CN100479336C - 谐振天线 - Google Patents

谐振天线 Download PDF

Info

Publication number
CN100479336C
CN100479336C CNB021278725A CN02127872A CN100479336C CN 100479336 C CN100479336 C CN 100479336C CN B021278725 A CNB021278725 A CN B021278725A CN 02127872 A CN02127872 A CN 02127872A CN 100479336 C CN100479336 C CN 100479336C
Authority
CN
China
Prior art keywords
antenna
microwave
radiation
position material
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021278725A
Other languages
English (en)
Other versions
CN1407731A (zh
Inventor
埃里克·D.·伊萨克斯
菲利浦·M.·普雷兹曼
沈荣聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Publication of CN1407731A publication Critical patent/CN1407731A/zh
Application granted granted Critical
Publication of CN100479336C publication Critical patent/CN100479336C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/28Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0485Dielectric resonator antennas

Landscapes

  • Details Of Aerials (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本发明公开了一种设备,包括:用具有其实部在微波频率上为负的ε的间位材料形成的物体;放大器模块;和两个电极,位于该物体的异性极附近;其中该放大器模块测量电极间的电压以测量物体内的电场强,以及该物体是具有其直径为放大器模块放大的辐射波长的0.2倍或更小的天线。另外,本发明还公开了一种方法,包括:通过在物体中接收微波辐射激励所述物体,该物体具有在微波频率上的负实部的介电常数;和响应于所述物体通过微波辐射被激励,测量在所述物体内部或在所述物体附近的电场强,所述物体是间位材料天线;及使用测量出的场强确定发射的通信的数据或语音内容,所述间位材料天线的线尺度小于辐射波长。

