CN100490363C - Gridding coding modulation method for multiuser receiving device in WCDMA system - Google Patents

Gridding coding modulation method for multiuser receiving device in WCDMA system Download PDF

Info

Publication number
CN100490363C
CN100490363C CN 03114862 CN03114862A CN100490363C CN 100490363 C CN100490363 C CN 100490363C CN 03114862 CN03114862 CN 03114862 CN 03114862 A CN03114862 A CN 03114862A CN 100490363 C CN100490363 C CN 100490363C
Authority
CN
China
Prior art keywords
channel
data
rate
dpdch
modulation
Prior art date
Application number
CN 03114862
Other languages
Chinese (zh)
Other versions
CN1518256A (en
Inventor
魏立梅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN 03114862 priority Critical patent/CN100490363C/en
Publication of CN1518256A publication Critical patent/CN1518256A/en
Application granted granted Critical
Publication of CN100490363C publication Critical patent/CN100490363C/en

Links

Abstract

本发明针对12.2kbps上行专用物理信道提供了一种宽带码分多址(WCDMA)系统中用于多用户接收装置的网格编码调制方法,该网格编码调制方法采用由2/3速率卷积编码和8PSK调制构成的网格编码调制处理,不仅大大提高了专用物理数据信道(DPDCH)的扩频因子,而且该网格编码调制方案在提高译码性能和提高多用户检测系统性能方面具有很大潜力。 The present invention provides a wideband code division multiple access for the uplink dedicated physical channel 12.2kbps trellis coded modulation multiuser receiving device (WCDMA) system is used, the method of trellis-coded modulation by a 2/3 rate convolutional trellis coded modulation and 8PSK modulation coding process constituted not only greatly increased the dedicated physical data channel (DPDCH) of the spreading factor, and the trellis coded modulation scheme with the decoding performance is improved in the multi-user detection and improved system performance big potential.

Description

一种WCDMA系统中用于多用户接收装置的网格编码调制方法 Trellis-coded modulation multi-user receiving apparatus for a process for a WCDMA system

技术领域 FIELD

本发明涉及通信系统,尤其涉及宽带码分多址(WCDMA)蜂窝移动通信系统中上行专用物理信道的信道编码技术、调制技术和基站的多用户检测技术。 The present invention relates to communication systems and more particularly relates to multi-user detection technique Wideband CDMA (WCDMA) cellular mobile communication system, an uplink dedicated physical channel, channel coding, modulation and a base station.

背景技术 Background technique

3GPP的协议汇集了WCDMA系统的全套标准。 3GPP agreement brings together the full set of standard WCDMA system. 按照3GPP的协议,上行专用物理信道中专用物理数据信道(DPDCH)的信息比特先进行信道编码,然后进行二相移相键控(BPSK) 映射和扩频。 According to the protocol of 3GPP, an uplink dedicated physical channel dedicated physical data channel (DPDCH) information bits to channel coding, and then bi-phase shift keying (BPSK) mapping and spreading. 而专用物理控制信道(DPCCH)的信息比特直接进行BPSK映射和扩频,其扩频因子为256。 And dedicated physical control channel (the DPCCH) bits of information and map directly BPSK spreading, which spreading factor of 256. 图7显示的是现有的WCDMA协议中12.2kbps上行专用物理信道的扩频加扰过程的示意图。 FIG 7 is a diagram illustrating a conventional WCDMA protocol 12.2kbps uplink dedicated physical channel spreading scrambling process. 如图7所示,扩频后的DPDCH信道码片和DPCCH信道码片构成I、 Q两路数据, 一起进行加扰处理。 As shown in FIG 7, the chip spreading the DPDCH and the DPCCH channel configured chip I, Q two-way data, together with the scrambling process. 加扰后的I、 Q两路码片分别进行脉冲成型,然后分别通过载波调制发送给基站。 The scrambled I, Q respectively two chip pulse shaping, and then are transmitted to the base station by carrier modulation. 在3GPP的25.104、 25.944和25.212协议中,规定了上行专用物理信道中DPDCH信道的信道编码方法。 At 25.104, 25.944 and 3GPP 25.212 protocol, the channel coding method provides an uplink dedicated physical channel DPDCH channel. 上行专用物理信道的扩频、加扰、脉冲成型和调制方法见3GPP 的25.213协议。 Uplink dedicated physical channel spreading, scrambling, modulation, and pulse shaping methods, see the 3GPP 25.213 protocol.

以上是WCDMA系统中用户端(UE)在上行专用物理信道上发送比特的过程。 The above is the process of a WCDMA system the UE (UE) transmission bits in the uplink dedicated physical channel. 在WCDMA 系统的基站端对UE在上行专用物理信道上发送的比特的接收可以采用RAKE接收技术。 In the end station of the WCDMA system that the UE transmits the received bits in the uplink dedicated physical channel RAKE receiver techniques may be employed. RAKE接收技术的装置如图1所示。 Art RAKE receiver apparatus shown in Fig. 但是传统的单用户RAKE接收装置在用户数目增多和远近效应下接收性能降低。 However, the traditional single-user RAKE receiving means receives the number of users increased performance and reduced under near-far effect.

多用户检测技术是克服多址干扰的影响,提高WCDMA系统容量的一种增强型技术。 Multi-user detection technology to overcome the effects of multiple access interference, enhance the capacity of a WCDMA system enhanced technology. 它对多个用户信号进行联合检测,从而尽可能地减小多址干扰对接收机性能的影响,提高系统的容量。 It plurality of user signals for joint detection, multiple access interference so as to reduce the influence on performance of the receiver as much as possible, to improve the capacity of the system. 文献【1】提出了专利申请号为02151067.9的一种上行专用物理信道的多用户接收装置,该装置采用多用户检测技术,将双层加权并行干扰对消方法的简化方法应用于上行专用物理信道的信号接收,具有高于传统的单用户RAKE接收装置的性能。 [1] proposed Patent Application No. 02151067.9 multiuser receiving device for an uplink dedicated physical channels, the apparatus using multi-user detection technique, the parallel interference uplink dedicated physical channel is applied to a simplified method for double weighting Canceled signal reception performance of a single user having a RAKE reception apparatus than conventional. 而且该装置采用的双层加权并行干扰对消方法,包括BPSK调制下的双层加权并行干扰对消方法和MPSK调制下的双层加权并行干扰对消方法,较大地提高了性能。 And the apparatus employed a double weighting parallel interference cancellation method comprising the BPSK modulation double weighting parallel interference cancellation method for double weighting under MPSK modulation and parallel interference cancellation method, greatly improved performance. 在上述上行专用物理信道的多用户接收装置中,只考虑DPDCH信道的处理过程。 In multi-user receiving apparatus in the uplink dedicated physical channel, the process of considering only the DPDCH channel. 当本级用户的RAXE合并结果的信噪比较高时,RAKE合并的软判决结果就比较准确,用户的符号级再生信号和码片级再生信号就比较准确,因而本级干扰对消的性能就越好,这使得下一级PIC的性能也会相应提高。 When the SNR is high RAXE combined results according to the user level, the soft decision result of RAKE combiner is relatively accurate, the user symbol-level and chip-level signal reproduced reproduction signal is more accurate, and the present stage interference cancellation performance the better, which makes the performance a PIC will be increased accordingly. 反之,本级干扰对消的性能就降低,这使得下一级PIC的性能也会相应降低。 On the contrary, the present stage of the interference cancellation performance is lowered, which makes performance a PIC will be reduced accordingly. 因此,提高用户RAKE合并结果的信噪比,可以提高多用户接收装置的性能。 Therefore, to improve the SNR of the user RAKE combiner result, it can improve the performance of multi-user receiving apparatus. 这里的性能指用户DPDCH信道的解调误码率。 Here refers to the performance of the demodulation error rate of the user channel DPDCH.

图6显示的是现有的WCDMA协议中12.2kbps上行专用物理信道的信道编码方法。 Figure 6 shows a conventional channel coding method in WCDMA protocol 12.2kbps uplink dedicated physical channel. 在3GPP的25.212和25.104协议中,规定了12.2kbps上行专用物理信道的DPDCH信道编码方法。 25.212 and 25.104 of the 3GPP protocol, the predetermined channel coding method 12.2kbps DPDCH uplink dedicated physical channel. 如图6所示,在12.2kbps上行专用物理信道中,DTCH信道和DCCH信道分别进行CRC 比特添加、尾比特添加、1/3速率巻积编码、第一次交织、无线帧分割和速率匹配。 6, 12.2kbps in an uplink dedicated physical channel, and the DTCH channel DCCH channel CRC bits are added separately, adding tail bits, 1/3 coding rate convolving, first interleaving, radio frame segmentation and rate matching. 然后,这两个信道的数据复用在一起进行第二次交织和时隙分割。 Then, both channels of data multiplexed together with time slot and a second interleaving segmentation. 在这种编码方法下,DPDCH信道的扩频因子为64。 In this coding method, DPDCH channel, the spreading factor is 64. 1/3速率巻积编码器的框图见协议25.212;速率匹配采用均匀重复方式。 Convolving a block diagram of a rate 1/3 encoder, see the protocol 25.212; rate matching is repeated using a uniform manner. 该编码方法中,第一次交织、无线帧分割、速率匹配、数据复用、第二次交织和时隙分割的具体方法参见协议25.212。 The coding method, first interleaving, radio frame segmentation, rate matching, data multiplexing, interleaving, and specific method for the second slot are divided protocol see 25.212.

