CN100512750C - Process of calibrating no-cuff arterial blood gauge - Google Patents

Process of calibrating no-cuff arterial blood gauge Download PDF

Info

Publication number
CN100512750C
CN100512750C CN 200610095640 CN200610095640A CN100512750C CN 100512750 C CN100512750 C CN 100512750C CN 200610095640 CN200610095640 CN 200610095640 CN 200610095640 A CN200610095640 A CN 200610095640A CN 100512750 C CN100512750 C CN 100512750C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
pulse wave
signal
blood pressure
feature amount
arterial blood
Prior art date
Application number
CN 200610095640
Other languages
Chinese (zh)
Other versions
CN101088455A (en )
Inventor
张元亭
颜永生
滕晓菲
潘颂欣
刘音博
Original Assignee
香港中文大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明一般涉及校准无袖带式动脉血压测量装置的方法。 The present invention relates generally to methods of arterial blood pressure measurement device calibrated sleeveless belt. 步骤包括:(1)测量参考动脉血压值BP<sub>0</sub>并记录脉搏波相关信号;(2)根据脉搏波相关信号提取至少一个脉搏波特征量;(3)改变测量脉搏波相关信号的肢体部位的高度h,记录脉搏波相关信号并根据该信号提取至少一个脉搏波特征量;(4)确定脉搏波特征量与参考动脉血压值之间的关系。 Comprises: (1) measuring the reference arterial blood pressure value BP <sub> 0 </ sub> and the recording pulse wave-related signal; (2) The pulse wave-related signal extracting at least a pulse wave feature amount; (3) changing the measurement pulse wave extremity correlation signal height h, the recording pulse wave based on the correlation signal and the pulse wave signal extracting at least one feature quantity; (4) determine the relationship between the pulse wave feature amount of arterial blood pressure with a reference value. 本方法可以在不改变个体生理状态的情况下,得到较为精确的校准关系。 This method may be made without changing the physiological state of the individual, to give a more accurate calibration relationship.

Description

对无袖带式动脉血压测量装置进行校准的方法 A method for measuring arterial pressure with sleeveless calibrating device

技术领域 FIELD

本发明一般涉及校准无袖带式动脉血压测量装置的方法。 The present invention relates generally to methods of arterial blood pressure measurement device calibrated sleeveless belt.

背景技术 Background technique

无袖带式动脉血压测量装置通常釆用脉搏波特征量来估计动脉血压值。 Sleeveless with arterial pressure pulse wave devices generally preclude the use of the feature amount estimating arterial blood pressure value. 其中较常用的一种方法就是利用脉搏波传输时间(速度)来预测动脉血压。 Among the more common method is to use a pulse wave transit time (velocity) to predict arterial blood pressure. 大量研究表明,脉搏波传输时间与血压之间呈现出近似线性的关系,而这种关系是对象依赖的。 Numerous studies show that the pulse wave transmission time between blood pressure and exhibits an approximately linear relationship, and this relationship is subject dependent. 这也就是说,利用脉搏波传输时间估计动脉血压前首先要针对每个使用者进行校准,即建立脉搏波传输时间与使用者动脉血压之间的关系。 That is to say, the use of pulse wave transmission time estimates must first be calibrated for each user before the arterial blood pressure, ie the relationship between the pulse wave transmission time and the user arterial blood pressure.