Description

谐振天线
技术领域
本发明涉及天线和微波发射机。
背景技术
常规天线的线尺度,常常与接收和/或发射的辐射波长有相同量级。作为一个例子,典型的射频发射机使用的偶极天线,其长度约等于发射的波长的1/2。该种天线长度在天线的驱动电源与辐射场之间提供有效的耦合。
然而,在许多情况下,其线尺度与辐射波长同量级的天线是不实用的。具体说,蜂窝电话和手持无线装置很小。该种装置为天线提供的空间很有限。另一方面,在蜂窝电话和手持无线装置经常使用的波长上,小天线与辐射的耦合是低效的。
发明内容
本发明举出的各个实施例所用的天线,在通信频率上与外部辐射作谐振耦合。即使天线的线尺度远小于辐射波长的1/2,但由于是谐振耦合,它们对辐射有高的灵敏度。
一方面,本发明的特征在于提供一种设备,包括:用具有其实部在微波频率上为负的ε的间位材料形成的物体;放大器模块;和两个电极,位于该物体的异性极附近;其中所述放大器模块测量电极间的电压以测量物体内的电场强,以及该物体是具有其直径为放大器模块放大的辐射波长的0.2倍或更小的天线。
另一方面,本发明的特征在于提供一种方法,该方法包括通过在物体中接收微波辐射激励所述物体,该物体具有在微波频率上的负实部的介电常数;和响应于所述物体通过微波辐射被激励,测量在所述物体内部或在所述物体附近的电场强,所述物体是间位材料天线;及使用测量出的场强确定发射的通信的数据或语音内容,所述间位材料天线的线尺度小于辐射波长。
附图说明
图1画出包含一谐振电介质天线的接收机;
图2画出的响应曲线,是用与一示例性球形电介质天线相邻的两个极性相反的电极,测量该天线响应的响应曲线;
图3画出包含一谐振磁导天线的接收机;和
图4是流程图,表明用图1或图3的接收机接收无线通信的方法。
具体实施方式
下面各实施例包括用人造间位材料(metamaterial)制作的天线,这些间位材料的介电常数(ε)和/或磁导率(μ),在某一微波频率范围上是负的。选用这些间位材料,是为了使天线与通信频率上的外部辐射产生谐振耦合。即使天线的线尺度远小于辐射波长,但由于是谐振耦合,它们对辐射有高的灵敏度。
该谐振耦合是由于选择的间位材料具有合适的ε和/或μ值产生的。间位材料的合适选择,与该物体的形状以及需要在其上产生谐振响应的频率范围有关。对球形天线,在该频率范围,即通信频率范围,ε和/或μ值的实部必须近似等于“-2”。对该ε和/或μ值,即使球形天线的直径远小于辐射波长的1/2,它对外部辐射仍非常灵敏。
图1画出基于电介质天线14的微波接收机10。接收机10包括放大器模块12和电介质天线14。放大器模块12测量电介质天线14的相邻两个极性相反电极16、18之间的电压。由电极16、18测量的电压,代表电介质天线14内部电场的强度,因为该电压在与天线14谐振响应的相同频率范围,对外部电场产生谐振响应。示范性的电极16、18是薄的或线网状装置,对电介质天线14内部电场干扰极小。天线14的直径,最好是放大器模块10需要放大的频率上辐射波长的0.2倍或更小。
对小型天线14,标准的静电理论确定该天线如何响应外部施加的辐射。在远大于天线直径S,但远小于辐射波长的1/4的距离D上,外部电场Efar近似是空间恒定且平行的。因为辐射波长远大于D,而外部电场Efar仅对例如辐射波长1/4的距离上或大于辐射波长1/4的距离上才基本上发生变化,所以在距离D上,电场Efar是恒定且平行的。
对天线14,静电理论确定天线14内部电场Einside的值,如何随空间恒定的外部电场Efar,即在比D大又比波长小的距离上的电场值而变化。如果该天线14的介电常数ε在相关辐射频率附近基本上恒定,则静电理论指出:
Einside=(3/[ε+2])Efar
由该静电结果可得,当ε→-2时,Einside→∞。因此,在天线的“ε”接近-2时,即使小的外部电场Efar,也能在电极16、18上产生大的电压。在一些实施例中,天线基本上是球形,且ε的实部在微波频率上等于-2±0.2。该ε值在天线14内部产生谐振响应,从而使接收机对外部辐射非常灵敏。因此,谐振天线14的制作,要求构造一种间位材料,其ε在需要的通信频带内有适当的值。
可用的材料中,没有介电常数等于-2的。但在有限频率范围上,能够制成ε的实部接近-2的合成材料。该种合适的间位材料在适当的微波频率范围内,如从约1吉赫(GHz)到约100GHz内,具有负的ε。
在部分上述频率范围内具有合适性质的人造间位材料,本领域是熟知的。一些该种间位材料,R.A.Shelby等人在Science,vol.292(2001)77上的论文“Experimental Verification of a Negative Index ofRefraction”中有说明。下面的论文提供该种间位材料的各种设计:“Composite Medium with Simultaneously Negative Permeability andPermeability”,D.R.Smith et al,Physical Review Letters,vol,84(2000)4184和“Microwave transmission through a two-dimensional,isotropic,left-handed metamaterial”,by R.A.Shelby et al,Applied PhysicsLetters,vol.78(2001)489。示例性的设计制成的间位材料,在频率范围约4.7-5.2GHz和约10.3-11.1GHz内有负的ε和/或μ值。
人造间位材料的两维和三维物体的各种设计,包括导电物体的两维和三维阵列。物体的各种实施例,包括单匝和多匝线环、裂环谐振器、导电带、以及这些物体的组合。由一匝或多匝线环制成的示例性物体,其谐振频率按熟知的方式依赖于定义该物体的参数。间位材料的介电常数和磁导率既依赖于物体内的物理特性,也依赖于物体阵列的布局。对线环状物体,谐振频率依赖于线粗、环半径、环匝数、和组成该线环的线间间隔。如见:“Loop-wire medium for investigatingplasmons at microwave frequencies”,D.R.Smith et al,AppliedPhysics Letters,vol.75(1999)1425。
频率范围和ε和/或μ选定之后,确定间位材料构成的物体和阵列的合适参数值,对本领域熟练人员是直接了当的。请见前面所引参考文献。可用的间位材料的介电常数和/或磁导率,在需要的微波频率上有负的实部。
因为实际的材料会引起损耗,间位材料的ε和/或μ通常有非零的虚部。为获得该种谐振状态,介电常数和/或磁导率的虚部必须足够小,不致破坏天线的谐振响应,又要足够大,以提供适当的谐振响应的宽度。通常,人们需要在某一频带上的谐振响应。在间位材料中引进损耗的方法,本领域熟练人员也是熟知的。如见前面所引参考文献。
在天线14产生谐振响应的频率上,ε的非零虚部降低了对外部电场的无限大响应,成为带有频率扩展的有限峰,如图2所示。接收机10最好采用ε有足够大虚部的间位材料,以确保需要的通信频带能在天线14中激励谐振响应。已知间位材料产生的值为Im[ε(ω)]/Re[ε(ω)]=Δω/ω≥0.03-0.05且≤0.1。
图3画出基于磁导球形天线22的接收机20。接收机20还包括耦合线圈24和放大器模块26。天线22用有适当μ值的磁性间位材料构成。在天线22中,对外部辐射产生谐振响应的是磁导率μ而不是介电常数ε。对天线22,用静磁学而不是静电学,把天线内部的磁场Binside与外部磁场Bfar联系起来。只要外部磁场Bfar的波长大于天线22的直径,静磁学指出:
Binside=(3μ/[μ+2])Bfar
如果μ的值在需要的频率范围接近“-2”,则球形天线22对外加辐射产生谐振响应。在此情形下,天线22极大地增加接收机20对外部辐射的灵敏度。
再次指出,有非零虚部μ的磁导间位材料,会导致内部损耗。μ的非零虚部要足够大,以确保天线22在需要的频带上产生谐振响应。在间位材料中引进损耗的方法,本领域熟练人员是熟知的。
虽然上述接收机10、20使用球形天线14、22,但其他的实施例使用不同形状的天线。示例性天线的形状,包括椭球形、柱形、和立方形。对这些其他的形状,相关天线对外部辐射产生谐振响应的ε和/或μ的实部值,与“-2”有差别。间位材料的参数与天线的几何形状有关,要选择在适当的微波频带中ε和/或μ的适当负值。
图4表明用图1的接收机10,或用图3的接收机20来接收无线数据或话音通信的方法30。方法30包括接收在天线中谐振地激励电场或磁场强度的微波辐射(步骤32)。该天线或者在微波频率上的介电常数有负实部,或者在微波频率上的磁导率有负实部。示例性的天线包括由间位材料制成的物体。响应受到的激励,测量天线内或天线附近的电场或磁场强度(步骤34)。用天线内部或天线附近的一个或多个检测器测量该场强。方法30包括用测量的场强,确定预选频率范围内发送的通信数据或话音内容(步骤36)。
本发明当然包括本领域熟练人员借助这里公开的内容、图例、和权利要求书,从而想到的其他实施例。