表1是现有的WCDMA协议中12.2kbps上行专用物理信道的信道编码方法的参数表: Table 1 is a conventional WCDMA protocol 12.2kbps uplink dedicated physical channel parameter table of channel coding:

<table>table see original document page 5</column></row> <table>在WCDMA系统中,UE端在12.2kbps上行专用物理信道中发送信息比特的过程如上所述上行专用物理信道的信息比特发送过程。 <Table> table see original document page 5 </ column> </ row> <table> In a WCDMA system, UE end 12.2kbps uplink dedicated physical channel information bits transmitted information bits during the uplink dedicated physical channel as described above sending process. 在发送过程中采用如图6所示的信道编码方法进行DPDCH信道的编码、并按扩频因子64对DPDCH信道进行扩频。 Channel coding method employed in the transmission process shown in FIG. 6 DPDCH channel encoding, spreading factor 64 pairs of press DPDCH is spread.

WCDMA系统的基站端,采用上述的多用户接收装置来接收UE端在12.2kbps上行专用物理信道发送的信息比特。 Base station side WCDMA system, using the above multi-user terminal UE receiving means for receiving information bits in the uplink dedicated physical channel 12.2kbps transmitted. 在DPDCH信道信道解码时,按照图6所示编码过程的反过程进行解码。 When the DPDCH channel decoding, decoding in the reverse encoding process shown in Figure 6.

研究表明在多用户接收装置中采用如图6所示的现有的WCDMA协议中12.2kbps上行专用物理信道的信道编码方法效果并不是最佳的,该信道编码方法还可以改进。 Studies have shown that using the conventional WCDMA protocol shown in FIG. 6 12.2kbps uplink dedicated physical channel, the channel coding method is not optimal effect, the channel coding method may also be improved in a multi-user receiving apparatus. 本文针对12.2kbps上行专用物理信道提供了一种WCDMA系统中用于多用户接收装置的网格编码调制方法。 This article provides a trellis coded modulation method of WCDMA system for multi-user receiving apparatus for 12.2kbps uplink dedicated physical channel.

网格编码调制把编码和调制作为一个整体考虑,得到该整体的最佳设计。 The trellis coded modulation coding and modulation considered as a whole, to obtain the best overall design. 1974年Massey 根据香农信息论,首先证明:将编码和调制作为一个整体考虑时的最佳设计,可以大大提高系统的性能。 1974 Massey Shannon information theory, first prove: the coding and modulation as the best design of a whole to consider, can greatly improve the performance of the system. Ungeboech和今井秀树等在70年代后期进行这方面的研究,并于1982年提出将码率为k/(k+l)的格状码(巻积码)映射为2一n个调制信号集中一个信号的方法。 Ungeboech Hideki Imai and other research in this area in the late 1970s, and the proposed rate of k / (k + l) trellis code (code convolving) mapped to a 2 n modulated signals focused in 1982 a method of signal. 该编码与调制相结合的方法在不增加带宽和相同信息速率下可获得3〜6dB的增益。 The coding and modulation method combined gain 3~6dB available without increasing the bandwidth and the same information rate. 因为调制信号是网格码,故这种体制就称为网格编码调制,简记为TCM (Trellis Coded Modulation)。 Since the modulation signal is a trellis code, and therefore this system is called trellis coded modulation, abbreviated as TCM (Trellis Coded Modulation).

TCM不仅是编码和调制作为整体考虑时的最佳设计,可以提高系统的性能;而且可以极大地降低符号速率,提高扩频因子。 TCM is only coded and modulated as the best overall design considerations, can improve the performance of the system; and the symbol rate can be greatly reduced, to improve the spreading factor. 本发明将它引入12.2kbps上行专用物理信道的编码调制方法中,提出该信道的编码调制新方法一网格编码调制方法。 Code modulation method of the present invention it is introduced 12.2kbps uplink dedicated physical channel, there is proposed a new method for coded modulation trellis-coded modulation method of the channel.

发明内容 SUMMARY

本发明的目的在于针对12.2kbps上行专用物理信道提供一种WCDMA系统中用于多用户接收装置的网格编码调制方法,该网格编码调制方案可以大大提高扩频因子,而且该网格编码调制方案在提高译码性能和提高多用户检测系统性能方面具有很大潜力。 Object of the present invention to provide for 12.2kbps one kind of uplink dedicated physical channels in WCDMA system trellis coded modulation method for a multi-user receiving apparatus, the trellis coded modulation scheme can greatly improve the spreading factor, and the trellis-coded modulation its great potential to improve the decoding performance in multi-user detection and improving system performance.

本发明是通过下面的方法实现的,该方法包括以下步骤: The present invention is achieved by the following method comprising the steps of:

a、 在12.2kbps上行专用物理信道下,专用业务信道(DTCH)和专用控制信道(DCCH) 分别先对输入的信息序列进行循环冗余校验(CRC)比特添加; a, 12.2kbps in the uplink dedicated physical channel, a dedicated traffic channel (DTCH) and a dedicated control channel (DCCH) are inputted to the information sequence cyclic redundancy check (CRC) bits are added;

b、 将CRC比特添加后的DTCH信道信号进行网格编码调制处理,得到I、 Q两路数据; 同时将CRC比特添加后的DCCH信道信号进行1/3速率巻积编码和8PSK调制,得到I、 Q 两路数据; B, the DTCH channel signal after the CRC bits are added trellis code modulation, to obtain I, Q two-way data; while the CRC bits DCCH channel signal after the addition performed convolving coding rate 1/3 and 8PSK modulation, to give I , Q two-way data;

c、 对网格编码调制处理后的DTCH信道的I路数据和Q路数据分别进行第一次交织、 无线帧分割和速率匹配,同时对1/3速率巻积编码和8PSK调制后的DCCH信道的I路数据和Q路数据分别进行第一次交织、无线帧分割和速率匹配; c, I channel data of the DTCH channel trellis encoding modulation process and Q data respectively, first interleaving, radio frame segmentation and rate matching, a rate 1/3 while convolving the DCCH channel encoded and 8PSK I-channel data and the Q data respectively, first interleaving, radio frame segmentation and rate matching;

d、 将速率匹配后的DTCH信道的I路数据和速率匹配后的DCCH信道的I路数据复用在一起进行第二次交织和时隙分割,形成DPDCH信道的I路数据,并将速率匹配后的DTCH信道的Q路数据和速率匹配后的DCCH信道的Q路数据复用在一起进行第二次交织和时隙分割,形成DPDCH信道的Q路数据。 I channel data d, the I channel data of the DCCH channel and the I channel data rate DTCH channel after rate matching matching multiplexed and interleaved with a second slot are divided, the DPDCH is formed, and a rate matching Q channel data of the DCCH channel and Q channel data rate of the DTCH channel is multiplexed together with a matching second time slots divided and interleaved to form the DPDCH Q-channel data.

上述网格编码调制处理由2/3速率巻积编码和8PSK调制构成,先进行2/3速率巻积编码后进行8PSK调制,其中8PSK调制指M-8的MPSK调制。 Processed by the trellis coded modulation coding rate 2/3 and 8PSK modulation convolving configuration, to be performed after the 8PSK modulation convolving 2/3 rate coding, 8PSK modulation means wherein MPSK modulation the M-8. 8PSK调制可以和不同状态数的2/3速率巻积编码搭配。 8PSK modulation can be different from the number of 2/3 rate coding convolving with a state.

在网格编码调制方法中,1/3速率巻积编码根据3GPP的25.212协议中的规定操作。 In trellis coded modulation method, 1/3 rate convolving encoding operation in accordance with 3GPP 25.212 protocol in. 第一次交织、无线帧分割、速率匹配、数据复用、第二次交织和时隙分割均根据3GPP的25.212协议中的规定操作。 First interleaving, radio frame segmentation, rate matching, data multiplexing, interleaving, and the second slot are divided according to a predetermined operation in the 3GPP 25.212 protocol. 速率匹配采用3GPP的25.212协议中的速率匹配方法,具体采用均匀重复方式。 Rate matching using rate matching method in the 3GPP 25.212 protocol, specifically using uniform repeating manner.

对经过网格编码调制后得到所述DPDCH信道的I路数据和Q路数据进行扩频,扩频因子为256。 After trellis-coded modulation to obtain the DPDCH of the I data and the Q spread data, a spreading factor of 256. 其扩频过程是从1〜255的正整数中任意选择两个数分别作为DPDCH信道I路和Q路的信道码的码号,用信道码的码号相对应的两个信道码分别对DPDCH信道I路和Q路数据进行扩频。 Spreading process which is arbitrarily selected from the two positive integer numbers respectively 1~255 code number as the DPDCH channel code I and Q channel paths, the channel code with the code number of the two channel codes corresponding to DPDCH, respectively I channel data and Q channel spread.

本发明通过采用由2/3速率巻积编码和8PSK调制构成的网格编码调制处理不仅大大提高了DPDCH信道的扩频因子,而且该网格编码调制方案在提高译码性能和提高多用户检测系统性能方面具有很大潜力。 By using trellis-coded modulation process by the coding rate 2/3 and 8PSK modulation convolving the present invention is composed of not only greatly improve the spreading factor of the DPDCH, and the trellis coded modulation scheme to improve the decoding performance and improved multi-user detection system performance has great potential.

附图说明 BRIEF DESCRIPTION

图1是现有的上行专用物理信道单用户RAKE接收装置示意图; 1 is a schematic of conventional apparatus dedicated physical channel uplink single user RAKE receiver;

图2是现有的上行专用物理信道多用户接收装置示意图; FIG 2 is a schematic diagram of the conventional apparatus dedicated physical channel uplink multiuser receiver;

图3是现有的上行专用物理信道多用户接收装置中第一级PIC结构示意图; FIG 3 is a schematic view of a first stage PIC structure of the conventional apparatus in an uplink dedicated physical channel multiuser receiver;

图4是现有的上行专用物理信道多用户接收装置中中间级PIC结构示意图; FIG 4 is a conventional uplink dedicated physical channel multiuser receiver PIC schematic structure of the apparatus in an intermediate stage;

图5是现有的上行专用物理信道多用户接收装置中最后一级PIC结构示意图。 FIG 5 is a schematic diagram of the last stage PIC structure of the conventional apparatus in an uplink dedicated physical channel received multiuser.