校准的步骤通常包括利用标准血压计测量动脉血压以及相应的脉搏波传输时间,然后将对应的测量值输入到无袖带式装置的控制单元以便建立动脉血压与脉搏波传输时间之间关系。 The calibration generally includes the step of using a standard sphygmomanometer arterial blood pressure and pulse wave corresponding to the transmission time, then the corresponding measurement value input to the control unit sleeveless belt arrangement in order to establish the relationship between arterial blood pressure and pulse wave transmission time. 例如,美国专利6,603,329公开了一种多功能血压计,它提供了一种基于脉搏波传输时间理论的血压测量方法。 For example, U.S. Patent No. 6,603,329 discloses a multifunctional sphygmomanometer, which provides a measure of blood pressure based on pulse wave transmission time Theory. 该装置包括一个输入单元,用来输入校准所需的血压值。 The apparatus includes an input unit for inputting the blood pressure value required for calibration. 日本专利2002-172094公开了一种血压测量系统,包括一个直接测量血压的装置(通常是基于袖带式方法的)和一个基于脉搏传输理论的电子腕式手表血压计。 Japanese Patent No. 2002-172094 discloses a blood pressure measuring system, comprising a means of direct measurement of blood pressure (usually based cuff method) and a wrist watch electronic sphygmomanometer based on the pulse transfer theory. 该发明的主要特征是,由直接测量血压的装置测量到的血压数值可自动传输给电子腕式手表血压计用于其校准,因此使用者不用手动输入校准数据。 The main feature of this invention is measured by means of a direct measurement of blood pressure to the blood pressure value can be automatically transmitted to the electronic sphygmomanometer wrist watch for its calibration, so the user does not manually enter the calibration data. —旦校准完成,电子腕式手表血压计可以利用由检测到的心电信号和检测到的脉搏波信号计算脉搏波传输时间,来估计使用者的血压值。 - Once calibration is complete, the electronic sphygmomanometer wrist watches may be utilized by the ECG detected and the detected pulse wave signal calculating pulse wave transmission time to the estimated blood pressure value of the user. 校准若可以在一定的血压动态变化范围内进行,显然会提高血压估计的准确性。 If the calibration can be performed within a certain dynamic range of blood pressure, blood pressure will obviously provide accurate estimates. 例如,卡西欧公司推出的测量个体血压的血压手表,通过运动试验改变血压范围,以得到脉搏波传输时间与血压之间的关系。 For example, Casio introduced individual measuring blood pressure blood pressure watch changed by the movement range of the blood pressure test, in order to obtain the relationship between blood pressure and pulse wave transmission time. 欧洲专利0875200也提出测量静止时和运动时不同的脉搏波传输时间和血压以得到二者关系的一个动态范围。 European Patent No. 0,875,200 also proposed to measure the different stationary and the transmission time of the pulse wave and the blood pressure to obtain a dynamic range of motion relationship between the two. 美国专利5649543提出测量平卧时和坐起来时的不同血压值来校准血压测量方程。 U.S. Patent No. 5,649,543 proposed to measure the blood pressure value different from the supine and sitting up when the blood pressure measurement to calibrate the equation. 为了处理由于对象本身生理状况发生变化而引起的脉搏波传输时间与血压之间关系的改变而引起的测量精度的降低,美国专利5755669,6022320,6083171等提出用估计的血压值判定是否需要重新校准并利用不同生理状况下的多组脉搏波传输时间与动脉血压的数据进行校准。 For pulse wave transmission time due to the physiological condition of the subject itself caused by changes in the measurement accuracy and decrease the relationship between changes in blood pressure caused, U.S. Patent No. 5755669,6022320,6083171 put forward is determined whether the estimated blood pressure value with the need to recalibrate and using the plurality of sets of pulse wave transmission time under different physiological conditions and calibration of the arterial blood pressure data. 而中国专利CN 1127939C提出利用将手掌置于心脏水平面上和离开心脏水平面时测量到的不同的脉搏波传输时间以及血压值来确定校准方程。 Measured pulse wave of a different transmission time and the blood pressure value is determined during calibration equation and Chinese patent CN 1127939C proposes using the hand placed on a horizontal plane and away from the heart of the heart level. 但是,在该方法中,改变髙度后的血压值采用平均的方法近似得到,而没有考虑到脉搏波传输速度在动脉树的每一点都是不一样的。 However, in this method, the change in the blood pressure value using the average of the method of Gao approximated, without taking into account the transmission velocity of the pulse wave is not the same at every point in the arterial tree. 本发明中提出的新方法正是对上述不足做出的。 The new method proposed in this invention is precisely for these shortcomings made.

发明内容 SUMMARY

· 本发明的目的在于简化校准步骤,同时提高校准精度以克服上述现有技术的不足,本发明提出如下的对无袖带式动脉血压测量装置进行校准的方法,包括以下步骤: · Object of the present invention is to simplify the calibration step, and improve the calibration accuracy to overcome the deficiencies of the prior art, the present invention is proposed as a method for measuring arterial pressure with sleeveless calibrating device, comprising the steps of:

(1)测量参考动脉血压值SPe并记录脉搏波相关信号; (1) measuring the reference record arterial blood pressure and pulse wave value SPe correlation signal;

(2)根据脉搏波相关信号提取至少一个脉搏波特征量; (2) a signal related to the pulse wave feature amount extracting at least one wave pulse;

(3)改变测量脉搏波相关信号的肢体部位的高度;^,记录脉搏波相关信号并根据该信号提取至少一个脉搏波特征量; (3) varying the height of the measurement pulse wave extremity correlation signal; ^, and records the pulse wave signal is associated at least one wave feature amount extracted based on the pulse signal;