Claims (7)

1.一种设备,包括:
用具有其实部在微波频率上为负的ε的间位材料形成的物体;
放大器模块;和
两个电极,位于该物体的异性极附近;
其中所述放大器模块测量电极间的电压以测量物体内的电场强,以及
该物体是具有其直径为放大器模块放大的辐射波长的0.2倍或更小的天线。
2.按照权利要求1的设备,还包括:
微波接收机,该物体和该两个电极被配置为用作该接收机的天线。
3.按照权利要求2的设备,其中物体基本上是球形,且该实部在微波频率上近似等于-2。
4.按照权利要求2的设备,还包括:
蜂窝电话或手持无线装置,该微波接收机配置成为该蜂窝电话或手持无线装置接收通信。
5.按照权利要求1的设备,其中物体的形状类似于立方体和圆柱体之一。
6.一种方法,包括:
通过在物体中接收微波辐射激励所述物体,该物体具有在微波频率上的负实部的介电常数;和
响应于所述物体通过微波辐射被激励,测量在所述物体内部或在所述物体附近的电场强,所述物体是间位材料天线;及
使用测量出的场强确定发射的通信的数据或语音内容,所述间位材料天线的线尺度小于辐射波长。
7.按照权利要求6的方法,其中所述间位材料天线的线尺度小于辐射波长的1/2。
CNB021278725A 2001-08-17 2002-08-13 谐振天线 Expired - Fee Related CN100479336C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US31331001P 2001-08-17 2001-08-17
US60/313,310 2001-08-17
US10/090,106 US6661392B2 (en) 2001-08-17 2002-03-04 Resonant antennas
US10/090,106 2002-03-04

Publications (2)

Publication Number Publication Date
CN1407731A CN1407731A (zh) 2003-04-02
CN100479336C true CN100479336C (zh) 2009-04-15

Family

ID=26781919

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021278725A Expired - Fee Related CN100479336C (zh) 2001-08-17 2002-08-13 谐振天线

Country Status (6)