图6是现有的WCDMA协议中12.2kbps上行专用物理信道的信道编码方法的示意图; FIG 6 is a schematic diagram of the channel coding method in a conventional WCDMA protocol 12.2kbps uplink dedicated physical channel;

图7是现有的WCDMA协议中12.2kbps上行专用物理信道的扩频加扰过程的示意图; FIG 7 is a schematic diagram of a conventional WCDMA protocol 12.2kbps uplink dedicated physical channel spreading scrambling process;

图8是本发明的12.2kbps上行专用物理信道的网格编码调制方法的示意图; FIG 8 is a schematic diagram of the present invention 12.2kbps trellis-coded modulation method of the uplink dedicated physical channel; and

图9是本发明的12.2kbps上行专用物理信道在网格编码调制下的扩频加扰过程示意图; FIG 9 the present invention is 12.2kbps uplink dedicated physical channel scrambling process schematic in spreading the trellis-coded modulation;

图10是状态数为8的2/3速率编码器框图; FIG 10 is a rate 2/3 encoder state number 8 is a block diagram;

图11是本发明的TCM和BPSK调制下1/3速率巻积编码的性能比较图。 FIG 11 is a performance comparison of rate 1/3 encoding convolving the present invention TCM and BPSK modulation.

具体实施方式 Detailed ways

下面结合附图和实施例对本发明作进一步的描述。 The present invention is further described below in conjunction with the accompanying drawings and embodiments. 在WCDMA系统的发送端,用户设备(UE)按照以下过程在12.2kbps上行专用物理信道上发送信息比特: Transmitting information bits in a WCDMA system, the transmission side, the user equipment (UE) 12.2kbps in an uplink DPCH according to the following procedure:

专用物理数据信道(DPDCH)的信息比特先按照 Dedicated physical data channel (DPDCH) in accordance with a first information bit

本发明的网格编码调制方法进行信道编码调制,该网格编码调制方法包含以下步骤: Trellis coded modulation method of the present invention performs channel coding and modulation, trellis-coded modulation method comprising the steps of:

a、 在12.2kbps上行专用物理信道下,专用业务信道(DTCH)和专用控制信道(DCCH) 分别先对输入的信息序列进行CRC比特添加; a, 12.2kbps in the uplink dedicated physical channel, a dedicated traffic channel (DTCH) and a dedicated control channel (DCCH), respectively, first information sequence inputted add CRC bits;

b、 将CRC比特添加后的DTCH信道信号进行网格编码调制处理,即对CRC比特添加后的DTCH信道信号进行2/3速率巻积编码和8PSK调制,得到I、 Q两路数据;同时将CRC 比特添加后的DCCH信道信号进行1/3速率巻积编码和8PSK调制,得到I、 Q两路数据; B, the DTCH channel signal after the CRC bits are added trellis code modulation, i.e. for DTCH channel signal bits are added after the CRC for 2/3 rate coding and convolving 8PSK modulation, to obtain I, Q two-way data; while DCCH channel signal after the CRC bits are added for convolving coding rate 1/3 and 8PSK modulation, to obtain I, Q two-way data;

c、 对网格编码调制处理后的DTCH信道的I路数据和Q路数据分别进行第一次交织、 无线帧分割和速率匹配,同时对1/3速率巻积编码和8PSK调制后的DCCH信道的I路数据和Q路数据分别进行第一次交织、无线帧分割和速率匹配; c, I channel data of the DTCH channel trellis encoding modulation process and Q data respectively, first interleaving, radio frame segmentation and rate matching, a rate 1/3 while convolving the DCCH channel encoded and 8PSK I-channel data and the Q data respectively, first interleaving, radio frame segmentation and rate matching;

d、 将速率匹配后的DTCH信道的I路数据和速率匹配后的DCCH信道的I路数据复用在一起进行第二次交织和时隙分割,形成DPDCH信道的I路数据,并将速率匹配后的DTCH信道的Q路数据和速率匹配后的DCCH信道的Q路数据复用在一起进行第二次交织和时隙分割,形成DPDCH信道的Q路数据。 I channel data d, the I channel data of the DCCH channel and the I channel data rate DTCH channel after rate matching matching multiplexed and interleaved with a second slot are divided, the DPDCH is formed, and a rate matching Q channel data of the DCCH channel and Q channel data rate of the DTCH channel is multiplexed together with a matching second time slots divided and interleaved to form the DPDCH Q-channel data.

图9显示的是本发明的12.2kbps上行专用物理信道在网格编码调制下的扩频加扰过程。 Figure 9 shows the present invention is 12.2kbps uplink dedicated physical channel spread the scrambling process in the trellis coded modulation. 在网格编码调制方法下,DPDCH信道按照如图9所示进行扩频,扩频因子为256。 In the trellis coded modulation method, according to the DPDCH channel is spread as shown in FIG. 9, the spreading factor is 256. 具体扩频过程如下:从1〜255的正整数中选择两个数分别作为DPDCH信道I路和Q路的信道码的码号,用相应的两个信道码分别对DPDCH信道I路和Q路数据扩频。 DETAILED spreading process is as follows: two numbers are selected as the channel code number of the DPDCH codes I path and Q-path, with the corresponding two channel codes for the DPDCH, respectively, the I and Q a positive integer of 1~255 data spreading. 而DPCCH信道的信息比特直接进行BPSK映射和扩频,扩频因子为256。 And the information bits of the DPCCH channel by BPSK mapping and direct spreading, the spreading factor is 256. 扩频后的DPDCH信道Q路码片和DPCCH 信道码片叠加在一起构成上行信道的Q路数据,该路数据和扩频后的DPDCH信道I路码片一起进行加扰处理。 The spread Q channel data Q channel DPDCH channel and the DPCCH channel chip chips stacked together constituting the uplink channel, the scrambling process performed with the data channel and the DPDCH channel after spreading the I chip. 加扰后的I、 Q两路码片分别进行脉冲成型,然后分别通过载波调制发送给基站。 The scrambled I, Q respectively two chip pulse shaping, and then are transmitted to the base station by carrier modulation. 上行专用物理信道的扩频、加扰、脉冲成型和调制方法见3GPP的25.213协议。 Uplink dedicated physical channel spreading, scrambling, modulation, and pulse shaping methods, see the 3GPP 25.213 protocol.

在网格编码调制方法中,1/3速率巻积编码器的框图见协议25.212;速率匹配采用均匀重复方式;第一次交织、无线帧分割、速率匹配、数据复用、第二次交织和时隙分割的具体方法参见协议25.212。 In trellis coded modulation method, see block diagram of protocol 1/3 convolutional encoder of rate Volume 25.212; rate matching is repeated using a uniform manner; first interleaving, radio frame segmentation, rate matching, data multiplexing, second interleaving and the method of one slot are divided specific protocols see 25.212.

8PSK调制可以和不同状态数的2/3速率巻积编码相结合,表2给出了2/3速率巻积编码和8PSK调制相结合的多种方法。 8PSK modulation can be different from the number of 2/3 rate coding convolving combined state, Table 2 shows the 2/3 rate coding convolving various methods of combining and 8PSK. 2/3巻积编码的状态数 2/3巻积编码与8PSK调制相结合的编码增益(相对于未编码QPSK调制) Volume 2/3 convolutional encoder state number convolving 2/3 8PSK modulation coding and coding gain combining (with respect to uncoded QPSK modulation)

4 3.0 4 3.0

8 3.6 8 3.6

16 4.1 16 4.1

32 4.6 32 4.6

64 5.0 64 5.0

128 5.4 128 5.4

256 5.7 256 5.7

从表2中可以看到:8PSK调制可以和不同状态数的2/3速率巻积编码相结合。 Can be seen from Table 2: 8PSK modulation may be different, and the number of 2/3 rate coding state convolving combination. 随着编码器状态数的增加,8PSK调制和2/3速率巻积编码构成的网格编码调制(TCM)的性能在提高:当状态数为4时,8PSK调制和2/3速率巻积编码构成的TCM的性能相对于未编码QPSK 调制提高约3.0dB;当状态数为256时,8PSK调制和2/3速率巻积编码构成的TCM的性能相对于未编码QPSK调制提高约5.7dB。 As the number of encoder state, trellis-coded modulation (TCM) of the 8PSK modulation and coding rate 2/3 convolving configured to improve performance: when the number of states is. 4, 8PSK rate 2/3 modulation and coding convolving TCM configuration with respect to the performance of uncoded QPSK modulation increases by about 3.0dB; TCM performance state when the number is 256, 8PSK rate 2/3 modulation and coding configuration convolving with respect to uncoded QPSK modulation by about 5.7dB. 随着2/3速率巻积编码器状态数的增加,2/3速率巻积编码器和相应的译码器的复杂度也相应地增加。 With the increase in the number convolving 2/3 rate encoder state, 2/3 rate convolving a respective encoder and decoder complexity increases accordingly.