(4)确定脉搏波特征量与参考动脉血压值之间的关系。 (4) determining the relationship between the pulse wave feature amount of arterial blood pressure with a reference value. 其中,脉搏波相关信号可以选自容积描记信号、压力波信号、电阻抗信号、压电信号和心电信号中的一种或多种。 Wherein the pulse wave-related signals may be selected plethysmography signal, one or more pressure wave signal, electric impedance signal, a piezoelectric signal and the ECG signal. 根据记录的一种或多种脉搏波相关信号可以计算脉搏波特征量。 Pulse wave feature amount may be calculated according to one or more of the relevant pulse wave signal recording. 脉搏波特征量与动脉血压之间的关系可通过对分布式模型积分得到,由至少一个系数和一个常数描述。 The relationship between the pulse wave feature amount and the arterial blood pressure can be obtained by integrating the distributed model, described by at least a factor and a constant. 系数和常数可利用肢体部位在不同高度时记录的一个或多个脉搏波特征量来确定。 And the constant may be determined using one or more body parts of the pulse wave feature amount recorded at different heights. 脉搏波特征量可以是通过容积描记信号、压力波信号、电阻抗信号、压电信号和心电信号中的一种或多种确定的脉搏波幅值、面积、高阶矩、特征时间、周期域特征量中的一种或多种。 Pulse wave feature amount may be by plethysmography signal, a pressure wave signal, electric impedance signal, a piezoelectric signal and the ECG signal to determine one or more pulse wave amplitudes, areas, higher moments, wherein the time period one or more fields in the feature amount. 其中的特征时间可为脉搏波传输时间(PTT)。 Wherein the characteristic time of the pulse wave transmission time may be (PTT). 高度;^可通过加速度计的读数来计算。 Height; ^ can be calculated by the accelerometer readings. 参考动脉血压值财>。 Reference arterial blood pressure values ​​Choi>. 可利用肢体部位在不同高度时容积描记信号波形幅值最大时对应的高度产生的流体静力学压力来确定。 Can plethysmography hydrostatic pressure generated by the maximum height of a signal waveform corresponding to the amplitude is determined at different heights by using body parts. BP。 BP. 也可利用振荡法或听诊法测量。 It may also be measured using the oscillation method or auscultatory method.

附图说明 BRIEF DESCRIPTION

下面结合附图对本发明的具体实施方案进行详细说明。 The following specific embodiments of the present invention will be described in detail in conjunction with the accompanying drawings. 通过这些说明,本发明的上述目的、优点及特征将变得更加清楚。 With these instructions, the above-described objects, advantages and features of the present invention will become more apparent. 在以下的附图中:图I是实现本发明方法校准过程的流程图;· In the following drawings: FIG. I is a flowchart of an implementation method of the present invention, the calibration process; -

图2是说明高度改变时各参量的示意图; FIG 2 is a description of each parameter when the height change a schematic view;

图3是说明容积描记信号幅值随经皮压力变化的示意图; 3 is a schematic view plethysmography signal amplitude changes with the skin by pressure;

图4是说明利用肢体高度变化测量册>。 FIG 4 illustrates the use of height variations measured volumes limb>. 的流程图。 Flowchart.

具体实施方案 Specific embodiments

校准,即找到脉搏波特征量与动脉血压之间的关系。 Calibration, i.e., to find the relationship between the pulse wave feature amount and the arterial blood pressure. 优选地,在本具体实施例中,脉搏波特征量选用脉搏波传输时间。 Preferably, in the present embodiment, the pulse wave feature amount selected pulse wave transmission time.