Country Link
US (1) US6661392B2 (zh)
EP (1) EP1286418B1 (zh)
JP (1) JP4308484B2 (zh)
CN (1) CN100479336C (zh)
CA (1) CA2390774C (zh)
DE (1) DE60218000T2 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781486B2 (en) * 2002-06-27 2004-08-24 Harris Corporation High efficiency stepped impedance filter
US6963259B2 (en) * 2002-06-27 2005-11-08 Harris Corporation High efficiency resonant line
US6727785B2 (en) * 2002-06-27 2004-04-27 Harris Corporation High efficiency single port resonant line
US7256753B2 (en) * 2003-01-14 2007-08-14 The Penn State Research Foundation Synthesis of metamaterial ferrites for RF applications using electromagnetic bandgap structures
US7015865B2 (en) * 2004-03-10 2006-03-21 Lucent Technologies Inc. Media with controllable refractive properties
US8742944B2 (en) * 2004-06-21 2014-06-03 Siemens Energy, Inc. Apparatus and method of monitoring operating parameters of a gas turbine
JP3841100B2 (ja) * 2004-07-06 2006-11-01 セイコーエプソン株式会社 電子装置および無線通信端末
US7301504B2 (en) 2004-07-14 2007-11-27 Ems Technologies, Inc. Mechanical scanning feed assembly for a spherical lens antenna
US7009565B2 (en) * 2004-07-30 2006-03-07 Lucent Technologies Inc. Miniaturized antennas based on negative permittivity materials
US7205941B2 (en) * 2004-08-30 2007-04-17 Hewlett-Packard Development Company, L.P. Composite material with powered resonant cells
JP4645351B2 (ja) * 2005-03-18 2011-03-09 株式会社豊田中央研究所 周期構造を有するアンテナ
WO2006137575A1 (ja) * 2005-06-24 2006-12-28 National University Corporation Yamaguchi University ストリップ線路型の右手/左手系複合線路または左手系線路とそれらを用いたアンテナ
US7695646B2 (en) * 2005-11-23 2010-04-13 Hewlett-Packard Development Company, L.P. Composite material with electromagnetically reactive cells and quantum dots
US7307589B1 (en) * 2005-12-29 2007-12-11 Hrl Laboratories, Llc Large-scale adaptive surface sensor arrays
US7741933B2 (en) * 2006-06-30 2010-06-22 The Charles Stark Draper Laboratory, Inc. Electromagnetic composite metamaterial
CN1933061B (zh) * 2006-09-06 2011-06-29 清华大学 基于负介电常数介质的无绕线感抗元件
US7492329B2 (en) * 2006-10-12 2009-02-17 Hewlett-Packard Development Company, L.P. Composite material with chirped resonant cells
US7928900B2 (en) * 2006-12-15 2011-04-19 Alliant Techsystems Inc. Resolution antenna array using metamaterials
US8723722B2 (en) 2008-08-28 2014-05-13 Alliant Techsystems Inc. Composites for antennas and other applications
US9461505B2 (en) * 2009-12-03 2016-10-04 Mitsubishi Electric Research Laboratories, Inc. Wireless energy transfer with negative index material
US9466887B2 (en) 2010-11-03 2016-10-11 Hrl Laboratories, Llc Low cost, 2D, electronically-steerable, artificial-impedance-surface antenna
US8994609B2 (en) 2011-09-23 2015-03-31 Hrl Laboratories, Llc Conformal surface wave feed
CN102749529B (zh) * 2011-04-20 2015-12-16 深圳光启高等理工研究院 紧缩场天线测量系统
US8982011B1 (en) 2011-09-23 2015-03-17 Hrl Laboratories, Llc Conformal antennas for mitigation of structural blockage
US11367959B2 (en) 2015-10-28 2022-06-21 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10355361B2 (en) 2015-10-28 2019-07-16 Rogers Corporation Dielectric resonator antenna and method of making the same
US10601137B2 (en) 2015-10-28 2020-03-24 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10374315B2 (en) 2015-10-28 2019-08-06 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10476164B2 (en) 2015-10-28 2019-11-12 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US11876295B2 (en) 2017-05-02 2024-01-16 Rogers Corporation Electromagnetic reflector for use in a dielectric resonator antenna system
US11283189B2 (en) 2017-05-02 2022-03-22 Rogers Corporation Connected dielectric resonator antenna array and method of making the same
WO2018226657A1 (en) 2017-06-07 2018-12-13 Rogers Corporation Dielectric resonator antenna system
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US10910722B2 (en) 2018-01-15 2021-02-02 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US10892544B2 (en) 2018-01-15 2021-01-12 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11552390B2 (en) 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
US11031697B2 (en) 2018-11-29 2021-06-08 Rogers Corporation Electromagnetic device
CN113169455A (zh) 2018-12-04 2021-07-23 罗杰斯公司 电介质电磁结构及其制造方法
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303527A (zh) * 1998-05-29 2001-07-11 艾利森电话股份有限公司 用于无线电通信设备的高效多频段天线