状态数为8的2/3速率巻积编码器如图10所示。 Number of states is 8, Volume 2/3 rate convolutional encoder 10 as shown in FIG. 该编码器结构简单、复杂度很低,而且它和8PSK调制构成的TCM的性能相对于未编码QPSK调制提高约3.6dB。 The encoder configuration is simple, low complexity, and its performance and configuration of the TCM 8PSK modulation with respect to uncoded QPSK modulation by about 3.6dB. 该性能与3GPP 协议25.212中1/3速率巻积码在BPSK调制下的性能相差不大,如图11所示,曲线1表示状态数为8的2/3速率巻积编码和8PSK调制构成的TCM的性能,曲线2表示1/3速率巻积码在BPSK调制下的性能。 The performance of 3GPP 25.212 protocol convolving code rate 1/3 or less of the BPSK modulation performance, as shown in FIG. 11, curve 1 represents the number of states is 8 2/3 rate coding and 8PSK convolving configuration TCM performance, rate 1/3 represents the performance curve 2 convolving the BPSK modulation code. 因此,随着状态数增加,8PSK调制和2/3速率巻积编码构成的TCM的性能也将进一步提高,并超过3GPP协议25.212中1/3速率巻积码在BPSK调制下的性能。 Thus, with increasing number of states, TCM performance 8PSK modulation and coding rate 2/3 convolving configuration will further increase, and exceeds 3GPP 25.212 protocol performance convolving rate 1/3 code in the BPSK modulation. 因此,本发明的网格编码调制方法不仅可以大大提高扩频因子而且具有提高自身译码性能的很大潜力,因而也就具有提高多用户检测系统性能的很大潜力。 Accordingly, the trellis coded modulation method of the present invention can contribute greatly to the spreading factor and improve its decoding performance with great potential and, therefore, multi-user detection system having improved performance great potential.

在实现本发明的网格编码调制方法时,可以根据对编译码器复杂度和性能的要求从表2 中选择一种2/3速率巻积编码器,或者采用表2中没有列出的2/3速率巻积编码器,只要使用的2/3速率巻积编码器和8PSK调制可以构成TCM,就可以实现本发明的网格编码调制方法。 When implementing trellis coded modulation method of the present invention may be selected according to the requirements of the codec complexity and performance of one kind from Table 2 Volume 2/3 rate convolutional encoder or a 2 listed in Table 2 is not / 3 convolving encoder rate, 2/3 rate used as long as the encoder and convolving may constitute the TCM 8PSK modulation, trellis-coded modulation method of the present invention can be achieved. 表2列出的2/3速率巻积编码器在文献【2】即西安电子科技大学出版社于1991年出版的由王新梅、肖国镇编写的《纠错码一原理与方法》,以及文献【3】即清华大学出版社于1992 年出版的由曹志刚、钱亚生编写的《通信原理》中有具体的生成方式。 Table 2 lists the 2/3 rate encoder convolving in the literature [2] that is, "a principle and method of error correction code" Xi'an University of Electronic Science and Technology Press, published in 1991, written by Wang Xin-mei, Xiao town of the country, as well as literature [3] That Tsinghua University Press published in 1992, written by Cao Zhigang, money Yasheng "communication Theory" has generated a specific way.

图8显示的是实现本发明的12.2kbps上行专用物理信道的网格编码方法的具体实例。 FIG 8 shows a specific example of implementation of the invention 12.2kbps trellis encoding method of an uplink dedicated physical channel is. 如图8所示,包括以下步骤-a、 在12.2kbps专用物理信道下,对DTCH信道信号即244比特的信息数据进行16比特的CRC比特添加后形成260比特的信号,同时对DCCH信道信号即100比特的信息数据进行12比特的CRC比特添加后形成112比特的信号; As shown, comprising the steps of -a, 12.2kbps in the dedicated physical channel, information on the DTCH channel signals i.e. 244 data bits of the 8 CRC bits of 16-bit 260-bit signal formed after the addition, while the DCCH channel signal, i.e., information data for 12 bits 100 bits 112 bits of CRC bits is added after the formation of the signal;

b、 对CRC比特添加后的260比特的DTCH信道信号进行4M比特的尾比特添加形成260+4M比特的信号,同时对CRC比特添加后的112比特的DCCH信道信号进行8比特的尾比特添加形成120比特的信号; B, on the DTCH channel signal 260 bits after the CRC bits are added for 4M bit tail bits added 260 + 4M-bit signal is formed, while the DCCH channel signal 112 bits after the CRC bits are added for 8-bit tail bits added are formed 120-bit signal;

c、 对尾比特添加后的260+4M比特的DTCH信道信号进行2/3速率巻积编码形成3(130+2M)比特的信号,同时对尾比特添加后的120比特的DCCH信道信号进行1/3速率巻积编码形成360比特的信号; C, on the DTCH channel signals 260 + 4M bits after tail bits added for 2/3 rate convolving encoding 3 (130 + 2M) bit signal is formed, while the DCCH channel signal 120 of the bits of tail bit is added for 1 / 3 rate convolving 360 coded bits form a signal;

d、 对2/3速率巻积编码后的3 (130+2M)比特的DTCH信道信号进行8PSK调制,生成130 十2M个复符号,该复序列也可以看成由1/Q两路数据构成的复信号;同时对l/3速率巻积编码后的360比特进行8PSK调制,生成120个复符号,该复序列也可以看成由1/Q两路数据构成的复信号; d, of 3 (130 + 2M) convolving the rate 2/3 coded bits DTCH channel signals 8PSK modulation, to generate ten 130 2M complex symbols, the complex composed of a sequence may be regarded as 1 / Q data of two channels complex signal; simultaneously l / 3 rate convolving the encoded bits 360 8PSK modulation, generated 120 complex symbols, the complex sequence can also be seen by the complex signal 1 / Q data composed of two-way;

e、 对经过8PSK调制生成的130+2M个DTCH信道复符号序列进行第一次交织即改变复信号序列的排列顺序,同时对8PSK调制后的120个DCCH信道复符号序列进行第一次交织即改变复信号序列的排列顺序; E, performs the first interleaving through 130 + 2M th DTCH channel complex symbol sequence 8PSK modulation i.e., change the order in which the complex signal sequence, while 120 DCCH channel complex symbol sequence after 8PSK modulated first interleaving i.e. changing the order of the multiplexed signal sequence;

f、 对第一次交织后的130+2M个复符号的DTCH信道信号进行无线帧分割形成大小为65+M个复符号的2帧信号,同时对第一次交织后的120个复符号的DCCH信道信号进行无线帧分割形成大小为30复符号的4帧信号; F, on the DTCH channel signal after the first interleaver 130 + 2M complex symbols in a wireless frame is divided to two signals is formed size 65 + M complex symbols, while the 120 complex symbols of the first time interleaver DCCH channel signal, the radio frame is divided to four signals formed size 30 complex symbols;

g、 采用均匀重复方式对无线帧分割后的每帧大小为65+M个复符号的2帧DTCH信道信号进行速率匹配,形成对应的每帧大小为a个复符号的2帧信号;同时采用均匀重复方式对无线帧分割后的大小为每帧30复符号的4帧DCCH信道信号进行速率匹配,形成每帧大小为b个复符号的4帧信号; g, using a uniform repetitive manner for each frame the size of the radio frame is divided two DTCH channel signal 65 + M complex symbols of the rate matching, for forming each frame corresponding to the size of two signal a complex symbols; while using 4 DCCH channel signal uniformly repeated manner after a radio frame size of each frame is divided into 30 complex symbols is rate matched, the size of each frame is formed of four complex symbols of the signal b;

h、 将速率匹配后的DTCH信道复信号和DCCH信道复信号的数据复用在一起形成大小为(a+b)个符号的2帧信号,进行第二次交织;并将第二次交织后的4帧信号进行时隙分割形成专用物理数据信道(DPDCH)信号,每帧信号被分割成大小为10比特、时隙数为15的复信号。 And after the second interleaving; H, data DTCH and DCCH channels multiplexed signal channels are multiplexed signal after the rate matching size is multiplexed together to form (a + b) th symbols of the two signals, a second interleaver the four signal slots formed by dividing the dedicated physical data channel (DPDCH) signal, each frame signal is divided into a size of 10 bits, the number of slots is a complex signal 15.

当釆用图10所示的状态数为8的2/3速率巻积编码器时,M=l。 When preclude the use of the number of states shown in FIG. 10 is a rate 2/3 convolutional encoder Volume 8, M = l.

表3是本发明的12.2kbps上行专用物理信道的网格编码调制方法的的参数表:<table>table see original document page 11</column></row> <table> Table 3 is a parameter table of the trellis coded modulation method of the present invention 12.2kbps uplink dedicated physical channel: <table> table see original document page 11 </ column> </ row> <table>

在WCDMA系统的基站端,采用如图2〜图5所示的多用户接收装置来接收UE端在12.2kbps上行专用物理信道发送的信息比特,其具体的接收过程如下: In the end station of a WCDMA system, using a multi-user as shown in FIG. 2 ~ 5 shown receiving means for receiving at the UE at 12.2kbps uplink dedicated physical channel transmitted information bits, which receives the specific process is as follows:

如图2所示,天线的接收信号经过解调和匹配滤波器201处理得到基带信号,将基带信号同时送入多径搜索器组205、第一级PIC结构202和中间各级PIC结构203。 As shown, the signal received by antenna 201 through a demodulation process and a matched filter to obtain a baseband signal 2, the group fed multipath searcher 205 at a baseband signal, a first stage PIC PIC structure of the intermediate structure 202 and 203 levels.

多径搜索器组205搜索得到每个用户的径时延信息,并将所有用户的径时延信息同时送给第一级PIC结构202、中间级PIC结构203和最后一级PIC结构204。 Multipath searcher 205 searches for the group path delay obtained for each user information, and the path delay information for all users simultaneously to the first stage PIC structure 202, 203 and an intermediate stage PIC structure of the last stage PIC structure 204. 如图2所示,基带信号进入多径搜索器组205,设系统有《个用户,多径搜索器组205就有《个多径搜索器。 As shown, the baseband signal into the set of more than two-path searcher 205, the system has provided "users, multipath searcher 205 group had" multipath searcher. 每个用户对应一个多径搜索器,其中《是大于1的正整数。 Each user corresponds to a multipath searcher, where "a positive integer greater than 1.