实施例I本实施例中进行血压测量的校准过程可参见图I的流程图。 Example I calibration process in the present embodiment blood pressure measurement can be found in Scheme I of FIG. 首先要在步骤101中测量参考血压值SP。 First reference blood pressure value measured in step 101 SP. . 若采用采用袖带式方法,振荡法或听诊法,使用者需将袖带缠绕在身体的某个部位,如上臂,该部位与心脏在同一水平高度。 Methods employed If the cuff oscillation method or auscultatory method, the user will need a cuff wrapped around parts of the body, such as the upper arm, the portion at the same level with the heart. 若采用无袖戴式,则具体步骤将在后文描述。 The use of a sleeveless worn, the specific steps will be described later. 脉搏波相关信号的记录步骤103可以与血压值的测量同步进行。 The step of recording the relevant pulse wave signal 103 may be synchronized with the measurement of blood pressure values. 要记录的脉搏波相关信号为光电容积描记信号,也可以记录心电信号。 Pulse wave signal to be recorded is relevant photoplethysmography signal, the ECG signal may be recorded. 袖带式血压测量与脉搏波相关信号的记录优选地在同一侧手臂上同步进行。 Blood pressure measurement cuff related to the pulse wave signal is preferably recorded simultaneously on the same side of the arm. 由于袖带压力会影响脉搏波相关信号,所以在步骤104中可利用袖带充气初始阶段,即袖带压力低于舒张压时的一段脉搏波相关信号来计算脉搏波传输时间P7T。 Since the cuff pressure pulse wave can affect correlation signal, so in step 104 may utilize the initial stage of the inflatable cuff, the cuff pressure that is less than a period related to the pulse wave signal to calculate the diastolic pulse wave transmission time P7T. . 或者,脉搏波相关信号的记录可与参考血压值的测量顺序进行。 Alternatively, the recording pulse wave signal may be associated with a reference blood pressure value measurement sequence. 测量完成后,在步骤102中得到当次测量的参考血压值。 After completion of the measurement, the reference blood pressure value obtained when the measurement in step 102. 在步骤105中,改变记录脉搏波相关信号肢体部位相对于心脏的高度A再一次记录脉搏波相关信号,然后在步骤106中计算在新的高度上的测量到的脉搏波传输时间/Ti。 In step 105, the recording pulse wave-related change signal relative to the heart extremity height A of the pulse wave once again record a correlation signal, then calculates a new height in the measured pulse wave transmission time / Ti in step 106. 根据需要,该步骤可重复多次,得到在不同高度的多个PTT。 If necessary, this step can be repeated many times, resulting in different heights of the plurality of PTT. 根据上述信息即可在步骤107中确定脉搏波传输时间与动脉血压之间的关系式。 To determine the relationship between the pulse wave transmission time and arterial blood pressure in step 107 based on the information. 确定该关系式的具体步骤将在下面详细说明。 This relationship determines the specific steps will be described in detail below. 最后,在步骤108中将其存储在存储单元中,并结束校准。 Finally, in step 108 which is stored in the storage unit, and ends the calibration.

大量研究表明,脉搏波传输速度与血压之间具有近似线性的关系。 A large number of studies have shown that, with an approximately linear relationship between blood pressure and pulse wave transmission speed. 该关系可表示为: This relationship can be expressed as:

PWV = axPt+b (I) PWV = axPt + b (I)

其中,《和6为待定参数。 Among them, "and 6 for the parameters to be determined.

Pt-Pin^Ph-Pe (2) Pt-Pin ^ Ph-Pe (2)

P,为经皮压力,&为血管内压力,也就是常说的心脏水平位置的动脉血压,6是由于高度改变所引起的流体静力学压力,而6是外界作用的压离开心脏的高度A变化引起的流体静力学压力有关。 P, percutaneous pressure, & is the intravascular pressure, i.e. arterial blood pressure often said that the heart level, and 6 is the hydrostatic pressure due to the height changes caused by the six highly A pressure outside acting away from the heart of hydrostatic pressure caused by the changes related.

Pl=Pin+PSh = Pin + ghlsine (3) Pl = Pin + PSh = Pin + ghlsine (3)

肢体部位位于心脏上方时,A为负值;反之,则为正值。 When positioned above the body parts of the heart, A is negative; otherwise, was a positive value. /是指肢体高度变化段沿着动脉上两点之间的距离,为可测量量,0为肢体抬高或降低时与心脏水平面之间的角度,如图2所示。 / Refers to the angle between the limbs when the height change distance between two points along a section of the artery, a measurable amount, 0 to raise or lower limb to the heart level, as shown in FIG. 进一步, further,

PWV = ^Pin + pgh) + b (4) PWV = ^ Pin + pgh) + b (4)

其中/^为血液密度,肢体部位高于心脏水平位置时血压值会下降,而低于心脏水平位置时血压值会上升。 Where / ^ is the density of blood, body parts blood pressure value is higher than the position of the heart level will decrease, while below a heart level blood pressure value will rise. 上式可进一步改写为, May further be rewritten as a formula,

PWV = (a* Pin + 6) + apgh = V0 + apgh (5) PWV = (a * Pin + 6) + apgh = V0 + apgh (5)

其中Vtl 4为肢体部位和心脏在同一水平位置时的脉搏波传输速度。 Wherein Vtl 4 extremity of cardiac and pulse wave transmission rate at the same horizontal position. 在血管内压A不改变的情况下,脉搏波传输速度与肢体离开心脏水平位置的局度A有关。 A case where the pressure within the blood vessel does not change, the transmission speed of the pulse wave and body horizontal position away from the heart of the office A related.