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090198A (en) * 1964-08-31 1978-05-16 General Motors Corporation Passive reflectance modulator
DE1516845A1 (de) * 1966-05-24 1969-07-24 Scheel Dipl Ing Henning Verfahren und Anordnung zur Nachrichtenuebertragung von und zu rotationsstabilisierten Raketen,Satelliten und Raumsonden
FR2134146B1 (zh) * 1971-04-22 1974-08-19 Lignes Telegraph Telephon
US6002368A (en) 1997-06-24 1999-12-14 Motorola, Inc. Multi-mode pass-band planar antenna
US6046701A (en) * 1997-11-03 2000-04-04 Spike Technologies, Inc. Apparatus for high-performance sectored antenna system
US6424319B2 (en) * 1999-11-18 2002-07-23 Automotive Systems Laboratory, Inc. Multi-beam antenna
FR2807216B1 (fr) * 2000-03-31 2002-06-21 Thomson Csf Dispositif de motorisation de capteurs dans un recepteur et/ou emetteur a lentille electromagnetique spherique, et recepteur et/ou emetteur comportant un tel dispositif

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303527A (zh) * 1998-05-29 2001-07-11 艾利森电话股份有限公司 用于无线电通信设备的高效多频段天线

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
. .
Composite Medium withSimultaneouslyNegativePermeabilityand Permittivity. D.R. SMITH,W.J. PADILLA,D.C.VIER,S.C.NEMAT-NASSER, S. SCHULTZ.PHYS. REV. LETT.,Vol.84 No.18. 2000
Composite Medium withSimultaneouslyNegativePermeabilityand Permittivity. D.R. SMITH,W.J. PADILLA,D.C.VIER,S.C.NEMAT-NASSER, S. SCHULTZ.PHYS. REV. LETT.,Vol.84 No.18. 2000 *
Experimental Verification of a Negative Index of Refraction. R.A.SHELBY,D.R.SMITH,S.SCHULTZ.SCIENCE,Vol.292 . 2001
Experimental Verification of a Negative Index of Refraction. R.A.SHELBY,D.R.SMITH,S.SCHULTZ.SCIENCE,Vol.292. 2001 *
Metamaterials holds promise for antennas, optics. R.COLON JOHNSON.WWW.EETIMES.COM. 2001
Metamaterials holds promise for antennas, optics. R.COLON JOHNSON.WWW.EETIMES.COM. 2001 *

Also Published As

Publication number Publication date
DE60218000D1 (de) 2007-03-22
CN1407731A (zh) 2003-04-02
EP1286418B1 (en) 2007-02-07
DE60218000T2 (de) 2007-11-22
CA2390774C (en) 2008-11-25
EP1286418A1 (en) 2003-02-26
US20030034922A1 (en) 2003-02-20
CA2390774A1 (en) 2003-02-17
US6661392B2 (en) 2003-12-09
JP4308484B2 (ja) 2009-08-05
JP2003158416A (ja) 2003-05-30

Similar Documents

Publication Publication Date Title
CN100479336C (zh) 谐振天线
Elwi Metamaterial based a printed monopole antenna for sensing applications
Sim et al. Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks
Çelik et al. A novel meander line integrated E‐shaped rectenna for energy harvesting applications
Jalil et al. High capacity and miniaturized flexible chipless RFID tag using modified complementary split ring resonator
Mandel et al. A wireless passive strain sensor
Lim et al. A tunable electrically small antenna for ground wave transmission
CN104409858A (zh) 一种同轴交叉振子阵列通信天线及其设计方法
Liu et al. Compact dielectric resonator antenna with bandwidth enhancement via loading of shorting pins
US6980167B2 (en) Electromagnetic probe
KR102460357B1 (ko) 전기적으로 짧은 안테나 및 수정 공진기를 갖춘 loran 장치 및 이와 관련된 방법
Kishk et al. Conical dielectric resonator antennas excited by a coaxial probe
Leung et al. The probe-fed zonal slot antenna cut onto a cylindrical conducting cavity
Beria et al. Highly Sensitive Miniaturized DS-CSRR Sensor for Complex Permittivity Measurements
Gupta et al. Dielectric resonator antenna array for X‐band and microwave imaging applications
Hsu et al. A wideband capacitively fed circular‐E patch antenna
Samal et al. An array with four circular slot CDRAs for X-band application
Lavor et al. Analysis of a UWB Planar Antenna with Split Ring Resonator
Sinha et al. Antenna miniaturisation using piezoelectric material based thin film antenna for body-centric wireless communications
Wong et al. Cavity‐model analysis of a slot‐coupled cylindrical‐rectangular microstrip antenna
CN107860985A (zh) 一种mems电场传感器及其无线供能系统与方法
Reddy Deisgn of UWB Range of Micro strip Patch Antenna
EP1349237A1 (en) Mobile communication apparatus
Patras et al. Design of a Non-Pyramidal Modeled Waveguide Horn Antenna for WLAN 2.4 GHz Communication System
El Swiefy et al. Novel RFID Conformal Tag Antennas for Liquid Level Detection Applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090415

Termination date: 20200813

CF01 Termination of patent right due to non-payment of annual fee