第一级PIC结构的处理 Processing of the first stage PIC structure

图3显示的是上行专用物理信道多用户接收装置中第一级PIC结构。 Figure 3 shows an uplink dedicated physical channel is a multi-user receiving apparatus in a first stage PIC structure. 第一级PIC结构202 由《个用户信号处理单元300和一个千扰对消单元320构成。 The first stage PIC structure 202 "user signal processing unit 300 and is constituted by a one thousand interference cancellation unit 320. 每个用户对应一个用户信号处理单元300。 A user corresponding to each user signal processing unit 300. 如图3所示,进入第一级PIC结构202的基带信号并行进入各用户的信号处理单元300,进入第一级PIC结构202的各用户的多径时延信息分别进入相应用户的信号处理单元300。 As shown, into the first stage PIC structure 202 of the base band signal 3 into the parallel signal processing unit 300 for each user to enter the first stage PIC structure of each user 202 entering each multi-path delay information corresponding to the user signal processing unit 300. 各用户的信号处理单元300完成完全相同的功能。 Each user signal processing unit 300 to complete the same function.

进入用户信号处理单元300的基带信号和用户的多径时延信息分别进入DPDCH处理通道和DPCCH处理通道。 Into the user signal processing unit 300 baseband signal and the user information of multi-path delay, respectively, into the processing channels DPDCH and DPCCH processing channel.

DPCCH解扩单元302根据DPCCH信道的扩频码即DPCCH信道码和扰码之积,以及输入的多径时延信息,对输入的基带信号进行多径解扩,并将多径解扩结果送给信道估计单元304、功率控制单元303、噪声功率估计单元308和DPCCH信道的RAKE合并单元307。 DPCCH despreading section 302 DPCCH channel spread code that is the product DPCCH channel and scrambling codes of, and multipath delay information input, the baseband signal inputted multi-path despreading, and a multi-path despreading results sent to the channel estimation unit 304, the power control unit 303, the noise power estimation section 308 and DPCCH channel RAKE combiner unit 307. 信道估计单元304由DPCCH各径的解扩结果得到各径的信道估计,并将信道估计结果同时送给DPDCH信道的RAKE合并单元305、 DPCCH信道的RAKE合并单元307。 Channel estimation unit 304 is obtained from the DPCCH despreading results of each path channel estimation of each path, and at the same time to the channel estimation result of the DPDCH RAKE combining unit 305, a channel DPCCH RAKE combining unit 307.

功率控制单元303由输入的DPCCH信道的各径解扩结果得到功率控制指令,并将功率控制指令作为第一级PIC的一个输出,反馈给用户的发送端。 The power control unit 303 obtained from the result of each input path despreading the DPCCH power control commands and power control commands as an output of the first stage of PIC, sending feedback to the user side.

噪声功率估计单元308由DPCCH各径的解扩结果得到DPCCH信道的噪声功率的估计, 并将噪声功率的估计结果同时送给DPDCH软判决与软判决加权单元309和DPCCH软判决与软判决加权单元310。 Estimating noise power estimation unit 308 is obtained from the DPCCH channel DPCCH despreading results of noise power of each path estimation result and the noise power to the DPDCH, while the soft decision and a soft decision weighting section 309 and DPCCH soft-decision soft decision weighting unit 310.

DPCCH信道的RAKE合并单元307,用于结合输入的信道估计结果对输入的DPCCH解扩结果进行去信道调制和RAKE合并,并将合并结果分别送给DPCCH软判决与软判决加权单元310和TFCI译码单元306。 DPCCH channel RAKE combining unit 307, a channel coupled with the input of the estimation result of the DPCCH despreading results inputted to channel modulation and the RAKE combiner, and the combined results are sent DPCCH soft-decision and soft-decision weighting section 310 and TFCI translation code unit 306.

TFCI译码单元306,用于对输入的DPCCH信道的RAKE合并结果进行TFCI译码,得到DPDCH信道的扩频因子,并将扩频因子送给DPDCH解扩单元301。 TFCI decoding unit 306 for decoding the TFCI of DPCCH RAKE combined result of the input channels, to give the DPDCH spreading factor, the spreading factor and despreading unit 301 to the DPDCH.

DPDCH解扩单元301的解扩分成I、 Q两路。 Solutions DPDCH despreading section 301 spread into I, Q two-way. I路解扩根据DPDCH信道的I路扩频码即DPDCH信道的I路信道码和扰码之积,以及输入的多径时延信息和经TFCI译码后得到的扩频因子,对基带信号进行多径解扩,并将I路多径解扩结果送给DPDCH信道的RAKE合并单元305。 I-path despreading according to the DPDCH of the I spreading code i.e. the I channel codes and the product of the scrambling code of the DPDCH channel, and the multi-path delay information input and spreading factor after TFCI obtained by decoding the baseband signal multi-path despreading, channel I and the result is sent to the multi-path despreading of the DPDCH RAKE combining unit 305. Q路解扩根据DPDCH信道的Q路扩频码即DPDCH信道的Q路信道码和扰码之积,以及输入的多径时延信息和经TFCI译码后得到的扩频因子,对基带信号进行多径解扩,并将Q路多径解扩结果送给DPDCH信道的RAKE合并单元305。 Q spread-code Q channel despreading The DPDCH channel, i.e., the Q product channels and scrambling codes of the DPDCH channel, and the multi-path delay information input and after TFCI decoding obtained spreading factor, the baseband signal multi-path despreading, channel and Q despreading result to the multipath channel DPDCH RAKE combiner unit 305.

DPDCH的RAKE合并单元305,用于结合输入的信道估计结果分别对DPDCH的I路和Q路解扩结果进行去信道调制和RAKE合并,并将I路和Q路合并结果同时送给DPDCH软判决与软判决加权单元309。 The DPDCH RAKE combining unit 305, a channel estimation result input binding the DPDCH, respectively I and Q branches for despreading results to the RAKE combiner and channel modulation, and the I and Q branches to the DPDCH simultaneously combined soft-decision result weighting section 309 and soft decision. I路和Q路去信道调制和RAKE合并的过程与通常的RAKE合并过程完全一样。 To the I and Q-channel modulation process and RAKE combiner and RAKE combiner ordinary exactly the same procedure.

DPDCH软判决与软判决加权单元309由DPDCH的I路和Q路RAKE合并结果和噪声功率的估计结果得到DPDCH每个符号的软判决,然后进行软判决加权。 DPDCH soft decision unit 309 and weighting the soft decision estimation result obtained by the I and Q DPDCH RAKE combiner channel noise power and the results obtained for each soft-decision symbol DPDCH, followed by a soft decision weighting. 在DPDCH软判决与软判决加权中,DPDCH的I路和Q路RAKE合并结果可以看成复符号,软判决的计算按照文献[3]中MPSK调制下双层加权方法进行。 In the soft decision weighting the soft decision in the DPDCH, a DPDCH RAKE path I and Q can be viewed as the result of complex symbols combined to calculate the soft decision [3] The method for double weighting MPSK modulation in accordance with the literature. 软判决结果是个复数,再进行加权(加权的权值是个实数), 所以软判决加权结果还是个复数。 The result is a soft decision complex, and then weighted (weighted weights are real numbers), the result of weighting the soft decision still complex.

DPCCH软判决与软判决加权单元310由DPCCH的RAKE合并结果和噪声功率的估计结果得到DPCCH每个符号的软判决,然后进行软判决加权。 DPCCH soft-decision unit 310 and weighting the soft decision to obtain soft-decision symbols for each of a DPCCH RAKE combiner results estimation result and the noise power of the DPCCH, and then a soft decision weighting. DPDCH信道的软判决加权的权值和DPCCH信道软判决加权的权值可以取不同的数值。 DPDCH channel soft decision weighting weights and weight DPCCH channel soft decision weighting value may take different values. DPDCH信道在计算软判决时,首先要由DPCCH信道噪声功率的估计折算出DPDCH信道的噪 When calculating the DPDCH soft decision first channel DPCCH conversion estimated by the noise power of the DPDCH channel noise

声功率。 Sound power.

信号再生单元311由DPDCH信道软判决结果、DPCCH信道的软判决结果和用户的各径时延信息得到用户的符号级再生信号和码片级再生信号,并将码片级再生信号送入干扰对消单元320;将符号级再生信号输送给中间级PIC结构203中同一用户的信号处理单元400的符号修 A signal reproducing unit 311 by the DPDCH channel soft decision result, the soft decision information of each path delay and the result of the user obtained DPCCH channel user symbol-level and chip-level reproduction signal reproduction signal, and the reproduced signals into the chip-level interference elimination unit 320; the same user 203 in an intermediate stage of PIC structure symbol-level signal is supplied to the reproduced signal processing unit 400 of the repair symbol

正子单元。 Positive sub-unit.

码片级再生信号生成过程如图9所示。 Chip-level reproduction signal generation process shown in Fig.

DPDCH信道的符号级再生信号包括:I路符号级再生信号和Q路符号级再生信号。 Symbol level of the DPDCH signal reproduction comprising: I channel symbol level reproduction signal and Q symbol-reproduction signal. 由DPDCH信道的软判决加权结果的实部生成DPDCH的I路符号级再生信号,由DPDCH信道的软判决加权结果的虚部生成DPDCH的Q路符号级再生信号。 Generating real part weighting the soft decision result DPDCH channel DPDCH symbol level of the reproduced signal path I, generated by the imaginary part of the DPDCH weighting the soft decision results of the Q-path channel DPDCH symbol level reproduced signal. 生成方法与DPDCH信道只有一路符号级再生信号时相同,即:与在WCDMA协议中编码方法下,多用户接收装置中DPDCH信道的符号级再生信号生成方法一样。 Only the way the same symbol-time reproduction signal generating method with the DPDCH, namely: in a WCDMA protocol and the encoding method, the multi-user receiving apparatus symbol level of the DPDCH signal generation method of reproducing the same. 只是在网格编码调制下,符号级再生信号分成I路符号级再生信号和Q路符号级再生信号。 Only in the trellis coded modulation, symbol level into a reproduction signal reproduced the I symbol-level signal and the Q channel sign signal reproduction.