脉搏波传输速度可通过直接可测量量一一脉搏波传输时间来反映。 The pulse wave transmission speed eleven pulse wave transmission time to reflect directly measurable amounts. 严格来讲,脉搏波传输时间是指脉搏波在动脉上两点之间的传输时间。 Strictly speaking, the pulse wave transmission time is the transmission time of the pulse wave between two points on the artery. 由于脉搏波传输速度在动脉树上的每一点均不相同,因此,脉搏波传输时间可以通过对脉搏波传输速度沿动脉树积分得到, Since the transmission speed of the pulse wave are not the same at every point in the arterial tree, and therefore, the pulse wave transmission time can be obtained by pulse wave velocity along the arterial tree integral transmission,

其中,起点肢体部位与心脏位于同一水平面。 Among them, the starting point of body parts at the same level with the heart. 对上式进行积分并进行泰勒展开近似,得到 Integration of the equation and Taylor expansion approximation,

在上式中,PTT ' /是可测量量,Zz可通过加速度计的读数来计算,所以通过上式可确定出其中的未知量^和^当A = O时,即动脉上两点均处于心脏水平位置时,v。 In the above formula, PTT '/ measurable amount, Zz may be calculated by the accelerometer readings, it may be determined by the formula wherein the unknowns ^ ^ and when A = O, i.e. the two are in the artery when the heart level position, v. ==^^。 == ^^. 当动脉上两点中的终点部位高于或低于心脏水平位置时,可确定出将\和《的数值代入公 When two points on the end portion of the artery above or below the horizontal position of the heart, can be determined \ and "values ​​into the well

式(5)中,即可确定出6,从而得到脉搏波传输时间与动脉血压(此处的动脉血压值以平均压带入较为合适)之间的关系: In the formula (5), 6 can be determined, whereby the pulse wave and the transmission time arterial blood pressure (arterial pressure here to mean pressure values ​​into more appropriate) the relationship between:

为测量方便,测量脉搏波传输时间的起始点通常选为心电信号的R型波的顶点。 To facilitate the measurement, the measurement starting pulse wave transit time is generally preferably vertex ECG R-wave type. 若考虑此种情况,实际测到的脉搏波传输时间为从心脏到测量位置的整个传播时间,整个传输路径可分为固定段和活动段。 Considering this situation, the actual measured transmission time of the pulse wave from the heart to the whole propagation time measurement position, the entire transmission path can be divided into stationary sections and active segment. 固定段是指测量时高度没有变化的肢体段(即从心脏到肢体抬高/降低段之前的一段路径),这一段的与高度变化无关,仅仅与血管内压力&有关;而活动段是指肢体抬髙/降低段的起点到测量脉搏波相关信号的肢体部位的一段路径。 Fastening section is the height does not change when measured limb segment (i.e., from the heart to the limb raising / lowering path before the segment period), this section independent of the change in height, with only about & intravascular pressure; refers to the activity segments Gao limb lift / lower segment to a path segment starting point to measure the pulse wave extremity correlation signal. 因此上述公式(7)可改写成: Therefore above equation (7) can be rewritten as:

其中,A为固定段的等效长度,它等于从心脏到固定段末端(活动段起始端)的脉搏波传输时间(可测)和固定段脉搏波传输速度的乘积(可计算)。 Wherein, A is the equivalent length of the fixed segment, which is equal to the transmission time of the pulse wave from the heart to the end of a fixed period (active period starting end) of (measurable) and the product of the pulse wave velocity fixed transmission section (calculated). 固定段的脉搏波传输速度近似地等于活动段在心脏同一水平位置时的脉搏波传输速度,它可由活动段的长度除以脉搏波在活动段的传输时间来确定。 Transmission pulse wave velocity is approximately equal to the fixed period pulse wave transmission rate when the heart activity segments of the same horizontal position, the length of which may be active segment is determined by dividing the pulse wave transmission time period of activity. 因此,可得到脉搏波传输速度与动脉血压之间的关系: Thus, the relationship between the pulse wave obtained transmission rate and arterial blood pressure:

其中,P7T_为可测量量。 Which, P7T_ measurable amount.

实施例2 Example 2

脉搏波传输时间与血压之间的关系也可以通过脉搏波传输速度与经皮压力之间的关系(11)和经皮压力与血容积的关系(12)得到。 The pulse wave transmission time relationship between blood pressure and may be the relationship between the pulse wave transmission velocity percutaneous pressure relationship (11) and percutaneous pressure and blood volume (12) obtained.

