(8),其中,可调电源(28)绕在电光晶体(23)上,形成纵向电场(25)。
7.根据权利要求1所述的动态传感实验仪,其特征在于,所述的振动传感的幅度、波形频率记录和测量实验结构,包括有:宽带光源(34);光耦合器(37);以及由基座(31)、质量块(32)、位于基座(31)和质量块(32)上的悬臂梁弹性体(33)、粘贴在悬臂梁弹性体(33)上的光纤光栅(35)、设置在基座(31)底端的振源体(36)组成的振动传感结构(40)构成,宽带光源(34)通过光纤(20)与光耦合器(37)的输入端相连,光耦合器(37)的第一输出端与粘贴在悬臂梁弹性体(33)上的光纤光栅(35)相连,光耦合器(37)的第二输出端为振动传感实验的输出端(P3)与设置在壳体(A)内的连接显示结构(1)的解调结构相连。
8.根据权利要求1所述的动态传感实验仪,其特征在于,流体的流速和流量及涡旋原理的实验结构,包括有:贯通的筒体(55)、涡轮(51)、第一光纤光栅(53a)和支撑第一光纤光栅(53a)的载体(54a)、第二光纤光栅(53b)和支撑第二光纤光栅(53b)的载体(54b),其中,涡轮(51)、第一光纤光栅(53a)和支撑第一光纤光栅(53a)的载体(54a)、第二光纤光栅(53b)和支撑第二光纤光栅(53b)的载体(54b),依次沿贯通的筒体(55)的轴向设置在筒体(55)内,第一光纤光栅输出端(Pa)和第二光纤光栅输出端(Pb)分别伸出到筒体(55)的外侧,流体(51)由筒体(55)的临近涡轮(51)的口流入,从筒体(55)的临近第二载体(54b)的口流出。
9.根据权利要求1所述的动态传感实验仪,其特征在于,所述的瞬态压力传感幅度和瞬态压力变化波形的记录和测量实验结构,包括有爆炸体(43);光耦合器(42);宽带光源(34);以及由密封弹性体(46)、位于密封弹性体(46)内的光纤光栅(45)、与光纤光栅(45)相连并伸出密封弹性体(46)外部的光纤(44)组成的光纤光栅传感器(41)构成,其中,宽带光源(34)通过光纤与光耦合器(42)的输入端相连,光耦合器(42)的第一输出端与伸出光纤光栅传感器(41)一端部的光纤(44)相连,光纤光栅传感器(41)的另一端部嵌入密封弹性体(46)的壁内,光耦合器(42)的第二输出端作为光振动输出(P5),并通过设置在动态传感实验仪的壳体(A)的面板上的信号输入接口(7)连接设置在壳体(A)内的解调结构。
CNB2006100164098A 2006-10-31 2006-10-31 动态传感实验仪 Expired - Fee Related CN100538773C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100164098A CN100538773C (zh) 2006-10-31 2006-10-31 动态传感实验仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100164098A CN100538773C (zh) 2006-10-31 2006-10-31 动态传感实验仪

Publications (2)

Publication Number Publication Date
CN1945662A CN1945662A (zh) 2007-04-11
CN100538773C true CN100538773C (zh) 2009-09-09

Family

ID=38045051

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100164098A Expired - Fee Related CN100538773C (zh) 2006-10-31 2006-10-31 动态传感实验仪

Country Status (1)

Country Link
CN (1) CN100538773C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445586A (zh) * 2011-11-08 2012-05-09 中国矿业大学 监测地铁杂散电流的光纤传感器及其方法
CN103456206A (zh) * 2013-09-11 2013-12-18 天津港东科技发展股份有限公司 法拉第效应实验装置
CN107064595B (zh) * 2017-05-25 2019-08-06 上海大学 基于复合光涡旋的晶体电流传感器

Also Published As

Publication number Publication date
CN1945662A (zh) 2007-04-11

Similar Documents

Publication Publication Date Title
US4671659A (en) Fiber optic displacement sensor
US5493623A (en) PZT fiber optic modulator having a robust mounting and method of making same
CN101339093B (zh) 光纤陀螺用光纤环质量的测量方法及其装置
EP0716291A2 (en) A sensor and a method for measuring distances to, and/or physical properties of,a medium
AU613994B2 (en) Vortex flowmeter transducer
Gupta et al. Industrial fluid flow measurement using optical fiber sensors: A review
CN102721827B (zh) 一种光纤加速度计
Sheikhaleh et al. Design and analysis of a novel MOEMS gyroscope using an electrostatic comb-drive actuator and an optical sensing system
CN102141421A (zh) 全光纤干涉仪式测量流量的装置与方法
CN100538773C (zh) 动态传感实验仪
CN103604444B (zh) 基于正弦波调制及二次谐波检测的光纤环本征频率测量装置及方法
CN103616020B (zh) 基于正弦波调制及一次谐波检测的光纤环本征频率测量装置及方法
Fluitman et al. Optical waveguide sensors
US4706502A (en) Vortex shedding flowmeter
CN103323621A (zh) 一种全方位悬臂梁光纤加速度传感器装置
CN200962273Y (zh) 动态纤维传感实验仪
Webster et al. Air flow measurement by vortex shedding from multimode and monomode optical fibres
Duncan Modal interference techniques for strain detection in few-mode optical fibers
CN102252912B (zh) 多普勒振镜正弦调制多光束激光外差二次谐波测量杨氏模量的方法
CN102053283B (zh) 一种白光干涉型光纤重力仪
CN203323993U (zh) 一种新型光纤环性能评测装置
Nawrocka et al. Dynamic high-pressure calibration of the fiber-optic sensor based on birefringent side-hole fibers
Xu et al. Development of a low-frequency accelerometer based on symmetric multi-stage triangular beam fiber Bragg grating
Medlock Sensors for mechanical properties
Grattan et al. Optical vibrating quartz crystal pressure sensor using frustrated-total-internal-reflection readout technique

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: BEIJING JING'AO OPTRONICS SCI. + TECH. CO., LTD.

Free format text: FORMER OWNER: TIANJIN AT PHOTONICS INC.

Effective date: 20120522

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 300384 NANKAI, TIANJIN TO: 100176 DAXING, BEIJING

TR01 Transfer of patent right

Effective date of registration: 20120522

Address after: 100176 Beijing City Branch Daxing District Yizhuang Economic Development Zone, fourteen Street No. 20 building No. 12 hospital

Patentee after: Beijing Jing'ao Optronics Sci. & Tech. Co., Ltd.

Address before: 300384 Tianjin International Center for new technology industry park, 405

Patentee before: Tianjin AT Photonics Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090909

Termination date: 20181031

CF01 Termination of patent right due to non-payment of annual fee