对于DPCCH信道,由DPCCH的软判决加权结果生成DPCCH信道的符号级再生信号。 For the DPCCH channel, generated by the weighting of the DPCCH channel DPCCH soft-decision result of the reproduction signal symbol level.

所有用户的码片级再生信号和基带信号进入干扰对消单元320中的信号求和装置321。 All the user reproduction signal and the chip-level baseband signal summing device 321 into the interference signal elimination unit 320 pair. 该信号求和装置321对输入的各用户的码片级再生信号进行求和,然后将求和结果送给成型与匹配滤波单元322。 The signal summing device 321 to each user's chip-level input signal is reproduced summed, the summation result is then sent to the shaping matched filter unit 322. 该成型与匹配滤波单元322对输入信号进行成型滤波和匹配滤波。 The shaping unit 322 and the matched filter input signal shaping filtering and matched filtering. 成型滤波器同上行专用物理信道调制部分采用的成型滤波器,匹配滤波器就是上行专用物理信道接收端采用的匹配滤波器。 Supra shaping filter line dedicated physical channel modulation shaping filter part is used, the matched filter is an uplink dedicated physical channel matched filter receiving side employed. 滤波结果送入残差计算单元323。 Residual calculation result to the filtering unit 323. 基带信号也进入残差计算单元。 The baseband signal also enters a residual calculating unit. 残差计算单元323从基带信号中减去滤波结果,得到残差信号,并将残差信号作为本级PIC的输出信号送给下一级PIC结构,在下一级PIC结构中,该信号被并行送给各用户的信号处理单元。 Residual calculation unit 323 is subtracted from the baseband signal filtering result to obtain a residual signal and a residual signal as the output signal of the present stage PIC structure of the PIC to the next stage, a next PIC structure, the parallel signal to give each user a signal processing unit.

对第一级PIC结构,TFCI译码得到的扩频因子可以只供本级PIC结构使用,也可以传输给后续各级PIC结构,供后续PIC结构中DPDCH解扩单元使用。 The first stage PIC structure, obtained by decoding the TFCI spreading factor may be used only for the present stage PIC structure, may also be transmitted to the subsequent levels of PIC structure, the structure for subsequent PIC DPDCH despreading unit uses.

中间各级PIC结构的处理 PIC structure of the intermediate levels of treatment

中间各级PIC的结构完全一样,下面以第二级PIC结构为例来说明中间各级PIC结构的处 PIC same as the structure of the intermediate levels, following the second stage PIC structure will be explained as an example of the configuration of the intermediate levels PIC

理过程。 Management process.

图4显示的是上行专用物理信道多用户接收装置中中间级PIC结构。 Figure 4 shows an uplink dedicated physical channel is a multi-user receiving apparatus in an intermediate stage PIC structure. 第一级PIC结构202得到的残差信号、各用户的符号级再生信号和各用户的径时延信息进入中间级PIC结构203。 A residual signal 202 of the first stage PIC structure obtained, each user-level symbol of each user signal and the reproduction path delay information 203 into the intermediate stage PIC structure. 中间级PIC结构203依旧由《个用户信号处理单元400和一个千扰对消单元420构成。 Intermediate stage PIC structure 203 still consists of "user signal processing unit 400 and an interference cancellation unit 420 one thousand. 每个用户有一个用户信号处理单元400。 Each user has a user signal processing unit 400. 各用户的用户信号处理单元400完成完全相同的功能。 User each user signal processing unit 400 to complete the same function.

如图4所示,在中间级PIC结构203中,用户的信号处理单元400的输入信号为:残差信号、 本用户的符号级再生信号和本用户的径时延信息。 4, PIC structure in the intermediate stage 203, the input signal of the user signal processing unit 400 is: the residual signal, the symbol-level user and the reproduction signal path delay information of the present user.

用户的信号处理单元400首先把用户的多径时延信息和残差信号同时送给DPDCH信道处理通道和DPCCH信道处理通道。 User signal processing unit 400 the user first multipath delay information and the residual signal simultaneously to the DPDCH channel and the DPCCH channel processing channel processing channels.

DPDCH解扩单元401的解扩分成I路解扩和Q路解扩,并将DPDCH信道的I路和Q路扩结果同时送给DPDCH信道的RAKE合并单元405 。 Solutions DPDCH despreading section 401 spread into I and Q channel despreader despreads and channel DPDCH I and Q branches while expanding the result to the channel DPDCH RAKE combiner unit 405.

DPCCH解扩单元402根据DPCCH信道的扩频码即DPCCH信道码和扰码之积,以及输入的多径时延信息,对输入的残差信号进行多径解扩,并将解扩结果送给信道估计单元403、噪声功率估计单元404和DPCCH信道的符号修正单元406。 DPCCH despreading the DPCCH channel unit 402 according to a spreading code that is the product DPCCH channel and scrambling codes, the multi-path delay and the information input, the input residual signal despread multipath, and the despreading result to channel estimation unit 403, a noise power estimation unit 404 and the DPCCH channel symbol correction unit 406.

信道估计单元403由DPCCH各径的解扩结果得到各径的信道估计,并将信道估计结果同时送给DPDCH信道的RAKE合并单元407、 DPCCH信道的RAKE合并单元408。 Channel estimation unit 403 the result obtained by the DPCCH despreading each path channel estimation of each path, and at the same time to the channel estimation result of the DPDCH RAKE combining unit 407, a channel DPCCH RAKE combiner unit 408.

噪声功率估计单元404由输入的DPCCH信道的各径解扩结果得到DPCCH信道的噪声功率的估计,并将噪声功率的估计结果同时送给后面的两个软判决与软判决加权单元。 Obtained noise power estimation unit 404 estimates the noise power of a DPCCH channel in each input path despreading result DPCCH channel estimation result and the noise power at the same time to the back of the two soft decision weighting the soft decision unit.

DPDCH信道的符号修正单元405的符号修正过程分成I路符号修正和Q路符号修正。 The DPDCH correction symbols during symbol correction unit 405 into the I and Q symbol correction symbol correction. 对输入的DPDCH信道的I路解扩结果进行符号级修正,即将DPDCH信道I路某径的解扩结果和I路该径的符号级再生信号相加。 DPDCH channels on the I input despread symbol-level correction results, i.e. diameter of the DPDCH despreading a result of the I and I path of the reproduction signal path by adding the symbol level. 对输入的DPDCH信道的Q路解扩结果进行符号级修正,即将DPDCH信道Q路某径的解扩结果和Q路该径的符号级再生信号相加。 Despreading result Q symbol-level correction on the input of the DPDCH channel, i.e. the DPDCH despreading results of a Q channel path and Q symbol-level of the reproduction signal path are added.

DPCCH信道的符号修正单元406对输入的DPCCH信道的解扩结果进行符号级修正,即将DPCCH信道某径的解扩结果和该径的符号级再生信号相加。 Results despread DPCCH channel correction unit 406 pairs of symbols DPCCH channel inputted corrected symbol-level, i.e. the results of despreading the DPCCH channel and of a diameter the diameter of the reproduction signal by adding the symbol level.

DPDCH信道的RAKE合并单元407和DPCCH信道的RAKE合并单元408,分别对DPDCH 符号修正结果和DPCCH符号修正结果进行去信道调制和多径合并,并将合并结果分别送给DPDCH软判决与软判决加权单元409和DPCCH软判决与软判决加权单元410。 DPDCH channel RAKE combining unit 407 and a DPCCH channel RAKE combiner unit 408, respectively DPDCH symbols correction result and DPCCH symbol correction result to channel modulation and multipath combiner, and the combined results are sent to a soft decision weighting DPDCH soft decision and DPCCH soft-decision unit 409 and weighting unit 410 and soft decision. DPDCH信道的RAKE合并单元407的RAKE合并分成I路RAKE合并和Q路RAKE合并。 RAKE combiner channel DPDCH RAKE combining unit 407 into the I and Q RAKE combiner RAKE combiner.

DPDCH软判决与软判决加权单元409由输入信号即DPDCH信道的I路和Q路RAKE合并结果以及噪声功率的估计结果得到DPDCH每个复符号的软判决,然后进行软判决加权。 DPDCH soft decision estimation result by the input signal 409 and the DPDCH i.e. soft decision weighting units I and Q branches and a RAKE combiner results obtained noise power of each complex symbol soft decision DPDCH, followed by a soft decision weighting.

DPCCH软判决与软判决加权单元410由输入信号即DPCCH信道的RAKE合并结果以及噪声功率的估计结果得到DPCCH每个符号的软判决,然后进行软判决加权。 Results DPCCH RAKE combiner estimates soft decision result with an input signal 410 i.e., the DPCCH channel soft decision weighting unit and the noise power is obtained DPCCH soft-decision for each symbol, then a soft decision weighting. DPDCH信道的软判决加权的权值和DPCCH信道软判决加权的权值可以取不同的数值。 DPDCH channel soft decision weighting weights and weight DPCCH channel soft decision weighting value may take different values. 但本级DPDCH的软判决加权的权值要大于前一级软判决加权的权值。 However, this level DPDCH soft decision weighting value is greater than the weight weighted weights before a soft decision. DPCCH信道的软判决加权的权值也是如此。 DPCCH channel soft decision weighting weights as well.

信号再生单元411由DPDCH信道软判决结果、DPCCH信道的软判决结果和用户的各径时延信息得到用户的符号级再生信号和码片级再生信号,并将码片级再生信号送入干扰对消单元420;将符号级再生信号输送给后一级PIC结构204中同一用户的信号处理单元的符号修正子单元。 A signal reproducing unit 411 by the DPDCH channel soft decision result, the soft decision information of each path delay and the result of the user obtained DPCCH channel user symbol-level and chip-level reproduction signal reproduction signal, and the reproduced signals into the chip-level interference elimination unit 420; symbol-conveying symbol correction signal to the reproduction unit 204 in the same sub-user signal processing unit after a PIC structure. DPDCH信道的符号级再生分成I路符号级再生和Q路符号级再生,具体过程同第一级PIC 结构所述。 Reproducing the DPDCH symbol level into the I and Q symbol-level symbol regeneration stage regeneration, the first stage PIC structure with the specific process.