其中,r为血容积,而a和&为待定参数。 Wherein, r is the volume of blood, and a parameter to be determined, and &. 进一步结合公式(3),将公式(12)和它的积分形式带入公式(11)并对活动段长度/积分即可得到, Further binding equation (3), Equation (12) and integrating it into the form of equation (11) and the active length / integrator can be obtained,

其中P7T和/是可测量量。 And wherein P7T / are measurable amounts.

所以心脏水平位置的血压与脉搏波传输时间的关系可以表示为: Therefore, the relationship between blood pressure and pulse wave transmission time of the horizontal position of the heart can be expressed as:

为避免单次测量可能导致的计算6的误差,可以通过多组在不同高度测得的PTT得到的多个i值然后通过最小二乘法确定 In order to avoid calculation may result in a single measurement errors 6, multiple sets of a plurality of possible values ​​i measured at different heights obtained PTT was then determined by a least square method

在实际测量中,若脉搏波传输时间是以心电信号的R型波的顶点为起始点,上述方程亦需要修正。 In actual measurement, if the transmission time of the pulse wave based on the apex of the R wave in the ECG signal as a starting point, the above equation also needs to be corrected.

在上述两个实施例中,高度的测量可通过加速度计完成。 In the above two embodiments, the height measurements may be completed by an acceleration meter. 加速度计可放置在动脉上两个测量点的远端点。 Accelerometer may be placed in the artery distal point two measuring points. 如果加速度计的读数为^,则高度可按照下式计算:h = -at (15) If the reading of the accelerometer ^, the height can be calculated as follows: h = -at (15)

参考血压值扮>。 Play a reference blood pressure value>. 除可以通过可以通过振荡法或听诊法测量外,也可以通过肢体高度和固定的压力传感器计算获得。 Obtained by addition can be calculated by measuring the oscillation method or outer auscultatory method, the height of the limb and can be fixed by a pressure sensor. 其主要原理是当经皮压力为零(P,=4+PA-Pe=0,也就是血管内压和外压相等)时,脉搏波相关信号,如容积描记信号的幅度将达到最大值,如图4所示。 The main principle is that when percutaneous pressure is zero (P, = 4 + PA-Pe = 0, i.e. intravascular and external pressure are equal), the pulse wave-related signals, such as the amplitude of the PPG signal will reach a maximum, As shown in Figure 4. 具体方法是,步骤401中,在肢体末端施加一定的袖带压力,袖带下方的压力传感器将读出袖带压力(即血管的外压6),然后,在步骤402中缓慢改变肢体的高度(肢体末端高度随之改变),同时记录置于袖带下方的容积描记信号的波形。 The specific method is, in step 401, applying a certain pressure at the extremities cuff, the cuff pressure sensor is below the read cuff pressure (i.e., the outer pressure vessel 6), then, in step 402 gradually change the height of the limb (extremities height will change), while the recording waveform PPG signal placed below the cuff. 在步骤403中,找到记录下来的波形幅度达到最大时对应的肢体高度< (可通过加速度计自动测得)。 In step 403, the amplitude of the waveform to find the record corresponding to the limb reaches its maximum height <(may be measured automatically by the accelerometer). 最后,在步骤404 Finally, at step 404

中由下列方程计算得到参考血压值扮^ =Pin =6。 Obtained in the reference blood pressure value is calculated by the following equation play ^ = Pin = 6.

本领域的技术人员应该明白,脉搏波特征量的选取和计算及回归方程中系数和常数的确定在不偏离本发明精神的情况下,可以有不同的实施方法。 Those skilled in the art will appreciate that the selection and determination of the pulse wave feature amount calculating coefficients and the regression equation constants and without departing from the spirit of the invention, the method can have different embodiments. 本发明的保护范围是由所附的权利要求而不是具体实施方案来界定的。 The scope of the present invention is defined by the appended claims rather than by the specific embodiments.

Claims (11)

  1. 1.—种对无袖带式动脉血压测量装置进行校准的方法,包括以下步骤:(1)测量参考动脉血压值BP。 1.- method sleeveless with arterial pressure calibration device, comprising the steps of: (1) arterial blood pressure measurement reference value BP. 并记录脉搏波相关信号·,(2)根据脉搏波相关信号提取至少ー个脉搏波特征量;(3)改变测量脉搏波相关信号的肢体部位的高度A ,记录脉搏波相关信号井根据该信号提取至少ー个脉搏波特征量;(4)确定脉搏波特征量与参考动脉血压值之间的关系,该脉搏波特征量与参考动脉血压值之间的关系通过对分布式模型积分得到。 And a recording pulse wave-related signal which (2) ー at least one pulse wave feature amount to the pulse wave-related signal extracted; (3) changing the extremity to measure the pulse wave-related signal height A, the recording pulse wave-related signal well in accordance with the signalー pulse wave extracting at least one feature quantity; (4) determine the relationship between the pulse wave feature amount of arterial blood pressure with a reference value, the relationship between the pulse wave feature amount and the reference arterial blood pressure value obtained by the integration of the distributed model.
  2. 2.如权利要求1所述的方法,其特征在子,脉搏波相关信号为选自容积描记信号、压カ波信号、电阻抗信号、压电信号和心电信号中的一种或多种。 2. The method according to claim 1, wherein the sub pulse wave signal is selected correlation signal plethysmography, ka pressure wave signal, an electric impedance signal, a piezoelectric signal and the ECG signal or more .
  3. 3.如权利要求1所述的方法,其特征在子,脉搏波特征量是从ー种或多种脉搏波相关信号中计算出来的。 The method according to claim 1, wherein the sub pulse wave feature amount is calculated from the pulse wave ー or more correlation signal.
  4. 4.如权利要求1所述的方法,其特征在子,脉搏波特征量与参考动脉血压值之间的关系由至少ー个系数和ー个常数确定。 4. The method according to claim 1, wherein the promoter, the relationship between the pulse wave feature amount and the reference value is determined by the arterial blood pressure of at least ー ー coefficients and constants.
  5. 5.如权利要求4所述的方法,其特征在子,描述脉搏波特征量与参考动脉血压值之间关系的系数和常数利用肢体部位在不同高度时记录的ー个或多个脉搏波特怔量来确定。 5. The method according to claim 4, characterized in that the sub-described pulse ー baud or more pulse wave feature amount using the coefficient and the constant relationship between the reference value extremity arterial pressure recorded at different heights startled amount is determined.
  6. 6.如权利要求5所述的方法,其特征在于,脉搏波特征量为通过容积描记信号、压カ波信号、电阻抗信号、压电信号和心电信号中的一种或多种确定的脉搏波幅值、面积、高阶矩、特征时间、周期域特征量中的一种或多种。 6. The method according to claim 5, wherein the pulse wave feature amount by plethysmography signal, ka pressure wave signals, an electric impedance signal, a piezoelectric signal and the ECG signal to determine one or more pulse wave amplitude, area, higher moments, wherein the time period of one field feature amount or more.
  7. 7.如杈利要求6所述的方法,其特征在子,特征时间为脉搏波传输时间(PTT)。 7. The method of claim 6 bifurcation claims, characterized in that the sub-characteristic time of the pulse wave transit time (PTT).
  8. 8.如权利要求1所述的方法,其特征在于,高度/^通过加速度计的读数来计算。 8. The method according to claim 1, characterized in that the height / ^ is calculated by the accelerometer readings. KL如权利要求1所述的方法,其特征在子,£Ρ。 The method of claim 1 KL as claimed in claim, wherein the sub, £ Ρ. 利用肢体部位在不同高度处的容积描记信号波形幅值为最大时对应的高度产生的流体静力学压カ来确定。 Determined using the hydrostatic pressure generated extremity ka height corresponding to the maximum amplitude of the PPG signal waveforms at different heights.
  9. 9. 9.
  10. 10. 10.
  11. 11. 如权利要求1所述的方法,其特征在子,ΒΡ。 11. The method according to claim 1, wherein the sub, ΒΡ. 利用振荡法或听诊法测量。 Measured using the oscillation method or auscultatory method.
CN 200610095640 2006-06-16 2006-06-16 Process of calibrating no-cuff arterial blood gauge CN100512750C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610095640 CN100512750C (en) 2006-06-16 2006-06-16 Process of calibrating no-cuff arterial blood gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610095640 CN100512750C (en) 2006-06-16 2006-06-16 Process of calibrating no-cuff arterial blood gauge

Publications (2)

Publication Number Publication Date
CN101088455A true CN101088455A (en) 2007-12-19
CN100512750C true CN100512750C (en) 2009-07-15

Family

ID=38942074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610095640 CN100512750C (en) 2006-06-16 2006-06-16 Process of calibrating no-cuff arterial blood gauge

Country Status (1)