所有用户的码片级再生信号和基带信号进入干扰对消单元420中的信号求和装置421 。 All the user reproduction signal and the chip-level baseband signal into the interference cancellation unit 420 of the signal summing device 421. 该信号求和装置421对输入的各用户的码片级再生信号进行求和,然后将求和结果送给成型与匹配滤波单元422。 The signal summing device 421 sums the respective chip-level user input reproduced signal, and then summing the result to the filtering unit 422 and the matching molding. 该成型与匹配滤波单元422对输入信号进行成型滤波和匹配滤波。 The shaping unit 422 and the matched filter input signal shaping filtering and matched filtering. 滤波结果送入残差计算单元423。 Residual calculation result to the filtering unit 423. 基带信号也进入残差计算单元。 The baseband signal also enters a residual calculating unit. 残差计算单元423从基带信号中减去滤波结果,得到残差信号,并将残差信号作为本级PIC的输出信号送给下一级PIC结构,在下一级PIC结构中,该信号被并行送给各用户的信号处理单元。 Residual calculation unit 423 is subtracted from the baseband signal filtering result to obtain a residual signal and a residual signal as the output signal of the present stage PIC structure of the PIC to the next stage, a next PIC structure, the parallel signal to give each user a signal processing unit.

DPDCH的解扩单元需要知道DPDCH的扩频因子,扩频因子可以使用第一级PIC结构中TFCI译码得到的扩频因子,也可以由本级PIC的扩频因子计算单元得到。 DPDCH despreading unit needs to know the spreading factor of the DPDCH spreading factor may be used spreading factor of the first stage PIC structure obtained by decoding the TFCI, may be calculated by the spreading factor level units derived PIC. 本级PIC的扩频因子计算单元430包括TFCI译码器431,通过对DPCCH信道的RAKE合并结果进行TFCI译码,得到DPDCH信道的扩频因子。 Present stage PIC spreading factor calculation unit 430 includes a spreading factor TFCI decoder 431, by the results of the DPCCH RAKE combiner TFCI decoding is performed to obtain channel DPDCH. 经过前一级PIC结构的干扰对消,本级PIC结构中DPCCH信道的RAKE合并结果的信噪比应该比前一级PIC结构中DPCCH信道的RAKE合并结果的信噪比高, 所以,本级TFCI译码得到的扩频因子的误码率将更小。 After the previous stage PIC structure of the interference cancellation signal to noise ratio, the results of this RAKE combiner stage PIC structure DPCCH channel should be higher than the previous stage PIC structure results RAKE combiner DPCCH channel SNR, therefore, the present level TFCI decoding error rate obtained will be smaller spreading factor. 因此,在本级采用扩频因子计算单元430,并使用该单元得到的扩频因子进行DPDCH的解扩,对用户的检测将更有利。 Accordingly, in the present stage uses a spreading factor calculation unit 430, and the spreading factor obtained by despreading unit the DPDCH, the user will be advantageously detected. 但是,TFCI 译码不仅增加了复杂度,而且增加了时延。 However, TFCI decoding only increases the complexity and increased latency. 可以根据需要确定是否在本级采用扩频因子计算单元。 Employed spreading factor may be determined whether the present level calculation unit according to need.

以后的各中间级PIC结构进行完成相同的操作。 After each intermediate stage PIC structure perform the same operation. 最后一级PIC结构的处理 PIC structure of the last stage of processing

图5显示的是上行专用物理信道多用户接收装置中最后一级PIC结构。 FIG 5 shows an uplink dedicated physical channel multiuser receiving device last stage PIC structure. 最后一级PIC结构204由K个用户信号处理单元500构成。 PIC structure of the last stage 204 is composed of K user signal processing unit 500. 用户的信号处理单元500如图5所示。 FIG user signal processing unit 500 in FIG. 5.

信号处理单元500的输入为前一级得到的残差信号和符号级再生信号,以及多径时延信息。 The input signal processing unit 500 is obtained before a symbol-level residual signal and the reproduced signal, and the multi-path delay information. 用户信号处理单元500首先将多径时延信息和残差信号分别送入DPDCH处理通道和DPCCH处理通道。 User signal processing unit 500 first multipath delay information and the residual signal are sent to processing channels DPDCH and DPCCH processing channel.

DPDCH解扩单元501的解扩分成I路解扩和Q路解扩,并将I路和Q路解扩结果同时送给DPDCH信道的符号修正单元504; DPCCH解扩单元502根据DPCCH信道的扩频码即DPCCH信 DPDCH solution 501 despreading unit spread into I channel despreading and Q despreading, and the I and Q despreading results also sent to the DPDCH symbol correction unit 504; DPCCH despreading unit 502 according to the DPCCH channel expansion i.e., the DPCCH pilot symbols

道码和扰码之积,以及输入的多径时延信息,对输入的残差信号进行多径解扩,并将解扩结果送给信道估计单元503和DPCCH信道的符号修正单元505。 The product of the scrambling code and channel code, as well as multi-path delay information inputted residual signal inputted multi-path despreading, and channel despreading result to the correction unit 505 estimation unit 503 symbols and DPCCH channel.

信道估计单元503由DPCCH各径的解扩结果得到各径的信道估计,并将信道估计结果同时送给DPDCH信道的RAKE合并单元506、 DPCCH信道的RAKE合并单元507。 Channel estimation unit 503 the result obtained by the DPCCH despreading each path channel estimation of each path, and at the same time to the channel estimation result of the DPDCH RAKE combining unit 506, a channel DPCCH RAKE combiner unit 507.

DPDCH信道的符号修正单元504对输入的DPDCH信道的I路和Q路解扩结果分别进行符号修正,并将I路和Q路符号修正结果同时送给DPDCH信道的RAKE单元506。 The DPDCH symbol correction unit 504 of the input channel DPDCH I path and Q despreading results were corrected symbols, and the I and Q symbol while correcting the results to the channel DPDCH RAKE unit 506. DPCCH信道的符号修正单元505对输入的DPCCH信道的解扩结果进行符号级修正,即将DPCCH信道某径的解扩结果和该径的符号级再生信号相加。 Results despread DPCCH channel correction unit 505 pairs of symbols DPCCH channel inputted corrected symbol-level, i.e. the results of despreading the DPCCH channel and of a diameter the diameter of the reproduction signal by adding the symbol level.

DPDCH信道的RAKE合并单元506和DPCCH信道的RAKE合并单元507,分别结合信道估计结果对DPDCH的I/Q符号修正结果和DPCCH符号修正结果进行去信道调制和多径合并。 The DPDCH RAKE combining unit 506 and a DPCCH channel RAKE combiner unit 507, respectively coupled to the channel estimation result of the DPDCH I / Q symbols and DPCCH symbol correction result corrected result to channel modulation and multipath combiner. 将DPDCH信道的I/Q合并结果送入DPDCH通道的信道解码器508, DPCCH信道的合并结果送给DPCCH通道的硬判决器509。 The DPDCH channel I / Q channel DPDCH combined result to the channel decoder 508, the combined results of the DPCCH channel to the hard decider 509 DPCCH channel.

信道译码器508对输入信号进行信道解码得到DPDCH信道发送的信息比特。 Channel decoder 508 performs channel input signal decoded information bits transmitted on the DPDCH. 对12. 2kbps 上行专用物理信道,信道解码过程是图8所示过程的反过程。 12. 2kbps of an uplink dedicated physical channel, the channel decoding process is the reverse of the process shown in Figure 8. 只是对于TCM方法,2/3速率巻积编码和8PSK调制是整体最佳的设计,所以在译码时,在得到反第一次交织的结果后,直接进行TCM译码,即进行TCM方式译码,具体译码方法见文献【3】。 Only for TCM method, 2/3 rate 8PSK modulation and coding convolving the best overall design, so that in decoding, the results obtained after the inverse interleaving of the first, direct TCM decoding mode that is translated TCM code, see [3], the specific decoding method. TCM具体过程参照文献【2、 3】。 TCM specific process according to the literature [2, 3].

硬判决器509对输入信号进行硬判决,得到DPCCH信道发送的信息比特。 A hard decision on the input signal 509 making a hard decision, to give the DPCCH channel information bits transmitted. 其中DPDCH的解扩单元501需要知道DPDCH的扩频因子,扩频因子可以使用前一级PIC Wherein the DPDCH despreading section 501 needs to know the spreading factor of the DPDCH spreading factor may be used prior to a PIC

结构中TFCI译码得到的扩频因子,也可以由本级PIC的扩频因子计算单元510得到。 Structure obtained by decoding the TFCI spreading factor, unit 510 may be obtained by the present stage PIC calculated spreading factor. 可以根据 Can

需要确定是否在本级采用扩频因子计算单元。 Using the spreading factor is determined whether the present level calculation unit.

PIC结构的级数可以根据需要确定。 Series PIC structure can be determined as required. 可以只采用第一级和最后一级PIC结构,也可以采 May only use one of the first and last stage PIC structure, may be adopted

用更多级的PIC结构。 With more levels PIC structure.