Country Link
CN (1) CN100512750C (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589948B (en) 2008-05-29 2012-01-25 普立思胜医疗技术(丹阳)有限公司 Blood pressure measurement calibration method by oscillography and electronic sphygmomanometer
CN101589949B (en) 2008-05-30 2012-05-30 普立思胜医疗技术(丹阳)有限公司 Calibrating method for automatic blood pressure measurement and electric blood pressure meter
CN101773387B (en) 2009-01-08 2011-12-14 香港中文大学 Based sleeveless arterial pressure sensing sites and footer with automatic calibration means
CN101810470B (en) 2009-02-23 2012-09-05 财团法人工业技术研究院 Physiological signal measurement module and physiological signal error compensation method
US20140182352A1 (en) * 2012-12-27 2014-07-03 General Electric Company System and Method for Evaluating the Functionality of a Blood Pressure Cuff
CN103315726B (en) * 2013-06-25 2016-05-25 陈晓鹏 The portable blood pressure measurement device and blood pressure measuring method
CN105078432A (en) * 2014-05-14 2015-11-25 旺玖科技股份有限公司 Device and method for measuring blood pressures
CN104545854A (en) * 2015-01-30 2015-04-29 中国科学院电子学研究所 Cuffless ambulatory blood pressure monitoring equipment based on electrocardio signals and impedance signals
CN104706348B (en) * 2015-03-20 2018-01-30 宁波市美灵思医疗科技有限公司 A method of using multi-mode continuous blood pressure measuring apparatus of the self-calibration method
CN105748056A (en) * 2016-04-01 2016-07-13 广州视源电子科技股份有限公司 Blood pressure measuring method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5649543A (en) * 1994-06-06 1997-07-22 Nihon Kohden Corporation Pulse-wave propagation time basis blood pressure monitor
US6537225B1 (en) * 1999-10-07 2003-03-25 Alexander K. Mills Device and method for noninvasive continuous determination of physiologic characteristics
CN1127939C (en) * 1995-07-28 2003-11-19 北京新兴生物医学工程研究发展中心 Method for measuring arterial pressure by pulse wave
CN1678236A (en) * 2002-07-09 2005-10-05 健资国际私人有限公司 Method and device for monitoring blood pressure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5649543A (en) * 1994-06-06 1997-07-22 Nihon Kohden Corporation Pulse-wave propagation time basis blood pressure monitor
CN1127939C (en) * 1995-07-28 2003-11-19 北京新兴生物医学工程研究发展中心 Method for measuring arterial pressure by pulse wave
US6537225B1 (en) * 1999-10-07 2003-03-25 Alexander K. Mills Device and method for noninvasive continuous determination of physiologic characteristics
CN1678236A (en) * 2002-07-09 2005-10-05 健资国际私人有限公司 Method and device for monitoring blood pressure

Also Published As

Publication number Publication date Type
CN101088455A (en) 2007-12-19 application

Similar Documents

Publication Publication Date Title
Kelly et al. Noninvasive determination of aortic input impedance and external left ventricular power output: a validation and repeatability study of a new technique
US5797850A (en) Method and apparatus for calculating blood pressure of an artery
US5697375A (en) Method and apparatus utilizing heart sounds for determining pressures associated with the left atrium
US6558335B1 (en) Wrist-mounted blood pressure measurement device
US6440080B1 (en) Automatic oscillometric apparatus and method for measuring blood pressure
US6027452A (en) Rapid non-invasive blood pressure measuring device
Ramsey Noninvasive automatic determination of mean arterial pressure
US5101828A (en) Methods and apparatus for nonivasive monitoring of dynamic cardiac performance
US7674231B2 (en) Wearable pulse wave velocity blood pressure sensor and methods of calibration thereof
US4349034A (en) Automatic mean blood pressure reading device
US6331162B1 (en) Pulse wave velocity measuring device
US6132382A (en) Non-invasive blood pressure sensor with motion artifact reduction
US20030032886A1 (en) System for determining coronary flow reserve (CFR) value for a stenosed blood vessel, CFR processor therefor, and method therefor
US4873987A (en) Noninvasive continuous monitor of arterial blood pressure waveform
US8047998B2 (en) Non-invasive blood pressure determination method
US6852083B2 (en) System and method of determining whether to recalibrate a blood pressure monitor
US4677984A (en) Calibrated arterial pressure measurement device
US20050261593A1 (en) Methods for measuring blood pressure with automatic compensations
US6471646B1 (en) Arterial line emulator
US20030167012A1 (en) Continuous, non-invasive technique for measuring blood pressure using impedance plethysmography
US6340349B1 (en) Hand-held non-invasive blood pressure measurement device
US20020151805A1 (en) Blood flow volume measurement method and vital sign monitoring apparatus
US7029447B2 (en) Measuring blood pressure
US4846189A (en) Noncontactive arterial blood pressure monitor and measuring method
US4427013A (en) Apparatus and method for measuring blood pressure

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right