Claims (9)

1. 一种宽带码分多址(WCDMA)系统中用于多用户接收装置的网格编码调制方法,其特征在于,所述方法包括如下步骤:a、在12. 2kbps上行专用物理信道下,专用业务信道(DTCH)和专用控制信道(DCCH)分别先对输入的信息序列进行循环冗余校验(CRC)比特添加;b、将CRC比特添加后的DTCH信道信号进行网格编码调制处理,包括2/3速率卷积编码和8PSK调制处理,得到I、Q两路数据;同时将CRC比特添加后的DCCH信道信号进行1/3速率卷积编码和8PSK调制,得到I、Q两路数据;c、对网格编码调制处理后的DTCH信道的I路数据和Q路数据分别进行第一次交织、无线帧分割和速率匹配,同时对1/3速率卷积编码和8PSK调制后的DCCH信道的I路数据和Q路数据分别进行第一次交织、无线帧分割和速率匹配;d、将速率匹配后的DTCH信道的I路数据和速率匹配后的DCCH信道的I路数据复用在一起进行第二次 A Wideband CDMA (WCDMA) system for multiuser trellis coded modulation method of the reception apparatus, wherein, said method comprising the steps of: a, an uplink dedicated physical channel at 12. 2kbps, dedicated traffic channel (DTCH) and a dedicated control channel (DCCH) are inputted to the information sequence cyclic redundancy check (CRC) bits are added; B, the DTCH channel signal after the CRC bits are added trellis code modulation, It includes 2/3 rate convolution coding and 8PSK modulation to give I, Q two-way data; while the CRC bits DCCH channel signal added for rate 1/3 convolutional coding and 8PSK modulation, to obtain I, Q two-way data ; c, I channel data of the DTCH channel trellis encoding modulation process and Q data respectively, first interleaving, radio frame segmentation and rate matching, while DCCH convolutional coding rate of 1/3 and 8PSK modulation I channel data channel and the Q channel data respectively of first interleaving, radio frame segmentation and rate matching; D, the I channel data DCCH channel after the I data and rate DTCH channel after rate matching matching multiplexed A second together 织和时隙分割,形成专用物理数据信道(DPDCH)的I路数据,并将速率匹配后的DTCH信道的Q路数据和速率匹配后的DCCH信道的Q路数据复用在一起进行第二次交织和时隙分割,形成DPDCH信道的Q路数据。 Woven and slot are divided, are formed the I-dedicated physical data channel (DPDCH) is, Q channel data of the DCCH channel and Q channel data rate of the DTCH channel matching and rate matching are multiplexed together with a second and dividing the time slot interleaving, forming the DPDCH data of Q channel.
2. 如权利要求l所述的网格编码调制方法,其进一步特征在于,所述网格编码调制处理是先进行2/3速率巻积编码后进行8PSK调制。 2. The trellis coded modulation method as claimed in claim l, further characterized in that the trellis-coded modulation process is to be performed after rate 2/3 8PSK modulation encoding convolving.
3. 如权利要求1或2所述的网格编码调制方法,其进一步特征在于,所述8PSK调制指M=8的MPSK调制。 Trellis coded modulation method according to claim 12, further characterized in that the 8PSK modulation means M = 8 of MPSK modulation.
4. 如权利要求2所述的网格编码调制方法,其进一步特征在于,8PSK调制可以和不同状态数的2/3速率巻积编码搭配。 4. The trellis coded modulation method according to claim 2, further characterized in that, 8PSK rate 2/3 modulation may be different, and the number of states with convolving coding.
5. 如权利要求l所述的网格编码调制方法,其进一步特征在于,所述第一次交织、无线帧分割、速率匹配、数据复用、第二次交织和时隙分割均根据30??的25.212协议中的规定操作。 The trellis coded modulation method as claimed in claim l, further characterized in that said first interleaving, radio frame segmentation, rate matching, data multiplexing, interleaving, and the second slot are divided according to the 30? ? 25.212 protocol specified in the operation.
6. 如权利要求1或5所述的网格编码调制方法,其进一步特征在于,所述速率匹配采用3GPP的25,212协议中的速率匹配方法,具体采用均匀重复方式。 6. The trellis coded modulation method as claimed in claim 1 or claim 5, further characterized in that said rate matching using rate matching method in the 3GPP protocol 25,212, particularly repeated using a uniform manner.
7. 如权利要求l所述的网格编码调制方法,其进一步特征在于,所述l/3速率巻积编码根据3GPP的25.212协议中的规定操作。 7. The trellis coded modulation method as claimed in claim l, further characterized in that the l / 3 convolving rate encoding operation in accordance with 3GPP 25.212 protocol in.
8. 如权利要求1所述的网格编码调制方法,其进一步特征在于,对经过网格编码调制后得到所述DPDCH信道的I路数据和Q路数据进行扩频,扩频因子为256。 8. The method according to trellis coded modulation as claimed in claim 1, further characterized in that, after the trellis-coded modulation to obtain the DPDCH of the I data and the Q spread data, a spreading factor of 256.
9.如权利要求8所述的网格编码调制方法,其进一步特征在于,所述扩频过程是从l〜 255的正整数中任意选择两个数分别作为DPDCH信道I路和Q路的信道码的码号,用信道码的码号相对应的两个信道码分别对DPDCH信道I路和Q路数据进行扩频。 9. The trellis coded modulation method according to claim 8, further characterized in that the spreading process is selected from a number of two positive integers l~ 255 in any of the DPDCH, respectively, as the I and Q channels code number code, channel code number with the code corresponding to the two channel codes for the DPDCH, respectively, the I and Q spread data.
CN 03114862 2003-01-13 2003-01-13 Gridding coding modulation method for multiuser receiving device in WCDMA system CN100490363C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03114862 CN100490363C (en) 2003-01-13 2003-01-13 Gridding coding modulation method for multiuser receiving device in WCDMA system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03114862 CN100490363C (en) 2003-01-13 2003-01-13 Gridding coding modulation method for multiuser receiving device in WCDMA system

Publications (2)

Publication Number Publication Date
CN1518256A CN1518256A (en) 2004-08-04
CN100490363C true CN100490363C (en) 2009-05-20

Family

ID=34284011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03114862 CN100490363C (en) 2003-01-13 2003-01-13 Gridding coding modulation method for multiuser receiving device in WCDMA system

Country Status (1)

Country Link
CN (1) CN100490363C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917410B (en) 2005-08-19 2010-12-29 北京信威通信技术股份有限公司 Method for encoding and modulating channel inn SCDMA system
US20090207790A1 (en) * 2005-10-27 2009-08-20 Qualcomm Incorporated Method and apparatus for settingtuneawaystatus in an open state in wireless communication system
US8320950B2 (en) 2006-06-09 2012-11-27 Alcatel Lucent Method for increasing synchronous control channel capacity in a wireless system
CN101536335B (en) 2007-01-10 2013-03-13 三菱电机株式会社 Communication means
CN101123439A (en) * 2007-07-10 2008-02-13 华为技术有限公司 A coding modulation and decoding method and device for grid coding and modulation code
CN101262306B (en) 2008-04-30 2010-12-15 华为技术有限公司 A decoding method and device for grid coding modulation code
EP3149874A1 (en) * 2014-07-04 2017-04-05 Huawei Technologies Co. Ltd. Tcm transmitter and receiver devices and methods thereof
CN105954293B (en) * 2016-05-03 2018-11-06 北京航空航天大学 Local Cracking method based on real-time monitoring of the sensor fiber Bragg grating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1168600A (en) 1996-04-09 1997-12-24 汤姆森多媒体公司 Multiple mode trellis decoder for digital signal processing system
WO2002101962A2 (en) 2001-01-05 2002-12-19 Qualcomm Incorporated Method and system for increased bandwidth efficiency in multiple input - multiple output channels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1168600A (en) 1996-04-09 1997-12-24 汤姆森多媒体公司 Multiple mode trellis decoder for digital signal processing system
WO2002101962A2 (en) 2001-01-05 2002-12-19 Qualcomm Incorporated Method and system for increased bandwidth efficiency in multiple input - multiple output channels

Also Published As

Publication number Publication date
CN1518256A (en) 2004-08-04

Similar Documents

Publication Publication Date Title
Wang et al. Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems
ES2431796T3 (en) Method and apparatus for operating a communication system Multichannel
EP1566911B1 (en) Reduced complexity multi-turbo multi-user detector
CA2369959C (en) Interleaver and deinterleaver for use in a diversity transmission communication system
CN1050952C (en) Receiver for a direct sequence spread spectrum orthogonally encoded signal employing rake
CN1256819C (en) System and orthogonal coding using orthogonal and near-orthogonal codes in a long-distance telecommunications environment
FI119795B (en) The subscriber unit and method for use in a wireless communication system,
CA2174343C (en) Method and apparatus for the transmission of variable rate digital data
Frenger et al. Code-spread CDMA using maximum free distance low-rate convolutional codes
AU716705B2 (en) Subscriber unit for a CDMA wireless communication system
Viterbi et al. Performance of power-controlled wideband terrestrial digital communication
US6377607B1 (en) System and method for performing accurate demodulation of turbo-encoded signals via pilot assisted coherent demodulation
US8000377B2 (en) System and method for variable rate multiple access short message communications
US7116724B2 (en) Method and system for transmitting and receiving signal in mobile communication using a 2-dimensional space-time interleaver
US8165186B2 (en) Channel estimation for wireless communication
KR100466106B1 (en) Cdma system
CA2374282C (en) Amplitude and phase estimation method in a wireless communication system
EP1349313B1 (en) Apparatus and method for receiving control information over a packet data control channel in a mobile communication system
US6731668B2 (en) Method and system for increased bandwidth efficiency in multiple input—multiple output channels
US20060159160A1 (en) Optimal weights for MMSE space-time equalizer of multicode CDMA system
RU2262212C2 (en) Method and device for determining data transfer speed of reverse communication line in wireless communications system
AU736358B2 (en) Subscriber unit for CDMA wireless communication system
US5325394A (en) Method and apparatus for canceling spread-spectrum noise
KR100564213B1 (en) A method of and apparatus for processing variable rate data for transmission in a fixed rate transmission medium
KR100984983B1 (en) Method and system for decoding

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted